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Efficient prediction

for linear and nonlinear autoregressive models

By Ursula U. Müller, Anton Schick 1 and Wolfgang Wefelmeyer

Universität Bremen, Binghamton University, Universität zu Köln

Conditional expectations given past observations in stationary time series are

usually estimated directly by kernel estimators, or by plugging in kernel estimators

for transition densities. We show that for linear and nonlinear autoregressive models

driven by independent innovations, appropriate smoothed and weighted von Mises

statistics of residuals estimate conditional expectations at better, parametric, rates

and are asymptotically efficient. The proof is based on a uniform stochastic expansion

for smoothed and weighted von Mises processes of residuals. We consider in particular

estimation of conditional distribution functions and of conditional quantile functions.

1. Introduction. Let X0, . . . , Xn be observations from a real-valued stationary time

series. Conditional expectations E(q(Xn+m) | Xn = x) with lag m of some known function

q can be estimated by kernel estimators. For asymptotic results under various mixing con-

ditions we refer to Robinson (1983, 1986), Collomb (1984), Yakowitz (1985, 1987), Truong

and Stone (1992), Roussas and Tran (1992) and Tran (1993). If the time series is first-order

Markov with transition density p(x, y), a conditional expectation of q with lag one can be

written E(q(Xn+1) | Xn = x) =
∫
q(y)p(x, y) dy and it can be estimated by plugging in a

kernel estimator p̂(x, y). Asymptotic results for such estimators of conditional expectations

are in Roussas (1969, 1991a, 1991b), Masry (1989), and Delecroix and Rosa (1995).

If the Markov chain follows a nonparametric autoregressive model Xi = r(Xi−1) + εi,

with unknown autoregression function r and independent and identically distributed (i.i.d.)

mean zero innovations εi, then E(q(Xn+1) | Xn = x) = E[q(ε1 + r(x))]. Let r̃ denote a

(kernel) estimator of the autoregression function. Write ε̃i = Xi − r̃(Xi−1) for the residuals
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and F̃ (y) = 1
n

∑n
i=1 1[ε̃i ≤ y] for the empirical distribution function based on them. The

representation suggests estimating the conditional expectation by an empirical estimator

(1.1)
1
n

n∑
i=1

q(ε̃i + r̃(x)) =
∫
q(y + r̃(x)) dF̃ (y).

The convergence rate of (1.1) is given by the convergence rate of r̃.

Suppose now that we have a linear or nonlinear parametric model r = rϑ for the au-

toregression function. In this case we can use a n1/2-consistent estimator ϑ̃ for ϑ and

the n1/2-consistent estimator r̃ = rϑ̃ for r, and we can estimate the innovations εi by

ε̃i = Xi − rϑ̃(Xi−1). Under appropriate smoothness and integrability conditions on the

function q, one can prove by Taylor expansion that the resulting estimator (1.1) is n1/2-

consistent; see Schick and Wefelmeyer (2004a) for closely related details in a different prob-

lem. In particular, the estimator (1.1) converges at a faster rate than the nonparametric

estimators. If ϑ̃ is asymptotically normal, so is (1.1). Such results could also be obtained for

heteroscedastic autoregressive models Xi = rϑ(Xi−1)+sϑ(Xi−1)εi including ARCH models,

and for GARCH models. For GARCH models and smooth q, one could use limit results for

the empirical process of residuals obtained by Boldin (1998, 2000) and Berkes and Horváth

(2001, 2002).

Since the innovations are assumed to have mean zero, the residual-based empirical dis-

tribution function F̃ is not an efficient estimator of F . Thus improvements over (1.1) are

possible by replacing F̃ by an efficient estimator. Here efficiency is meant in the sense of

a semiparametric version of Hájek and Le Cam’s convolution theorem; see also Section 6.

An efficient estimator of F has been constructed in Schick and Wefelmeyer (2002), but this

estimator is not a distribution function. Alternative efficient estimators that are distribution

functions are discussed in Müller, Schick and Wefelmeyer (2005). One such estimator is the

weighted residual-based empirical distribution function

F̃w(y) =
1
n

n∑
i=1

wi1[ε̃i ≤ y], y ∈ R,

with an efficient estimator ϑ̃ and random weights wi chosen following the empirical likelihood

approach of Owen (1988, 2001) so that with probability tending to one, F̃w has mean zero, i.e.∫
y dF̃w(y) = (1/n)

∑n
i=1 wiε̃i = 0. The resulting weighted version of (1.1) is the estimator

(1.2)
∫
q(y + rϑ̃(x)) dF̃w(y) =

1
n

n∑
i=1

wiq(ε̃i + rϑ̃(x)).

This estimator is efficient if ϑ̃ is. This is a consequence of the fact that smooth functionals

of efficient estimators are efficient. An alternative to weighting would be to subtract an
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appropriate “estimator of zero” from the estimator that corrects the influence function. See

Levit (1975) and Haberman (1984) for models with i.i.d. data; Müller, Schick and Wefelmeyer

(2001) for Markov chains; and Schick and Wefelmeyer (2002, 2004a) for time series residuals.

However, weighting has the advantage that with high probability the information of mean

zero is used exactly, so we expect better small-sample properties.

Let us now look at some special cases in which simple alternative estimators are also

available. For the conditional mean of lag one, for which q(x) = x, we have E(Xn+1 | Xn =

x) = rϑ(x). This can be estimated directly by rϑ̃(x). This estimator is efficient if ϑ̃ is.

The estimator (1.1) is (1/n)
∑n

i=1 ε̃i + rϑ̃(x), which is n1/2-consistent but is not efficient

even if ϑ̃ is. The weighted estimator (1.2) equals the direct estimator rϑ̃(x) with probability

tending to one. Hence it is efficient if ϑ̃ is. Another special case is the conditional second

moment of lag one, for which q(x) = x2. We have E(X2
n+1 | Xn = x) = E[ε21] + r2ϑ(x). The

empirical estimator (1.1) is (1/n)
∑n

i=1(ε̃i + rϑ̃(x))2. It is n1/2-consistent, but not efficient.

A more direct n1/2-consistent estimator is the plug-in estimator (1/n)
∑n

i=1 ε̃
2
i + r2

ϑ̃
(x).

However, it is not efficient in general even if ϑ̃ is, since it does not (fully) exploit the fact

that the innovations have mean zero. Efficient estimators are given by the weighted empirical

estimator and the (asymptotically equivalent) weighted plug-in estimator (1/n)
∑n

i=1 wiε̃
2
i +

r2
ϑ̃
(x), both with efficient ϑ̃.

Similar results are possible for lag two. The conditional expectation E(q(Xn+2) | Xn = x)

becomes E[q(ε2 + rϑ(ε1 + rϑ(x)))] and can be estimated n1/2-consistently by the von Mises

statistic ∫∫
q(z + rϑ̃(y + rϑ̃(x))) dF̃ (y)dF̃ (z) =

1
n2

n∑
i=1

n∑
j=1

q(ε̃j + rϑ̃(ε̃i + rϑ̃(x)))

and the weighted von Mises statistic∫∫
q(z + rϑ̃(y + rϑ̃(x))) dF̃w(y)dF̃w(z) =

1
n2

n∑
i=1

n∑
j=1

wiwjq(ε̃j + rϑ̃(ε̃i + rϑ̃(x))).

The latter will be efficient if an efficient estimator ϑ̃ of ϑ is used. The von Mises statistics

are easier to use than the usual kernel estimator because they do not require a choice of

bandwidth. For certain q, simpler alternative estimators are available. For example, the

conditional mean of lag two equals E[rϑ(ε1 + rϑ(x))] and can be estimated more directly

by the average (1/n)
∑n

i=1 rϑ̃(ε̃i + rϑ̃(x)) or the weighted average (1/n)
∑n

i=1 wirϑ̃(ε̃i +

rϑ̃(x)). The latter coincides with the weighted von Mises statistic with probability tending

to one. A degenerate case would be the linear AR(1) model, with rϑ(x) = ϑx, for which

the conditional mean of lag two is ϑ2x, which is estimated efficiently by ϑ̃2x with ϑ̃ efficient

for ϑ. The weighted von Mises statistic coincides with this simple efficient estimator with
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probability tending to one. Simplified versions of the von Mises statistics are also available for

estimating higher conditional moments of lag two. The conditional second moment of lag two

simplifies to E[ε21]+E[r2ϑ(ε1 +rϑ(x))] and can be estimated n1/2-consistently by the average

(1/n)
∑n

i=1

(
ε̃2i +r2

ϑ̃
(ε̃i +rϑ̃(x))

)
or the weighted average (1/n)

∑n
i=1 wi

(
ε̃2i +r2

ϑ̃
(ε̃i +rϑ̃(x))

)
.

The latter equals the weighted von Mises estimator with probability tending to one and is

efficient if ϑ̃ is.

The above shows that conditional expectations of lags one and two can be estimated

n1/2-consistently and efficiently for smooth q in nonlinear autoregression models of order

one. To prove n1/2-consistency of the estimator (1.1) for more general q we need an ap-

propriate balance of smoothness assumptions on q and on the innovation distribution. For

discontinuous q we must assume that the innovations have a smooth density f . One may

then also want to replace F̃ and F̃w by smoothed versions F̃s and F̃sw, say dF̃s(y) = f̃(y) dy

and dF̃sw(y) = f̃w(y) dy, where f̃ is a kernel estimator f̃(y) = (1/n)
∑n

i=1 kbn
(y − ε̃i) of

the density f , and f̃w is a weighted kernel estimator f̃w(y) = (1/n)
∑n

i=1 wikbn(y − ε̃i).

Here kbn
(y) = k(y/bn)/bn for some kernel k and some bandwidth bn. These kernel esti-

mators were studied in Müller, Schick and Wefelmeyer (2005). Efficiency of the smoothed

and weighted residual-based empirical distribution function F̃sw was also shown there. The

resulting smoothed and weighted von Mises statistic∫∫
q(z + rϑ̃(y + rϑ̃(x))) f̃w(y) dy f̃w(z) dz

preserves n1/2-consistency and efficiency even though the kernel estimators have a slower

rate of convergence. Simulations show that smoothing improves the small-sample behavior

of our estimator noticeably, especially if q is not smooth (see Table 1). This is a second-order

effect. For theoretical results in this direction see Golubev and Levit (1996). We note that the

choice of bandwidth is less critical here than for the usual kernel estimators. In particular,

the asymptotic variance of our estimator does not depend on the choice of bandwidth in the

allowed range.

The smoothed and weighted estimator∫∫
q(z + rϑ̃(y + rϑ̃(x))) f̃w(y) dy f̃w(z) dz

equals

1
n2

n∑
i=1

n∑
j=1

wiwj

∫∫
q(ε̃j + bnu+ rϑ̃(ε̃i + bnv + rϑ̃(x)))k(u) du k(v) dv.
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When the latter double integral is difficult to calculate it can be approximated by Riemann

sums, resulting in

4
(nN)2

n∑
i=1

n∑
j=1

N∑
s=1

N∑
t=1

wiwjq(ε̃j + bnus + rϑ̃(ε̃i + bnut + rϑ̃(x)))k(us)k(ut).

Here u1, . . . , uN denote the midpoints of a partition of the compact support [−1, 1] of the

kernel k into N intervals of equal lengths. This shows that the smoothed estimator is easy

to compute.

Table 1

Simulated mean squared error for various von Mises estimators

n U W 1.50 1.75 2.00 2.25 2.50 2.75

50 6181 967 512 462 430 414 411 417

Normal 100 3153 460 299 279 266 261 264 273

200 1615 227 168 160 156 155 160 168

50 6184 1218 647 591 558 544 545 558

Logistic 100 3204 606 390 367 356 355 364 380

200 1620 296 220 213 212 217 227 243

50 6363 1513 803 738 701 686 690 706

T(5) 100 3234 756 495 470 459 461 474 495

200 1646 375 281 274 275 283 299 320

The table entries are 106×MSE of the von Mises estimator (U), the weighted von

Mises estimator (W) and the smoothed and weighted von Mises estimator for different

bandwidths bn = cn−1/4 with c = 1.5, 1.75, 2, 2.25, 2.5, 2.75. The simulations are based

on 20,000 repetitions. We estimate the conditional probability P (Xn+2 ≤ 0 | Xn = .5)

in the AR(1) model Xi = ϑXi−1 +εi with ϑ = .5 for sample sizes n = 50, 100, 200. The

innovation distributions are the standard normal distribution, the logistic distribution

and the t-distribution with five degrees of freedom, the latter two scaled to have

variance one. As estimator of ϑ, the sample autocorrelation coefficient was used. The

standard error of a simulated MSE is about one percent of the MSE.

Weighting can lead to drastic variance reductions, especially if q is asymmetric, e.g. for

odd moments and for distribution functions. See Example 3.2 and Example 5.5, which treat

smoothed and weighted von Mises statistics in the classical autoregressive model of order

one. Example 3.2 reports a possible variance reduction of up to 64 percent for the one

lag conditional distribution function. Similar improvements through weighting are obtained

for estimators of expectations under the innovation distribution; see Müller, Schick and
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Wefelmeyer (2005, Sections 4 and 5). Example 5.5 shows that variance reductions of over 98

percent are possible in the case of estimating the lag two conditional distribution function.

The simulation results in Table 1 show that for small to moderate sample sizes the actual

variance reductions might be even larger due to the second-order effect of smoothing.

It is the purpose of this paper to extend and sharpen the results on smoothed and

weighted von Mises statistics outlined above in several directions: to linear and nonlin-

ear autoregressive models of higher order, to conditional expectations with higher lags,

to functions q of more than one argument, and to uniform results over classes of func-

tions. We are particularly interested in estimating univariate and multivariate conditional

distribution functions. They give rise to n1/2-consistent estimators of conditional quan-

tiles. Other applications are conditional probabilities of staying in a certain band, e.g.

P (|Xn+1 − x| ≤ c1, |Xn+2 − x| ≤ c2 | Xn = x), or conditional probabilities that the time

series increases over a certain period, e.g. P (Xn+3 > Xn+2 > Xn+1 > x | Xn = x).

Specifically, we consider linear or nonlinear autoregressive models of order p,

(1.3) Xi = rϑ(Xi−1) + εi,

with Xi−1 = (Xi−p, . . . , Xi−1) and ϑ a d-dimensional parameter, and construct estimators

for conditional expectations E(q(Xn+1, . . . , Xn+m) | Xn = x) for some known function q

of m arguments and some fixed vector x = (x1, . . . , xp). Using the representation of the

autoregressive process, such conditional expectations can be written

E(q(Xn+1, . . . , Xn+m) | Xn = x) = E[q(%ϑ(εn+1, . . . , εn+m))]

for some function %ϑ. For lag two, i.e. m = 2, we have %ϑ(ε1, ε2) = (ε1 + rϑ(x), ε2 +

rϑ(x2, . . . , xp, ε1 + rϑ(x))). Let ϑ̃ be a n1/2-consistent estimator of ϑ. Using it we can form

the residuals ε̃i = Xi − rϑ̃(Xi−1), i = 1, . . . , n. We estimate the conditional expectations by

the smoothed and weighted von Mises statistic∫
· · ·

∫
q(%ϑ̃(y1, . . . , ym))

m∏
j=1

f̃w(yj) dyj .

It is efficient if an efficient estimator ϑ̃ for ϑ is used. We obtain n1/2-consistency and asymp-

totic normality not just for fixed q but uniformly over large classes of functions. We show

in particular that our estimator, viewed as a stochastic process indexed by q, and suitably

standardized, converges to a Gaussian process. This is in contrast to the usual kernel esti-

mators, for which limit theorems can hold only locally, in intervals shrinking in proportion

to the bandwidth bn.
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Independence of innovations has recently also been exploited for other functionals. Schick

and Wefelmeyer (2004a) use this idea to reduce the variance in estimating linear functionals

of the stationary law of invertible linear processes. Saavedra and Cao (2000) obtain a n1/2-

consistent estimator for the stationary density of an MA(1) process. Schick and Wefelmeyer

(2004b) prove asymptotic efficiency of a modified version and Schick and Wefelmeyer (2004c)

obtain functional central limit theorems in the case of MA(q) processes, considering the

density as an element of the function spaces L1 or C0. For nonparametric regression, Van

Keilegom and Veraverbeke (2001, 2002) and Van Keilegom, Akritas and Veraverbeke (2001)

exploit independence of error and covariate to obtain improved estimators for the conditional

density, distribution function and hazard rate of the response given the covariate.

The paper is organized as follows. In Section 2 we derive a stochastic expansion for

smoothed von Mises processes based on residuals,

ψ(h, f̃) =
∫
· · ·

∫
h(y1, . . . , ym)

m∏
j=1

f̃(yj) dyj ,

and for weighted versions ψ(h, f̃w), uniform over appropriate classes H of functions h. These

are results of independent interest. To describe them, let f̂(y) = 1
n

∑n
i=1 kbn(y − εi) be the

kernel estimator based on the actual innovations, and

h̄(y) = E(h(ε1, . . . , εm) | ε1 = y) + · · ·+ E(h(ε1, . . . , εm) | εm = y).

The expansion of ψ(h, f̃) is of the form

ψ(h, f̃)− ψ(h, f) =
∫
h̄(y)(f̂(y)− f(y)) dy +D(h)>(ϑ̃− ϑ) +Rn(h)

with suph∈H |Rn(h)| = op(n−1/2). Here D(h) = E[h̄(ε)`(ε)]E[ṙϑ(X)], where ` = −f ′/f is

the score function for location of the innovation distribution, ṙϑ(X) is the gradient of rϑ(X)

with respect to ϑ and (X, ε) is short for (X0, ε1). The expansion of the weighted version

differs as follows,

ψ(h, f̃w) = ψ(h, f̃)− E[εh̄(ε)]
σ2

( 1
n

n∑
i=1

εi − E[ṙϑ(X)]>(ϑ̃− ϑ)
)

+Rnw(h),

where again suph∈H |Rnw(h)| = op(n−1/2). In the above expansions, the terms involv-

ing ϑ̃ − ϑ come from replacing the estimated innovations by the true ones. Note that

{n1/2
∫
h̄(y)(f̂(y) − f(y)) dy : h ∈ H} is a smoothed empirical process. Such processes

have been studied by Yukich (1992), van der Vaart (1994), Rost (2000), and Radulović and

Wegkamp (2000, 2003). They give conditions under which the smoothed empirical process

is asymptotically equivalent to the usual empirical process. We refer to the book by van der

Vaart and Wellner (1996) for a general overview of empirical processes. We have an envelope
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and Lebesgue densities and give, in Propositions 2.1 and 2.2, versions of the results of van

der Vaart (1994) and Rost (2000) with simpler assumptions. Together with the above expan-

sions, these results imply that if ϑ̃ is asymptotically linear then so are the von Mises process

{n1/2(ψ(h, f̃)−ψ(h, f)) : h ∈ H} and its weighted version {n1/2(ψ(h, f̃w)−ψ(h, f)) : h ∈ H}.
This implies that these processes converge weakly to tight Gaussian processes. For our ap-

plications to estimation of conditional expectations we need versions in which the function

h is indexed by ϑ and q. We formulate such results in Theorem 2.2.

In Sections 3 to 5 we apply our results on von Mises processes to estimation of conditional

expectations of lags one and two. We get by with mild assumptions on the innovation

density and the autoregression function. In particular, we cover discontinuous autoregression

functions such as those appearing in self-exciting threshold autoregressive (SETAR) models.

Higher lags can be treated along these lines, but the stochastic expansions of the estimators

are notationally cumbersome. In particular, Theorem 3.1 specializes Theorem 2.2 to the

case of estimating conditional expectations of lag one. In Theorems 3.2 and 3.3 we apply

Theorem 3.1 to estimators for conditional distribution functions and for the conditional

expectation of a fixed function q. Theorems 4.1, 5.1 and 5.2 give analogous results for

conditional expectations and conditional distribution functions of lag two. Example 3.1 and

Example 5.4 apply these results to conditional quantile processes of lags one and two. Our

results are new, and nontrivial, even for the linear autoregressive model of order one.

In Section 6 we show that the weighted versions of our estimators are efficient if an

efficient estimator for ϑ is used. This is done by checking that the influence function then

equals the efficient influence function for estimating ν(ϑ, f). Efficient estimators for ϑ in

nonlinear autoregression with mean zero innovations are constructed in Koul and Schick

(1997).

Section 7 contains two technical lemmas. Lemma 7.1 gives a characterization of compact

subsets of L2(ν) for measures ν with Lebesgue density. It says that a closed subset of L2(ν)

with an envelope translation continuous at zero is compact if and only if the subset is equi-

translation-continuous at zero. Lemma 7.2 gives conditions for uniform differentiability of

integrals with respect to Hellinger differentiable densities.

2. Smoothed and weighted von Mises processes of residuals. Consider obser-

vations X1−p, . . . , Xn from a stationary and ergodic nonlinear autoregressive process Xi =

rϑ(Xi−1) + εi of order p, where Xi−1 = (Xi−p, . . . , Xi−1) and ϑ is a d-dimensional parame-

ter. Assume that the innovations εi are i.i.d. with mean zero, finite variance σ2 and positive

density f and are independent of X0. Let ϑ̃ be a n1/2-consistent estimator for ϑ. Estimate
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the innovations εi by residuals ε̃i = Xi − rϑ̃(Xi−1) and the innovation density f by the

kernel estimator

f̃(y) =
1
n

n∑
i=1

kbn(y − ε̃i)

or the weighted kernel estimator

f̃w(y) =
1
n

n∑
i=1

wikbn
(y − ε̃i),

where kbn
(y) = k(y/bn)/bn for a kernel k and a bandwidth bn. Following Owen (1988, 2001),

we choose positive weights wi of the form

wi =
1

1 + λ̃ε̃i

,

where λ̃ is chosen such that
∑n

i=1 wiε̃i = 0. By Müller, Schick and Wefelmeyer (2005), this

is possible with probability tending to one. When there is no solution, we set λ̃ = 0.

In this section we obtain a uniform stochastic expansion for smoothed von Mises processes

based on residuals ε̃1, . . . , ε̃n,

ψ(h, f̃) =
∫
· · ·

∫
h(y1, . . . , ym)

m∏
j=1

f̃(yj) dyj ,

and their weighted versions ψ(h, f̃w). Here the index h runs through a family H of functions

from Rm to R with envelope H, i.e. |h| ≤ H for all h ∈ H. We assume the envelope to be of

the form

(2.1) H(y1, . . . , ym) = V (y1) · · ·V (ym),

where V is a measurable function satisfying the following conditions.

Assumption V. The function V fulfills V ≥ 1 and, for some α > 1,∫
(1 + |y|)αV 2(y)f(y) dy <∞.

Moreover, the function D defined by

D(s) := sup
y∈R

|V (y + s)− V (y)|
V (y)

, s ∈ R,

is bounded on compacts and is continuous at 0:

(2.2) D(s) → 0 as s→ 0.

�
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If V = 1, then Assumption V is satisfied with α = 2. Another example of a function

fulfilling Assumption V is V (y) = (1 + |y|)γ with γ ≥ 0, provided
∫
|y|2γ+αf(y) dy is finite

for some α > 1.

Write ε and X for random variables with the same joint distribution as εi and Xi−1.

Denote the distribution functions of ε and X by F andG. We make the following assumptions

on the density f and the autoregression function rϑ.

Assumption F. The density f has finite Fisher information for location, i.e. f is ab-

solutely continuous with almost everywhere derivative f ′, and E[`2(ε)] =
∫
`2 dF is finite,

where ` = −f ′/f . �

Assumption R. The function τ 7→ rτ (x) is continuously differentiable for all x with

gradient τ 7→ ṙτ (x). For each constant C,

(2.3) sup
|τ−ϑ|≤Cn−1/2

n∑
i=1

(
rτ (Xi−1)− rϑ(Xi−1)− ṙϑ(Xi−1)>(τ − ϑ)

)2

= Op(n−2/3).

Moreover, E[|ṙϑ(X)|5/2] =
∫
|ṙϑ|5/2 dG < ∞ and the matrix E[ṙϑ(X)ṙϑ(X)>] =

∫
ṙϑṙ

>
ϑ dG

is positive definite. �

A sufficient condition for (2.3) is a Hölder condition with exponent 2/3 on the gradient

ṙτ ,

|ṙτ (x)− ṙϑ(x)| ≤ |τ − ϑ|2/3A(x),

with A ∈ L2(G).

Finally, we impose the following assumptions on the kernel and the bandwidth. Recall

that d is the dimension of the parameter ϑ.

Assumption K. The kernel k is a symmetric and twice continuously differentiable den-

sity with compact support [−1, 1]. �

Assumption B. The bandwidth bn satisfies nb4n → 0 and nb(50+20d)/(14+5d)
n →∞. �

The requirement on the bandwidth is satisfied by bn ∼ n−β for any β satisfying 1/4 <

β < (50 + 20d)/(14 + 5d). Another possibility is bn ∼ (n log(n))−1/4.

In Theorem 2.1 below we describe expansions of ψ(h, f̃) and ψ(h, f̃w). For this we define,

for h ∈ H, a function h̄ = h̄1 + · · ·+ h̄m by

h̄j(yj) =
∫
· · ·

∫
h(y1, . . . , ym)

∏
k 6=j

f(yk) dyk.
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Note that h̄j(εj) = E(h(ε1, . . . , εm) | εj). For a measurable function g we define the V -norm

by

‖g‖V =
∫
V (y)|g(y)| dy.

It follows from Assumptions V and F that f ′ has finite V -norm. Indeed, one has

‖f ′‖2V = (E[V (ε)|`(ε)|])2 ≤ E[V 2(ε)]E[`2(ε)].

Recall that

f̂(y) =
1
n

n∑
i=1

kbn
(y − εi)

denotes the kernel density estimator based on the true innovations. For g ∈ L2(F ) set

B(g) = E[g(ε)`(ε)]E[ṙϑ(X)],

Un(g) =
∫
g(y)f̂(y) dy − 1

n

n∑
i=1

g(εi),

let g∗ denote the projection of g onto the subspace {v ∈ L2(F ) :
∫
v(y)f(y) dy = 0} and let

g# denote the projection of g onto the subspace

V = {v ∈ L2(F ) :
∫
v(y)f(y) dy =

∫
yv(y)f(y) dy = 0}.

It is easy to check that g∗(y) = g(y)− E[g(ε)] and

g#(y) = g(y)− E[g(ε)]− σ−2E[εg(ε)] y, y ∈ R.

Since E[`(ε)] = 0 and E[ε`(ε)] = 1, we have `#(ε) = `(ε)− σ−2ε. Note that E[g(ε)`#(ε)] =

E[g#(ε)`(ε)]. Also E[g∗(ε)`(ε)] = E[g(ε)`(ε)] and B(g∗) = B(g).

Our expansions rely on the following lemma which summarizes results of Müller, Schick

and Wefelmeyer (2005), namely their Theorems 3.1–3.3.

Lemma 2.1. Suppose Assumptions B, K, F, R and V hold. Then ‖f̃ −f‖V = op(n−1/4)

and ‖f̃ − f̂ − f ′E[ṙϑ(X)]>(ϑ̃ − ϑ)‖V = op(n−1/2). Moreover, ‖f̃w − f‖V = op(n−1/4) and,

with ξ(y) = yf(y),

‖f̃w − f̂ + σ−2ξ
1
n

n∑
i=1

εi + `#fE[ṙϑ(X)]>(ϑ̃− ϑ)‖V = op(n−1/2).
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Theorem 2.1. Suppose Assumptions B, K, F, R and V hold. Then

sup
h∈H

∣∣∣ψ(h, f̃)− ψ(h, f)− 1
n

n∑
i=1

h̄∗(εi) +B(h̄∗)>(ϑ̃− ϑ)− Un(h̄)
∣∣∣ = op(n−1/2);

sup
h∈H

∣∣∣ψ(h, f̃w)− ψ(h, f)− 1
n

n∑
i=1

h̄#(εi) +B(h̄#)>(ϑ̃− ϑ)− Un(h̄)
∣∣∣ = op(n−1/2).

Proof. We prove only the second conclusion. For a subset A of {1, . . . , n}, let

φA(y) =
∏
j 6∈A

f(yj)
∏
j∈A

(f̃w(yj)− f(yj)), y = (y1, . . . , ym).

Setting ϕr(y) =
∑
|A|=r φA(y), we have

m∏
j=1

f̃w(yj) =
m∏

j=1

(
f(yj) + f̃w(yj)− f(yj)

)
=

∑
A⊂{1,...,n}

φA(y) =
m∑

r=0

ϕr(y).

Note that

ϕ0(y) =
m∏

j=1

f(yj) and ϕ1(y) =
m∑

j=1

(f̃w(yj)− f(yj))
m∏

k 6=j

f(yk).

Thus ∫
h(y)ϕ0(y) dy = ψ(h, f) and

∫
h(y)ϕ1(y) dy =

∫
h̄(y)(f̃w(y)− f(y)) dy.

Using (2.1), we obtain
m∑

r=2

∣∣∣ ∫
h(y)ϕr(y) dy

∣∣∣ ≤ m∑
r=2

∫
H(y)|ϕr(y)| dy =

m∑
r=2

(
m

r

)
‖f̃w − f‖r

V ‖f‖m−r
V .

Since ‖f̃w − f‖V = op(n−1/4), we obtain

sup
h∈H

∣∣∣ψ(h, f̃w)− ψ(h, f)−
∫
h̄(y)(f̃w(y)− f(y)) dy

∣∣∣ = op(n−1/2).

Note that |h̄| ≤ CmV with Cm = m‖f‖m−1
V . Thus, by the last assertion of Lemma 2.1,

suph∈H |Rn(h)| = op(n−1/2), where

Rn(h) =
∫
h̄(y)

(
f̃w(y)− f̂(y) + σ−2ξ(y)

1
n

n∑
i=1

εi + `#(y)f(y)E[ṙϑ(X)]>(ϑ̃− ϑ)
)
dy.

Since E[h̄(ε)`#(ε)]E[ṙϑ(X)] = B(h̄#), the desired result follows. �

In order to obtain functional central limit theorems for the smoothed von Mises process

{n1/2(ψ(h, f̃) − ψ(h, f)) : h ∈ H} based on the residuals and for its weighted version, we

can now apply results on smoothed empirical processes {n1/2
∫
g(y)(f̂(y)−f(y)) dy : g ∈ G}
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based on the innovations. This also requires an estimator ϑ̃ that is asymptotically linear in

the sense that

(2.4) ϑ̃ = ϑ+
1
n

n∑
i=1

ϕ(Xi−1, εi) + op(n−1/2)

with influence function ϕ(X, ε) fulfilling E(ϕ(X, ε) | X) = 0 and E[|ϕ(X, ε)|2] < ∞. Typi-

cally, ϕ is orthogonal to V in the sense that E[ϕ(X, ε)v(ε)] = 0 for all v ∈ V.

In the literature one decomposes n1/2
∫
g(y)(f̂(y)− f(y)) dy into a variance term

n1/2

∫
g(y)(f̂(y)− f ∗ kbn

(y)) dy

and a bias term

n1/2

∫
g(y)(f ∗ kbn(y)− f(y)) dy.

One assumes that the bias term tends to zero uniformly in g,

(2.5) sup
g∈G

∣∣∣n1/2

∫
g(y)(f ∗ kbn

(y)− f(y)) dy
∣∣∣ → 0.

Sufficient conditions for this analytic property are easily given in terms of smoothness of f

and an appropriate bandwidth bn. For example, (2.5) holds if nb4n →∞ and

sup
g∈G

∣∣∣ ∫
g(y)

(
f(y − s)− f(y) + sf ′(y)

)
dy

∣∣∣ = O(s2).

To deal with the variance term, van der Vaart (1994, (1.1)) and Rost (2000, (2.7)) use a

condition that in our case is

(2.6) sup
g∈G

∫ ( ∫ (
g(y + bnu)− g(y)

)
k(u) du

)2

f(y) dy → 0.

Van der Vaart (1994) shows that if G is Donsker and translation invariant, then conditions

(2.5) and (2.6) imply that the smoothed empirical process converges weakly in `∞(G) to a

tight Brownian Bridge process. Inspection of his proof shows that we can remove translation

invariance if we strengthen G being Donsker to Gη = {g(·+t) : |t| ≤ η, g ∈ G} being Donsker

for some η > 0.

Suppose now that G has an envelope V ∈ L2(F ) satisfying

(2.7)
∫

(V (y + s)− V (y))2f(y) dy → 0 as s→ 0.

Then condition (2.6) holds if G is totally bounded in L2(F ). This follows from the charac-

terization of compact subsets of L2(ν) for finite measures ν with Lebesgue density given in

Lemma 7.1. If G is Donsker, then G is totally bounded in L2(F ) and hence condition (2.6)

holds. We therefore obtain the following version of the Theorem in van der Vaart (1994).
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Proposition 2.1. Suppose Gη is Donsker for some η > 0 and has envelope V ∈ L2(F )

satisfying condition (2.7). Then condition (2.5) implies that

(2.8) sup
g∈G

|Un(g)| = sup
g∈G

∣∣∣ ∫
g(y)f̂(y) dy − 1

n

n∑
i=1

g(εi)
∣∣∣ = op(n−1/2)

and that the smoothed empirical process converges weakly in `∞(G) to a tight Brownian Bridge

process.

One can derive from Rost (2000) that Gη Donsker can be replaced by the condition that

G has uniformly integrable L2-entropy. In his Theorem 2.2, Rost uses condition (2.5) with

G replaced by G ∪ {V 3} and (2.6). Since G is totally bounded in L2(F ) if it has uniformly

integrable L2-entropy, condition (2.6) is implied by (2.7). Condition (2.5) with G = {V 3}
is used only to conclude that

∫
V (ε + bnu)k(u) du is uniformly integrable. But the latter

follows from condition (2.7). Hence we have the following version of Rost’s Theorem 2.2.

Proposition 2.2. If G has uniformly integrable L2-entropy and envelope V ∈ L2(F )

satisfying (2.7), then condition (2.5) implies (2.8) and the smoothed empirical process con-

verges weakly in `∞(G) to a tight Brownian Bridge process.

We can now combine Theorem 2.1 and Proposition 2.1 to obtain functional central limit

theorems for the von Mises statistics ψ(h, f̃) and ψ(h, f̃w). We consider only the weighted

version, ψ(h, f̃w). Assume that ϑ̃ is asymptotically linear in the sense of (2.4), with influence

function ϕ orthogonal to V. By Theorem 2.1 and Proposition 2.1, ψ(h, f̃w) is uniformly

asymptotically linear,

sup
h∈H

∣∣∣ψ(h, f̃w)− ψ(h, f)− 1
n

n∑
i=1

sh(Xi−1, εi)
∣∣∣ = op(n−1/2),

with influence function sh(X, ε) = h̄#(ε) +B(h̄#)>ϕ(X, ε).

It follows that {n1/2(ψ(h, f̃w)−ψ(h, f)) : h ∈ H} converges weakly in `∞(H) to a centered

Gaussian process with covariance function

Cov(h, k) = E[sh(X, ε)sk(X, ε)]

= E[h̄#(ε)k̄#(ε)] +B(h̄#)>E[ϕ(X, ε)ϕ(X, ε)>]B(k̄#).

We have

E[h̄#(ε)k̄#(ε)] = E[h̄(ε)k̄(ε)]− E[h̄(ε)]E[k̄(ε)]− σ−2E[εh̄(ε)]E[εk̄(ε)],

B(h̄#) = (E[h̄(ε)`(ε)]− σ−2E[εh̄(ε)])E[ṙϑ(X)].
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A n1/2-consistent estimator of the covariance function is obtained using residual-based

empirical estimators for E[h̄#(ε)k̄#(ε)] and B(h̄#) and an appropriate estimator of the

asymptotic variance of ϑ̃. Note that the term of the form E[h(ε)`(ε)] could be written

∂s=0E[h(ε+ s)], so estimation of ` could be avoided.

In our applications to estimation of distribution functions and conditional expectations,

the class H consists of functions that may depend on ϑ and other parameters. To treat the

different cases economically, we now formulate a version of Theorem 2.1 for such classes.

Suppose that H is of the form

H∗ = {hτ,q : |τ − ϑ| ≤ ∆, q ∈ Q}

for some index set Q, and set H̄∗ = {h̄ : h ∈ H∗}.

Theorem 2.2. Suppose that Assumptions B, K, F and R hold, that H∗ has envelope H

of the form H(y1, . . . , ym) = V (y1) · · ·V (ym) with V satisfying Assumption V, and that

(2.9) sup
q∈Q

∣∣∣ψ(hτ,q, f)− ψ(hϑ,q, f)−Ψ>
ϑ,q(τ − ϑ)

∣∣∣ = o(|τ − ϑ|)

for some vector Ψϑ,q. Let H̄∗
η = {h̄(·+ s) : |s| ≤ η, h ∈ H∗} be Donsker for some η > 0;

sup
q∈Q

∫
(h̄τ,q(y)− h̄ϑ,q(y))2f(y) dy → 0 as τ → ϑ;(2.10)

sup
|τ−ϑ|≤∆

sup
q∈Q

∣∣∣ ∫
h̄τ,q(y)

(
f(y − s)− f(y) + sf ′(y)

)
dy

∣∣∣ = O(s2).(2.11)

Set D∗
ϑ,q = Ψϑ,q −B(h̄∗ϑ,q) and D#

ϑ,q = Ψϑ,q −B(h̄#
ϑ,q). Then

sup
q∈Q

∣∣∣ψ(hϑ̃,q, f̃)− ψ(hϑ,q, f)− 1
n

n∑
i=1

h̄∗ϑ,q(εi)− (D∗
ϑ,q)

>(ϑ̃− ϑ)
∣∣∣ = op(n−1/2);

sup
q∈Q

∣∣∣ψ(hϑ̃,q, f̃w)− ψ(hϑ,q, f)− 1
n

n∑
i=1

h̄#
ϑ,q(εi)− (D#

ϑ,q)
>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2).

In particular, if ϑ̃ is asymptotically linear with influence function ϕ orthogonal to V, then

the process {n1/2(ψ(hϑ̃,q, f̃w)−ψ(hϑ,q, f)) : q ∈ Q} converges weakly in `∞(Q) to a centered

Gaussian process with covariance function

Cov(p, q) = E[h̄#
ϑ,p(ε)h̄

#
ϑ,q(ε)] + (D#

ϑ,p)
>E[ϕ(X, ε)ϕ(X, ε)>]D#

ϑ,q.

Proof. We prove only the second expansion. It follows from (2.9) and the n1/2-

consistency of ϑ̃ that

sup
q∈Q

∣∣∣ψ(hϑ̃,q, f)− ψ(hϑ,q, f)−Ψ>
ϑ,q(ϑ̃− ϑ)

∣∣∣ = op(n−1/2).
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It follows from (2.10) that

sup
q∈Q

∣∣∣B(h̄#

ϑ̃,q
)−B(h̄#

ϑ,q)
∣∣∣ = op(1).

Since H̄∗ is Donsker, we obtain from (2.10) that

sup
q∈Q

∣∣∣ ∫
(h̄ϑ̃,q(y)− h̄ϑ,q(y)) d(F̂ (y)− F (y))

∣∣∣ = op(n−1/2)

with F̂ (y) = 1
n

∑n
i=1 1[εi ≤ y]. Since H̄∗

η is Donsker and (2.11) holds, we obtain from

Proposition 2.1 that

sup
q∈Q

∣∣∣ ∫
h̄ϑ̃,q(y)f̂(y) dy −

∫
h̄ϑ̃,q(y) dF̂ (y)

∣∣∣ = op(n−1/2).

The desired result now follows from Theorem 2.1. �

A sufficient condition for (2.11) is ‖f(· − s)− f + sf ′‖V = O(s2). This holds for example

if ‖f ′(· − s)− f ′‖V = O(s). In particular, it holds if f ′ is absolutely continuous with ‖f ′′‖V

finite.

Also of interest is the case when H = {hq : q ∈ Q}. In this case, the assumptions of

Theorem 2.2 simplify considerably.

Corollary 2.1. Suppose that Assumptions B, K, F and R hold and H = {hq : q ∈ Q}
has envelope H of the form H(y1, . . . , ym) = V (y1) · · ·V (ym) with V satisfying Assumption

V. Let H̄η = {h̄q(·+ s) : |s| ≤ η, q ∈ Q} be Donsker for some η > 0 and

(2.12) sup
q∈Q

∣∣∣ ∫
h̄q(y)

(
f(y − s)− f(y) + sf ′(y)

)
dy

∣∣∣ = O(s2).

Then

sup
q∈Q

∣∣∣ψ(hq, f̃)− ψ(hq, f)− 1
n

n∑
i=1

h̄∗q(εi)−B(h̄∗q)
>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2);

sup
q∈Q

∣∣∣ψ(hq, f̃w)− ψ(hq, f)− 1
n

n∑
i=1

h̄#
q (εi)−B(h̄#

q )>(ϑ̃− ϑ)
∣∣∣ = op(n−1/2).

In particular, if ϑ̃ is asymptotically linear with influence function ϕ orthogonal to V then

the process {n1/2(ψ(hq, f̃w) − ψ(hq, f)) : q ∈ Q} converges weakly in `∞(Q) to a centered

Gaussian process with covariance function

Cov(p, q) = E[h̄#
p (ε)h̄#

q (ε)] +B(h̄#
p )>E[ϕ(X, ε)ϕ(X, ε)>]B(h̄#

q ).
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3. Conditional expectations of lag one. Let Q be a family of functions from R
to R. For q ∈ Q the conditional expectation E(q(Xn+1) | Xn = x) can be written as

ν(ϑ, q) = E[q(ε+ rϑ(x))]. We estimate ν(ϑ, q) by

ν̃(q) =
∫
q(y + rϑ̃(x))f̃(y) dy and ν̃w(q) =

∫
q(y + rϑ̃(x))f̃w(y) dy.

Theorem 3.1. Suppose Gη = {q(· + rϑ(x) + s) : |s| ≤ η, q ∈ Q} is Donsker for some

η > 0 and has an envelope V that satisfies Assumption V. Suppose f has finite Fisher

information for location and fulfills

(3.1) sup
|t|≤η

sup
q∈Q

∣∣∣ ∫
q(y + rϑ(x) + t)

(
f(y − s)− f(y) + sf ′(y)

)
dy

∣∣∣ = O(s2).

Let Assumptions B, K and R hold. Then

sup
q∈Q

∣∣∣ν̃(q)− 1
n

n∑
i=1

q(εi + rϑ(x))−D>
q (ϑ̃− ϑ)

∣∣∣ = op(n−1/2);

sup
q∈Q

∣∣∣ν̃w(q)− 1
n

n∑
i=1

(
q(εi + rϑ(x))− cqεi

)
− D̄>

q (ϑ̃− ϑ)
∣∣∣ = op(n−1/2),

where Dq = E[q(ε + rϑ(x))`(ε)]
(
ṙϑ(x) − E[ṙϑ(X)]

)
and D̄q = Dq + cqE[ṙϑ(X)] with cq =

σ−2E[εq(ε+ rϑ(x))].

In particular, if ϑ̃ is asymptotically linear with influence function ϕ orthogonal to V then

the process {n1/2(ν̃w(q)−E[q(ε+ rϑ(x))]) : q ∈ Q} converges weakly in `∞(Q) to a centered

Gaussian process with covariance function

Cov(p, q) = E[p(ε+ rϑ(x))q(ε+ rϑ(x))]− E[p(ε+ rϑ(x))]E[q(ε+ rϑ(x))]

−σ2cpcq +D>
p E[ϕ(X, ε)ϕ(X, ε)>]Dq.

Proof. We apply Theorem 2.2 with

H̄∗ = H∗ = {q(·+ rτ (x)) : |τ − ϑ| ≤ ∆, q ∈ Q}

and some small positive ∆. In view of Assumption R we can take ∆ sufficiently small for

H∗
η/2 to be contained in Gη. Thus Condition (2.11) is implied by (3.1). Since∫ (

q(y + rτ (x))− q(y + rϑ(x))
)
f(y) dy

=
∫
q(y + rϑ(x))

(
f(y − (rτ (x)− rϑ(x)))− f(y)

)
dy,

it follows from (3.1), differentiability of τ 7→ rτ (x) at ϑ and finiteness of ‖f ′‖V that condition

(2.9) holds for the present H∗ with

Ψϑ,q = E[q(ε+ rϑ(x))`(ε)]ṙϑ(x).
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As G = {q(·+ rϑ(x)) : q ∈ Q} is totally bounded and has an envelope V that satisfies (2.7),

condition (2.10) is met by the compactness criterion in Lemma 7.1. �

The conditional distribution function of Xn+1 given Xn = x can be written t 7→ F (t −
rϑ(x)). We can estimate it by F̃s(t − rϑ̃(x)) or F̃sw(t − rϑ̃(x)), where F̃s and F̃sw are the

distribution functions corresponding to f̃ and f̃w, respectively. The corresponding class Q is

{1(−∞,t] : t ∈ R}; it is Donsker and translation invariant. Its envelope is V = 1, which fulfills

Assumption V. Here the left-hand side of (3.1) becomes sups∈R |F (t − s) − F (t) + sf(t)|.
Thus (3.1) holds if f is Lipschitz. Hence Theorem 3.1 implies the following result.

Theorem 3.2. Suppose Assumptions B, K and R hold. Let f be Lipschitz and have

finite Fisher information for location. Then

sup
t∈R

∣∣∣F̃s(t− rϑ̃(x))− 1
n

n∑
i=1

1[εi ≤ t− rϑ(x)]−D>
t (ϑ̃− ϑ)

∣∣∣ = op(n−1/2);

sup
t∈R

∣∣∣F̃sw(t− rϑ̃(x))− 1
n

n∑
i=1

(
1[εi ≤ t− rϑ(x)]− ctεi

)
− D̄>

t (ϑ̃− ϑ)
∣∣∣ = op(n−1/2),

where Dt = −f(t− rϑ(x))
(
ṙϑ(x)− E[ṙϑ(X)]

)
and D̄t = Dt + ctE[ṙϑ(X)] with

ct = σ−2

∫ t−rϑ(x)

−∞
yf(y) dy.

In particular, if ϑ̃ is asymptotically linear with influence function ϕ orthogonal to V then

the process {n1/2(F̃sw(t − rϑ̃(x)) − F (t − rϑ(x))) : t ∈ R} converges weakly in `∞(R) to a

centered Gaussian process with covariance function

Cov(s, t) = F ((s− rϑ(x)) ∧ (t− rϑ(x)))− F ((s− rϑ(x))F (t− rϑ(x)))

−σ2csct + D̄>
s E[ϕ(X, ε)ϕ(X, ε)>]D̄t.

Example 3.1. For a distribution function G let ψu(G) = G−1(u) = inf{t : G(t) ≥ u}
define the left-inverse of G at u, with 0 < u < 1. The conditional u-quantile of Xn+1 given

Xn = x is ψu(F (· − rϑ(x)) = F−1(u) + rϑ(x). We can estimate it by ψu(F̃sw(· − rϑ̃(x))) =

F̃−1
sw (u) + rϑ̃(x). Let 0 < c ≤ d < 1. Recall that we assumed that the density f is positive.

Thus, by Proposition 1 of Gill (1989) on compact differentiability of quantile functions, we
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obtain the uniform stochastic expansion

sup
u∈[c,d]

∣∣∣F̃−1
sw (u) + rϑ̃(x)−

(
F−1(u) + rϑ(x)

)
+

1
f(F−1(u))

1
n

n∑
i=1

(
1[εi ≤ F−1(u)]− u− auεi

)
+

(
f(F−1(u)) + au

)
E[ṙϑ(x)]>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2)

with

au = σ−2

∫ F−1(u)

−∞
yf(y) dy.

It follows that the smoothed and weighted conditional quantile process

{n1/2
(
F̃−1

sw (u) + rϑ̃(x)− (F−1(u) + rϑ(x))
)

: u ∈ [c, d]}

converges weakly in `∞([c, d]) to a centered Gaussian process. �

Example 3.2. Consider the classical AR(1) model Xi = ϑXi−1 + εi with |ϑ| < 1. It

satisfies Condition R with ṙϑ(x) = x and E[ṙϑ(X)] = 0. A natural estimator for ϑ is the

least squares estimator ϑ̃, which has expansion

(3.2) ϑ̃ =
∑n

i=1Xi−1Xi∑n
i=1X

2
i−1

= ϑ+
1
n

n∑
i=1

1− ϑ2

σ2
Xi−1εi + op(n−1/2).

Fix t and x in R. For the estimator of the conditional distribution function at t of Xn+1

given Xn = x we obtain

F̃s(t− ϑ̃x) =
1
n

n∑
i=1

(
1[εi ≤ t− ϑx]− xf(t− ϑx)

1− ϑ2

σ2
Xi−1εi

)
+ op(n−1/2);

F̃sw(t− ϑ̃x) =
1
n

n∑
i=1

(
1[εi ≤ t− ϑx]− ctεi − xf(t− ϑx)

1− ϑ2

σ2
Xi−1εi

)
+ op(n−1/2).

It follows that n1/2(F̃s(t − ϑ̃x) − F (t − ϑx)) is asymptotically normal with mean zero and

variance τ2 = F (t − ϑx)(1 − F (t − ϑx)) + x2f2(t − ϑx)(1 − ϑ2), while n1/2(F̃sw(t − ϑ̃x) −
F (t−ϑx)) is asymptotically normal with mean zero and variance τ2−σ2c2t . Thus weighting

results in a smaller asymptotic variance. For t = x = 0 and f the standard normal density,

the asymptotic variances are 1/4 and 1/4 − 1/(2π) ' .0908. In this case weighting reduces

the asymptotic variance by about 64 percent. �



20 MÜLLER, SCHICK AND WEFELMEYER

Now consider the case where Q consists of one element q. The corresponding class Gη

equals {q(·+ rϑ(x)+s) : |s| ≤ η}. Assume now that f has a finite absolute moment of order

greater than 2γ + 1 and that q satisfies the growth condition

(3.3) |q(y)| ≤ (1 + |y|)γ , y ∈ R,

and the Lipschitz condition

(3.4) |q(y + s1)− q(y + s2)| ≤ L|s1 − s2|(1 + |y|)γ , y ∈ R,

for s1, s2 in a neighborhood of rϑ(x). Then Gη has envelope V of the form V (y) = K(1+|y|)γ ,

which satisfies Assumption V. Also, Gη is Donsker. This follows since the bracketing numbers

N[ ](δ,Gη, L2(F )) are of order 1/δ; take brackets of the form q(· + rϑ(x) + sj) ∓ cδV . The

left-hand side of (3.1) now becomes sup|t|<η |∆s,t| with

∆s,t =
∫
q(y + rϑ(x) + t)

(
f(y − s)− f(y) + sf ′(y)

)
dy.

We can write

∆s,t = −
∫
q(y + rϑ(x) + t)

∫ 1

0

s(f ′(y − us)− f ′(y)) dudy

= −s
∫ 1

0

∫ (
q(y + rϑ(x) + t+ us)− q(y + rϑ(x) + t)

)
f ′(y) dydu.

By the Lipschitz property of q and the finiteness of ‖f ′‖V under Assumption F, we obtain

sup|t|<η |∆s,t| = O(s2), which is (3.1). Thus Theorem 3.1 implies the following result.

Theorem 3.3. Suppose Assumptions B, K and R hold, q fulfills (3.3) and (3.4) and f

has finite Fisher information for location and finite absolute moment of order greater than

2γ + 1. Then∫
q(y + rϑ̃(x))f̃(y) dy =

1
n

n∑
i=1

q(εi + rϑ(x)) +D>
q (ϑ̃− ϑ) + op(n−1/2);

∫
q(y + rϑ̃(x))f̃w(y) dy =

1
n

n∑
i=1

(
q(εi + rϑ(x))− cqεi

)
+ D̄>

q (ϑ̃− ϑ) + op(n−1/2)

with cq, Dq and D̄q as in Theorem 3.1.

Theorem 3.3 can be used to estimate conditional moments and absolute moments of lag

one. For example, to treat estimation of the conditional γ-th absolute moment E(|Xn+1|γ |
Xn = x) with γ ≥ 1, take q(y) = |y|γ . Our estimators are

∫
|y + rϑ̃(x)|γ f̃(y) dy and its

weighted version
∫
|y + rϑ̃(x)|γ f̃w(y) dy.
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4. Conditional expectations of lag two. Let Q be a family of functions from R2 to

R. For q ∈ Q, the conditional expectation

E(q(Xn+1, Xn+2) | Xn = x)

can be written

ν(ϑ, q) = E[q(%ϑ(ε1, ε2))] =
∫∫

q(%ϑ(y, z))f(y)f(z) dydz

with

%ϑ(y, z) =
(
y + rϑ(x), z + rϑ(x−1, y + rϑ(x))

)
,

where x−1 = (x2, . . . , xp). We estimate ν(ϑ, q) by

ν̃(q) =
∫∫

q(%ϑ̃(y, z))f̃(y)f̃(z) dydz

and its weighted version

ν̃w(q) =
∫∫

q(%ϑ̃(y, z))f̃w(y)f̃w(z) dydz.

We shall apply Theorem 2.2 to obtain stochastic expansions for these estimators.

We have

hτ,q(y, z) = q(%τ (y, z)) and h̄τ,q = h̄(1)
τ,q + h̄(2)

τ,q

with

h̄(1)
τ,q(y) =

∫
q(%τ (y, u))f(u) du and h̄(2)

τ,q(z) =
∫
q(%τ (u, z))f(u) du.

To get an envelope for the class H∗ = {hτ,q : |τ −ϑ| ≤ ∆, q ∈ Q}, we assume that Q has an

envelope VQ of the form

(4.1) VQ(x1, x2) = CQ(1 + |x1|)γ1(1 + |x2|)γ2

for some finite constant CQ and non-negative exponents γ1 and γ2, and impose the following

growth condition on the autoregression functions: for some constant A,

(4.2) rτ (u1, . . . , up) ≤ A
(
1 +

p∑
j=1

|uj |
)
, |τ − ϑ| ≤ ∆.

Such a growth condition is typically needed for ergodicity of the model; see Bhattacharya

and Lee (1995a, b) and An and Huang (1997). There is then a constant C ′Q such that

|q(%τ (y, z))| ≤ CQ
(
1 + |y + rτ (x)|

)γ1
(
1 + |z + rτ (x−1, y + rτ (x))|

)γ2(4.3)

≤ C ′Q(1 + |y|)γ1(1 + |z|+ |y|)γ2

≤ C ′Q(1 + |y|)γ1+γ2(1 + |z|)γ2 .
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Thus H∗ has an envelope H of the form H(y, z) = V (y)V (z) with V (y) = K(1 + |y|)γ1+γ2 .

This V satisfies Assumption V if f has finite absolute moment of order greater than 2γ1 +

2γ2 + 1. We can now use the special structure of hτ,q to show that (2.9) holds.

Lemma 4.1. Let Q have envelope VQ of the form (4.1). Suppose that f has finite Fisher

information for location and finite absolute moment of order greater than 2γ1 + 2γ2 + 1.

Suppose Assumption R and the growth condition (4.2) hold and that

(4.4)
∫ (

rϑ+t(x−1, y)− rϑ(x−1, y)− ṙϑ(x−1, y)>t
)2

f(y − rϑ(x)) dy = o(|t|2).

Then

sup
q∈Q

∣∣∣∫∫ (
q(%ϑ+t(y, z))− q(%ϑ(y, z))− q(%ϑ(y, z))χ(y, z)>t

)
f(y)f(z) dydz

∣∣∣ = o(|t|),

where χ(y, z) = `(y)ṙϑ(x) + `(z)ṙϑ(x−1, y + rϑ(x)). Thus condition (2.9) holds with

Ψϑ,q =
∫∫

q(%ϑ(y, z))χ(y, z)f(y)f(z) dydz

= −
∫∫

q(%ϑ(y, z))
(
f ′(y)f(z)ṙϑ(x) + f(y)f ′(z)ṙϑ(x−1, y + rϑ(x)

)
dydz.

Proof. It is easy to check that %τ (ε1, ε2) has a density pτ with respect to the Lebesgue

measure λ2 on R2 of the form

(4.5) pτ (y, z) = f(y − rτ (x))f(z − rτ (x−1, y)).

We can write the integral in the assertion as

(4.6)
∫∫

q(y, z)
(
pϑ+t(y, z)− pϑ(y, z)− χ̃(y, z)>tpϑ(y, z)

)
dydz,

where χ̃ is the score function at ϑ of the parametric model P = {pτ : |τ − ϑ| ≤ ∆}:

(4.7) χ̃(y, z) = `(y − rϑ(x))ṙϑ(x) + `(z − rϑ(x−1, y))ṙϑ(x−1, y).

Actually, χ̃ is the Hellinger derivative of this model at ϑ. Indeed, since f has finite Fisher

information for location, the model {f(· − rτ (x)) : |τ − ϑ| ≤ ∆} is Hellinger differentiable

at ϑ with Hellinger derivative ṙϑ(x)`(· − rϑ(x)) and this and (4.4) yield the Hellinger dif-

ferentiability of P at ϑ with Hellinger derivative χ̃; see Koul and Schick (1996, Proposition

A.6). It is easy to check that
∫
V 2
Qpτ dλ2 →

∫
V 2
Qpϑ dλ2 as τ → ϑ. Thus Lemma 7.2 yields

the desired result. �

We now address sufficient conditions for (2.10).
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Lemma 4.2. Suppose the assumptions of Lemma 4.1 hold. Then (2.10) is implied by

(4.8) sup
q∈Q

∫ (
h̄

(1)
ϑ,q(y + s)− h̄

(1)
ϑ,q(y)

)2

f(y) dy → 0 as s→ 0,

(4.9) sup
q∈Q

∫ ( ∫ (
q(%ϑ(y, z + ∆τ (y))− q(%ϑ(y, z))

)
f(y) dy

)2

f(z) dz → 0 as τ → ϑ,

where ∆τ (y) = rτ (x−1, y + rϑ(x))− rϑ(x−1, y + rϑ(x)).

Proof. With s = rτ (x) − rϑ(x) we can write %τ (y, z) = %ϑ(y + s, z + ∆τ (y + s)) and

then

h̄(1)
τ,q(y) =

∫
q(%ϑ(y + s, z)f(z −∆τ (y + s)) dz,

h̄(2)
τ,q(y) =

∫
q(%ϑ(y, z + ∆τ (y)))f(y − s) dy.

In view of (4.8) and (4.9), it suffices to show that, as τ → ϑ,

sup
q∈Q

∫ (
h̄(1)

τ,q(y)− h̄
(1)
ϑ,q(y + s)

)2
f(y) dy → 0,(4.10)

sup
q∈Q

∫ ( ∫
q(%ϑ(y, z + ∆τ (y)))

(
f(y − s)− f(y)

)
dy

)2

f(z) dz → 0.(4.11)

The Cauchy–Schwarz inequality gives(
h̄(1)

τ,q(y)− h̄
(1)
ϑ,q(y + s)

)2 =
( ∫

q(%ϑ(y + s, z))
(
f(z −∆τ (y + s))− f(z)

)
dz

)2

≤
∫
q2(%ϑ(y + s, z))

(
f(z −∆τ (y + s)) + f(z)

)
dz

×
∫ ∣∣f(z −∆τ (y + s))− f(z)

∣∣ dz.
Using (4.3) we can bound the first integral on the right-hand side by C2

2 [(1+|y|)2γ1+2γ2 +(1+

|y + s|)2γ1+2γ2 ]
∫

(1 + |z|)2γ2f(z) dz, while the second integral can be bounded by |∆τ (y +

s)|‖f ′‖1. Indeed, since f has finite Fisher information, f ′ is integrable and
∫
|f(z − v) −

f(z)| dz ≤ |v|‖f ′‖1 for every real v. Using these bounds we obtain that the left-hand side of

(4.10) is bounded for |s| < 1 by a constant times∫
(1 + |y|)2γ1+2γ2 |∆τ (y)|f(y − s) dy.

Since |∆τ (y)| ≤ Ã(1 + |y|) and ∆τ (y) → 0 for every y, and since∫
(1 + |y|)2γ1+2γ2+1|f(y − s)− f(y)| dy → 0,

we get (4.10). A similar argument yields (4.11). �
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Remark 4.1. In view of the characterization of compact subsets of L2(F ) given in

Lemma 7.1, the above assumptions imply that condition (4.8) is equivalent to total bound-

edness of H(1) = {h̄(1)
ϑ,q : q ∈ Q} in L2(F ). Consequently, (4.8) holds if Q is a finite set or if

H(1) is Donsker. �

Let us now assume that the class Q satisfies the Lipschitz property

(4.12) |q(y1, z1)− q(y2, z2)| ≤ L1(y, z)|y1 − y2|+ L2(y, z)|z1 − z2|,

where y = |y1| ∨ |y2| and z = |z1| ∨ |z2| and where

L1(y, z) = C1(1 + |y|)α1(1 + |z|)α2 and L2(y, z) = C2(1 + |y|)β1(1 + |z|)β2

for constants C1, C2 and non-negative exponents α1, α2, β1 and β2. Let us set ζ = max{α1+

α2, β1 + β2}. Then we derive that for each C there is a C∗ such that for all y, z, all

|s1|, |s2|, |t1|, |t2| ≤ C and |a1(y)|, |a2(y)| ≤ C(1 + |y|),

|q(y + s1, z + t1 + a1(y))− q(y + s2, z + t2 + a2(y))|

≤ C∗
(
|s1 − s2|+ |t1 − t2|+ |a1(y)− a2(y)|

)
(1 + |y|)ζ(1 + |z|)ζ .

With the help of this inequality it is now easy to check that, under the assumptions of

Lemma 4.1, the statements (4.8) and (4.9) are met, so that (2.10) holds by Lemma 4.2.

Using

(4.13) f(y − s)− f(y) + sf ′(y) = −s
∫ 1

0

(f ′(y − ws)− f ′(y)) dw,

the left-hand side of (2.11) can be bounded by |s|(T1(s) + T2(s)), where

T1(s) = sup
0≤w≤1

sup
|τ−ϑ|≤∆

sup
q∈Q

∣∣∣ ∫∫ (
q(%τ (y + ws, z)− q(%τ (y, z)

)
f ′(y)f(z) dydz

∣∣∣,
T2(s) = sup

0≤w≤1
sup

|τ−ϑ|≤∆

sup
q∈Q

∣∣∣ ∫∫ (
q(%τ (y, z + ws)− q(%τ (y, z)

)
f(y)f ′(z) dydz

∣∣∣.
Using the Lipschitz property (4.12) of Q, we see that T2(s) = O(s) and T1(s) = O(s) +

O(T3(s)), where

T3(s) = sup
0≤w≤1

sup
|τ−ϑ|≤∆

sup
q∈Q

∫ ∣∣∣rτ (x−1, y + ws)− rτ (x−1, y)
∣∣∣(1 + |y|)ζ |f ′(y)| dy.

This shows that (2.11) holds if T3(s) = O(s).

To obtain that the class H̄∗
η is Donsker, we will impose the following conditions (B1) and

(B2) on Q and the class R defined by

R = {rτ (x−1, ·+ rϑ(x) + s) : |τ − ϑ| ≤ ∆, |s| ≤ η + ∆̃}
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with ∆̃ = sup|τ−ϑ|≤∆ |rτ (x) − rϑ(x)|. Note that the growth condition (4.2) implies that R
has an envelope of the form AR(1 + |y|) for some constant AR.

(B1) For some integer k and every δ > 0 there are N = Nδ = O(δ−k) elements q1, . . . , qN
in Q such that Q is covered by the brackets [qi − δVQ, qi + δVQ], i = 1, . . . , N .

(B2) The class R has L2(µ)-bracketing numbers of polynomial growth for µ(dy) = (1 +

|y|)2ζf(y) dy: For some integer j,

N[ ](δ,R, L2(µ)) = O(δ−j).

These properties, the growth condition (4.2) and the Lipschitz property (4.12) of Q imply

that the class G = {(y, z) 7→ q(y + s, z + t + a(y)) : a ∈ R; |s|, |t| ≤ C} has L2(F × F )-

bracketing numbers with polynomial growth, for each finite C. Indeed, for C ≥ AR we can

consider brackets of the form

q(y + u, z + v + ā(y))± C∗(2δ + |a∗(y)− a∗(y)|)w(y)w(z)± δVQ(y + u, z + v + ā(y)),

where w(x) = (1 + |x|)ζ , u and v belong to the grid {iδ : i ∈ Z, |iδ| ≤ B} and ā is

the midpoint of a bracket [a∗, a∗] for R. Since G has polynomial growth, so do the classes

G1 = {
∫
g(·, z)f(z) dz : g ∈ G} and G2 = {

∫
g(y, ·)f(y) dy : g ∈ G}. Hence these classes are

Donsker. Since subsets and sums of Donsker classes are Donsker, and since H̄∗
η ⊂ G1 + G2

for large enough C, we see that H̄∗
η is Donsker. Thus we have the following result.

Theorem 4.1. Suppose Assumptions B, K and R hold. Suppose the classQ has envelope

VQ given by (4.1) and satisfies the Lipschitz property (4.12) and the growth property (B1).

Let f have finite Fisher information for location and a finite absolute moment of order greater

than 2γ1 +2γ2 +1. Let R satisfy (B2) and let the autoregression functions satisfy the growth

conditions (4.2), the differentiability condition (4.4) and

sup
|τ−ϑ|≤∆

sup
q∈Q

∫ ∣∣∣rτ (x−1, y + s)− rτ (x−1, y)
∣∣∣(1 + |y|)ζ |f ′(y)| dy = O(s).

Then

sup
q∈Q

∣∣∣ν̃(q)− ν(ϑ, q)− 1
n

n∑
i=1

h̄∗ϑ,q(εi)− [D∗
ϑ,q]

>(ϑ̃− ϑ)
∣∣∣ = op(n−1/2);

sup
q∈Q

∣∣∣ν̃w(q)− ν(ϑ, q)− 1
n

n∑
i=1

h̄#
ϑ,q(εi)− [D#

ϑ,q]
>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2),

where D∗
ϑ,q = Ψϑ,q −B(h̄∗ϑ,q) and D#

ϑ,q = Ψϑ,q −B(h̄#
ϑ,q) with Ψϑ,q as given in Lemma 4.1.

Exactly as in Sections 2 and 3, one obtains functional central limit theorems for the von

Mises statistics and empirical estimators for their asymptotic covariance functions.
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5. Conditional distribution functions and quantiles of lag two. The conditional

distribution function Fx of the pair (Xn+1, Xn+2) given Xn = x is defined by

Fx(t, u) = P
(
ε1 + rϑ(x) ≤ t, ε2 + rϑ(x−1, ε1 + rϑ(x)) ≤ u

)
=

∫ t

−∞
F (u− rϑ(x−1, y))f(y − rϑ(x)) dy.

This can also be written as

Fx(t, u) =
∫∫

qt,u(%ϑ(y, z))f(y)f(z) dydz with qt,u(v, w) = 1[v ≤ t, w ≤ u].

We estimate Fx(t, u) by

F̃x(t, u) =
∫∫

qt,u(%ϑ̃(y, z))f̃(y)f̃(z) dydz

and its weighted version

F̃xw(t, u) =
∫∫

qt,u(%ϑ̃(y, z))f̃w(y)f̃w(z) dydz.

Here the class Q equals {qt,u : t, u ∈ R}. It has envelope VQ = 1; thus condition (4.1) holds

with γ1 = γ2 = 0 and C1 = 1. We have

h̄(1)
τ,qt,u

(y) = F (u− rτ (x−1, y + rτ (x)))1[y ≤ t− rτ (x)],

h̄(2)
τ,qt,u

(z) =
∫ t

−∞
1[z ≤ u− rτ (x−1, y)]f(y − rτ (x)) dy.

We shall now show that H̄∗
η is Donsker if the class R has L2(F )-bracketing numbers with

polynomial growth:

(5.1) N[ ](δ,R, L2(F )) = O(δ−j) for some positive integer j.

It is easy to check that H̄∗
η ⊂ F1 + F2, where

F1 = {F (u− a(·))1[· ≤ v] : a ∈ R;u, v ∈ R},

F2 =
{∫ v

−∞
1[· ≤ u− a(y)]f(y) dy : a ∈ R;u, v ∈ R

}
.

Since subsets and sums of Donsker classes are Donsker, it suffices to show that F1 and

F2 are Donsker classes. For this it is enough to show the classes F1 and F2 have L2(F )-

bracketing numbers with polynomial growth. For F1 take brackets of the form [b∗, b∗] =

[F (u∗ − a∗(·))1[· ≤ v∗], F (u∗ − a∗(·))1[· ≤ v∗]], where [a∗, a∗] is an (ε/‖f‖∞)-bracket for

R; v∗, v∗ are chosen such that F (v∗)− F (v∗) ≤ ε2; and u∗, u∗ are chosen such that either

u∗ − u∗ ≤ ε/‖f‖∞, or u∗ = −∞ and (i)
∫
F 2(u∗ + AR(1 + |y|))f(y) dy ≤ ε2, or u∗ = ∞

and (ii)
∫ (

1−F (u∗−AR(1 + |y|))
)2
f(y) dy ≤ ε2. Then [b∗, b∗] is a 3ε-bracket for F1. Since

F has finite second moment, t2F (t)(1 − F (t)) → 0 as |t| → ∞. Using this it is easy to see
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that u∗ in (i) can be chosen proportional to −1/ε and u∗ in (ii) can be taken proportional

to 1/ε. Thus, under (5.1), we can cover F1 with O(ε−j−4) brackets of this form.

For F2 take brackets of the form

[b∗, b∗] =
[ ∫ v∗

−∞
1[z ≤ u∗ − a∗(y)]f(y) dy,

∫ v∗

−∞
1[z ≤ u∗ − a∗(y)]f(y) dy

]
,

where [a∗, a∗] is an ε2/‖f‖∞-bracket for R; F (v∗) − F (v∗) ≤ ε2; and v∗ ≤ v∗ are chosen

such that either v∗− v∗ ≤ ε2/‖f‖∞, or v∗ = −∞ and (i)
∫
F (v∗+AR(1+ |y|))f(y) dy ≤ ε2,

or v∗ = ∞ and (ii)
∫ (

1 − F (v∗ − AR(1 + |y|))
)2
f(y) dy ≤ ε2. Then [b∗, b∗] is a 3ε-bracket

for F2. It is easy to check that under (5.1) we can cover F2 with O(ε−2j−5) brackets of this

form.

This shows that condition (5.1) implies that H̄∗
η is Donsker. In view of Remark 4.1, we

then obtain that condition (4.8) is met. Using the moment inequality and interchanging the

order of integration, we can bound the left-hand side of condition (4.9) by

sup
u∈R

∫ ∣∣∣F (u− rτ (x−1, y))− F (u− rϑ(x−1, y))
∣∣∣f(y − rϑ(x)) dy

≤ ‖f‖∞
∫ ∣∣rτ (x−1, y)− rϑ(x−1, y)

∣∣f(y − rϑ(x)) dy.

Thus we have (4.9) in view of the Lebesgue dominated convergence theorem and the growth

condition (4.2). Lemmas 4.1 and 4.2 now imply conditions (2.9) and (2.10) of Theorem 2.2.

Finally, (2.11) is implied by the following two conditions:

(5.2) sup
τ,t,u

∣∣∣ ∫ t

−∞
F (u− rτ (x−1, y + rτ (x)))

(
f(y − s)− f(y) + sf ′(y)

)
dy

∣∣∣ = O(s2)

and

sup
τ,t,u

∣∣∣ ∫ t

−∞

(
F (u− rτ (x−1, y)− s)− F (u− rτ (x−1, y))

+ sf(u− rτ (x−1, y))
)
f(y − rτ (x)) dy

∣∣∣ = O(s2),

where the suprema extend over all real t and u and all τ with |τ − ϑ| ≤ ∆. The latter

condition is fulfilled if f is Lipschitz. If we set aτ (y) = rτ (x−1, y+ rτ (x)) and use (4.13), we

obtain that the integral in (5.2) can be written

−s
∫ 1

0

( ∫ t−ws

−∞
F (u− aτ (y + ws))f ′(y) dy −

∫ t

−∞
F (u− aτ (y))f ′(y) dy

)
dw.

If f is Lipschitz, so that f ′ is bounded, we see that condition (5.2) is implied by

(5.3) sup
|τ−ϑ|≤∆

∫ ∣∣∣rτ (x−1, y + s)− rτ (x−1, y)
∣∣∣|f ′(y − rτ (x))| dy = O(s).
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If f has finite Fisher information, then f ′ is integrable and a sufficient condition for (5.3) is

that there is a constant L such that

(5.4)
∣∣rτ (x−1, y1)− rτ (x−1, y2)

∣∣ ≤ L|y1 − y2|, y1, y2 ∈ R; |τ − ϑ| ≤ ∆.

Hence Theorem 2.2 gives the following stochastic expansions for F̃x and F̃xw.

Theorem 5.1. Let Assumptions B, K, F and R hold and let f be Lipschitz. Suppose

that (4.4), the growth conditions (4.2) and (5.1), and (5.3) or (5.4) hold. Then

sup
t,u∈R

∣∣∣F̃x(t, u)− Fx(t, u)− 1
n

n∑
i=1

h∗t,u(εi)− [D∗
t,u]>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2);

sup
t,u∈R

∣∣∣F̃xw(t, u)− Fx(t, u)− 1
n

n∑
i=1

h#
t,u(εi)− [D#

t,u]>(ϑ̃− ϑ)
∣∣∣ = op(n−1/2),

where D∗
t,u = Ψt,u −B(h∗t,u) and D#

t,u = Ψt,u −B(h#
t,u) and where

ht,u(y) = F (u− rϑ(x−1, y + rϑ(x)))1[y ≤ t− rϑ(x)]

+
∫ t

−∞
1[y ≤ u− rϑ(x−1, z)]f(z − rϑ(x)) dz;

Ψt,u = −
∫ t

−∞
F (u− rϑ(x−1, y))f ′(y − rϑ(x)) dy ṙϑ(x)

−
∫ t

−∞
f(u− rϑ(x−1, y))f(y − rϑ(x))ṙϑ(x−1, y) dy.

Example 5.1. Consider the AR(1) model, in which rϑ(x) = ϑx and |ϑ| ≤ 1. Clearly,

Assumption R and conditions (4.2), (4.4) and (5.1) hold. Also, condition (5.4) holds with

L = 1. Thus, if f has finite Fisher information for location and is Lipschitz then all the

assumptions of Theorem 5.1 can be met. �

Example 5.2. Consider the EXPAR(1) model, in which ϑ = (ϑ1, ϑ2) with ϑ1 < 1, and

rϑ(x) =
(
ϑ1 + ϑ2 exp(−γx2)

)
x. Here the exponent γ is assumed known. The assumptions

of Theorem 5.1 can be met if f has finite Fisher information for location and is Lipschitz.

Clearly, Assumption R and conditions (4.2), (4.4) and (5.1) hold. Moreover, condition (5.4)

is satisfied. �

We have phrased the conditions on rτ in Theorem 5.1 sufficiently generally to cover

discontinuous autoregression functions such as those appearing in SETAR models.
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Example 5.3. Consider the SETAR(2,1,1) model with known threshold ξ. In this

model, ϑ = (ϑ1, ϑ2) with ϑ1 < 1, ϑ2 < 1, ϑ1ϑ2 < 1, and rϑ(x) = ϑ1x1[x ≤ ξ] + ϑ2x1[x > ξ].

It is easily seen that Assumption R and the conditions (4.2), (4.4) and (5.1) hold. Suppose

now that f has finite Fisher information for location and is Lipschitz. If ξ = 0, then the

Lipschitz condition (5.4) holds. If ξ 6= 0, then the Lipschitz condition (5.4) does not hold,

but one has ∣∣rτ (y + s)− rτ (y)
∣∣ ≤ (

|τ1|+ |τ2|
)(
|s|+ 1[|y − ξ| ≤ |s|]

)
.

This and the fact that f ′ is bounded and integrable yield (5.3). �

The one-dimensional lag-two conditional distribution function Gx(u) = Fx(∞, u) at u of

Xn+2 given Xn = x is

Gx(u) =
∫
F (u− rϑ(x−1, y))f(y − rϑ(x)) dy.

We estimate Gx(u) by

G̃x(u) =
∫∫

1[z + rϑ̃(x−1, y + rϑ̃(x)) ≤ u]f̃(y)f̃(z) dydz

and its weighted version

G̃xw(u) =
∫∫

1[z + rϑ̃(x−1, y + rϑ̃(x)) ≤ u]f̃w(y)f̃w(z) dydz.

We obtain stochastic expansions as in Theorem 5.1, with t replaced by ∞.

Theorem 5.2. Let Assumptions B, K, F and R hold and let f be Lipschitz. Suppose

that (4.4), the growth conditions (4.2) and (5.1), and (5.3) hold. Then

sup
u∈R

∣∣∣G̃x(u)−Gx(u)− 1
n

n∑
i=1

h∗u(εi)− [D∗
u]>(ϑ̃− ϑ)

∣∣∣ = op(n−1/2);

sup
u∈R

∣∣∣G̃xw(u)−Gx(u)− 1
n

n∑
i=1

h#
u (εi)− [D#

u ]>(ϑ̃− ϑ)
∣∣∣ = op(n−1/2),

where D∗
u = Ψu −B(h∗u) and D#

u = Ψu −B(h#
u ) and where

hu(y) = F (u− rϑ(x−1, y + rϑ(x))) +
∫

1[y ≤ u− rϑ(x−1, z)]f(z − rϑ(x)) dz;

Ψu = −
∫
f(u− rϑ(x−1, y))f(y − rϑ(x)) dy ṙϑ(x)

−
∫
f(u− rϑ(x−1, y))f(y − rϑ(x))ṙϑ(x−1, y) dy.
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Example 5.4. We apply Theorem 5.2 to the conditional quantile function of lag two.

The conditional v-quantile of Xn+2 given Xn = x is the left-inverse G−1
x (v) of Gx at v. We

estimate it by G̃−1
xw(v). Since f was assumed positive, Gx has a positive density

gx(u) =
∫
f(u− rϑ(x−1, y))f(y − rϑ(x)) dy.

Let 0 < c ≤ d < 1. As in Example 3.1 we use Proposition 1 of Gill (1989) to obtain the

stochastic expansion

sup
v∈[c,d]

∣∣∣∣∣G̃−1
xw(v)−G−1

x (v) +
1
n

n∑
i=1

h#

G−1
x (v)

(εi) + [D#

G−1
x (v)

]>(ϑ̃− ϑ)

gx(G−1
x (v))

∣∣∣∣∣ = op(n−1/2).

It follows that the smoothed and weighted lag-two conditional quantile process

{n1/2
(
G̃−1

xw(v)−G−1
x (v)

)
: v ∈ [c, d]}

converges weakly in `∞([c, d]) to a centered Gaussian process. �

Example 5.5. Consider the AR(1) model Xi = ϑXi−1 + εi with |ϑ| < 1. Let us also

take ϑ̃ to be the sample correlation coefficient, which satisfies (3.2). We are interested in

predicting the probability Gx(u) = P (Xn+2 ≤ u | Xn = x), which can be expressed as

Gx(u) = P (ε2 + ϑε1 + ϑ2x ≤ u) =
∫
F (u− ϑy − ϑ2x)f(y) dy.

We assume that f has finite Fisher information for location and is Lipschitz, so that the

requirements of Theorem 5.1 and hence of Theorem 5.2 are met as demonstrated in Example

5.1. The smoothed von Mises estimator is

G̃x(u) = F̃x(∞, u) =
∫∫

1[z + ϑ̃y + ϑ̃2x ≤ u]f̂(y)f̂(z) dydz,

and its weighted counterpart is

G̃xw(u) = F̃xw(∞, u) =
∫∫

1[z + ϑ̃y + ϑ̃2x ≤ u]f̂w(y)f̂w(z) dydz.

Since ṙϑ(x) = x and E[X] = 0, we see that B(g) = 0 for all g ∈ L2(F ). Thus we obtain

from Theorem 5.2 and from expansion (3.2) for ϑ̃ that

G̃x(u) = Gx(u) +
1
n

n∑
i=1

(
hu(εi)− 2Gx(u) + Ψu

1− ϑ2

σ2
Xi−1εi

)
+ op(n−1/2)

and

G̃xw(u) = G̃x(u)− cu
σ2

1
n

n∑
i=1

εi + op(n−1/2),
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where Ψu = −E[(ε+ 2ϑx)f(u− ϑε− ϑ2x)], cu = E[εhu(ε)] and

hu(ε) = h∞,u(ε) =


F (u− ϑε− ϑ2x) + F ((u− ε− ϑ2x)/ϑ), ϑ > 0,

F (u) + 1[ε ≤ u], ϑ = 0,

F (u− ϑε− ϑ2x) + 1− F ((u− ε− ϑ2x)/ϑ), ϑ < 0.

Consequently, n1/2(G̃x(u) −Gx(u)) is asymptotically normal with mean zero and variance

τ2 = Var(hu(ε)) + Ψ2
u(1 − ϑ2) while n1/2(G̃xw(u) − Gx(u)) is asymptotically normal with

mean zero and variance τ2
w = τ2 − c2u/σ

2. Therefore the weighted version has a smaller

asymptotic variance unless cu = 0. The variance reductions can be considerable. Fig. 1 is

Fig. 1. The asymptotic relative efficiency τ2
w/τ2 of the unweighted versus the weighted estimator for

u = 0 for various values of ϑ and x.

a graph of the asymptotic relative efficiency τ2
w/τ

2 of the unweighted with respect to the

weighted estimator as a function of ϑ (ranging from .05 to .95) and x (ranging from 0 to 2)

in the case of the standard normal density f and u = 0. As one can see from the graph, the

ratio is always below .3 and can be as small as .0151. Thus variance reductions of over 98

percent are possible. �

6. Efficiency. In this section we prove that the weighted versions of our estimators

are efficient. We recall that, among all “regular” estimators, an estimator for a vector-

valued functional is efficient in the sense of Hájek and Le Cam if its standardized error is

asymptotically maximally concentrated in symmetric convex sets. In a locally asymptotically

normal model, an estimator for a differentiable functional is regular and efficient if and only

if it is asymptotically linear with influence function equal to the canonical gradient of the

functional. For our nonlinear autoregressive model, these concepts and the explicit form of
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the characterization are given in Schick and Wefelmeyer (2002) for differentiable functionals

of both the autoregression parameter and the innovation density.

Here we are interested in estimating the functional

κ(ϑ, f) = ψ(hϑ, f) =
∫
hϑ(y)

m∏
j=1

f(yj) dy,

where {hτ : |τ−ϑ| ≤ ∆} is a class of measurable functions from Rm into R. We assume that

the class has an envelope H of the form H(y1, . . . , ym) = V (y1) · · ·V (ym) with V satisfying

Assumption V. We use h̄τ as defined in Section 2 and assume that

(6.1)
∫

(h̄τ − h̄ϑ)2 dF → 0 as τ → ϑ.

Lemma 6.1. Suppose, in addition to the above, that τ 7→ ψ(hτ , f) is differentiable at

ϑ with gradient Ψϑ. Let ϑn be a sequence in Rd such that n1/2(ϑn − ϑ) → u. Let fn be a

sequence of densities such that ‖fn − f‖V 2 → 0 and∫ (
n1/2

(
f1/2

n (y)− f1/2(y)
)
− 1

2
v(y)f1/2(y)

)2

dy → 0

for some v ∈ L2(F ). Then

n1/2
(
ψ(hϑn

, fn)− ψ(hϑ, f) → Ψ>
ϑ u+

∫
h̄ϑv dF.

Proof. Express ψ(hϑn
, fn)− ψ(hϑ, f) as the sum T1 + T2 + T3 with

T1 = ψ(hϑn
, fn)− ψ(hϑn

, f)−
∫
h̄ϑn

(y)(fn(y)− f(y)) dy,

T2 =
∫
h̄ϑn

(y)(fn(y)− f(y)) dy,

T3 = ψ(hϑn
, f)− ψ(hϑ, f).

We have n1/2T3 → Ψ>
ϑ u. The argument given in the proof of Theorem 2.1 shows that

T1 = O(‖fn−f‖2V ). Writing sn = f
1/2
n , s = f1/2 and fn−f = (sn−s)(sn +s), and applying

the Cauchy–Schwarz inequality, we obtain that ‖fn − f‖2V ≤ 2(‖fn‖V 2 + ‖f‖V 2)‖(sn −
s)2‖1 = O(n−1). Thus n1/2T1 → 0. Finally n1/2T2 →

∫
h̄ϑv dF by the same argument as for

Lemma 7.2. �

As in Section 2, let V be the set of all v ∈ L2(F ) with
∫
v(y) dF (y) = 0 and∫

yv(y) dF (y) = 0. For each v ∈ V there is a sequence fn = fnv of zero mean densities as

required in the previous lemma. As shown in Schick and Wefelmeyer (2002), these densities

can be chosen to also satisfy ‖(fn − f)/f‖∞ → 0 and to have finite Fisher information

for location if f has it. We also require now that (3.1) in Schick and Wefelmeyer (2002)
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holds: for every sequence ϑn and fn = fnv as above, the corresponding stationary density

converges in L1 to the density of G. Under this assumption one has local asymptotic

normality. As seen in Section 2, under appropriate conditions the estimator ψ(hϑ̃, f̃w) has

the stochastic expansion

ψ(hϑ̃, f̃w) = ψ(hϑ, f) +
1
n

n∑
i=1

h̄#
ϑ (εi) +

(
Ψϑ − µ

∫
h̄#

ϑ ` dF
)>

(ϑ̃− ϑ) + op(n−1/2)

with µ = E[ṙϑ(X)] and h̄#
ϑ (y) = h̄ϑ(y) −

∫
h̄ϑ dF − σ−2y

∫
uh̄ϑ(u) dF (u). Recall that h̄#

ϑ

is the projection of h̄ϑ onto V. The projection of ` onto V is `#(y) = `(y) − σ−2y. If ϑ̃

is efficient then, by characterization (3.12) of Schick and Wefelmeyer (2002), it has the

stochastic expansion

ϑ̃ = ϑ+ Λ−1 1
n

n∑
i=1

S(Xi−1, εi) + op(n−1/2),

where S(X, ε) = ṙϑ(X)`(ε) − µ`#(ε) and Λ = E[S(X, ε)S(X, ε)>] = JR − J#µµ> with J

and J# the second moments of `(ε) and `#(ε), and R = E[ṙϑ(X)ṙϑ(X)>]. If an efficient

estimator ϑ̃ is used in ψ(hϑ̃, f̃w), we obtain the stochastic expansion

ψ(hϑ̃, f̃w) = ψ(hϑ, f) +
1
n

n∑
i=1

S#(Xi−1, εi) + op(n−1/2)

with

S#(X, ε) = h̄#
ϑ (ε) +M>(

ṙϑ(X)`(ε)− µ`#(ε)
)
,

M = Λ−1
(
Ψϑ − µ

∫
h̄#

ϑ ` dF
)
.

For v ∈ V we have

E[S#(X, ε)v(ε)] =
∫
h̄#

ϑ v dF +M>µ
( ∫

`v dF −
∫
`#v dF

)
=

∫
h̄#

ϑ v dF =
∫
h̄ϑv dF.

Furthermore,

E[S#(X, ε)ṙϑ(X)`(ε)] = µ

∫
h̄#

ϑ ` dF + (JR− J#µµ>)M

= µ

∫
h̄#

ϑ ` dF + ΛΛ−1
(
Ψϑ − µ

∫
h̄#

ϑ ` dF
)

= Ψϑ.

This shows that for all u ∈ Rd and v ∈ V,

E
[
S#(X, ε)

(
u>ṙϑ(X)`(ε) + v(ε)

)]
= u>Ψϑ +

∫
h̄ϑv dF.
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Since S#(X, ε) is of the form S#(X, ε) = u>0 ṙϑ(X)`(ε)+v0(ε) for some u0 ∈ Rd and v0 ∈ V,

we obtain that S#(X, ε) is the canonical gradient of the functional ψ(hϑ, f). Hence ψ(hϑ̃, f̃w)

is efficient by the characterization (3.5) in Schick and Wefelmeyer (2002), provided S#(X, ε)

is almost surely not zero.

The stochastic expansion of ψ(hϑ̃, f̃w) given above implies that n1/2(ψ(hϑ̃, f̃w)−ψ(hϑ, f))

is asymptotically normal with variance

E[h̄2
ϑ(ε)]− (E[h̄ϑ(ε)])2 − σ−2(E[εh̄ϑ(ε)])2

+
(
Ψϑ − µE[h̄ϑ(ε)`#(ε)]

)>
Λ

(
Ψϑ − µE[h̄ϑ(ε)`#(ε)]

)
.

7. Technical details. We begin with a characterization of compact subsets of L2(ν)

for a measure ν with Lebesgue density.

Lemma 7.1. Let ν be a finite measure with Lebesgue density ϕ. Let W ∈ L2(ν) satisfy

(7.1)
∫

(W (x− s)−W (x))2 ν(dx) → 0 as s→ 0.

Then a subset G of L2(ν) with envelope W is totally bounded if and only if

(7.2) sup
g∈G

∫
(g(x− s)− g(x))2 ν(dx) → 0 as s→ 0.

Proof. Let λ denote the Lebesgue measure. Let Ḡ denote the closure of G in L2(ν).

Clearly, G is totally bounded if and only if Ḡ is compact in L2(ν). The latter is equivalent

to compactness of Ḡ√ϕ in L2(λ). By the Fréchet–Kolmogorov theorem, see Yosida (1980,

p. 275), compactness of Ḡ√ϕ is equivalent to

sup
g∈G

∫
g2ϕdλ <∞,(7.3)

sup
g∈G

∫ (
g(x− s)

√
ϕ(x− s)− g(x)

√
ϕ(x)

)2

dx→ 0 as s→ 0,(7.4)

sup
g∈G

∫
|x|>M

g2(x)ϕ(x) dx→ 0 as M →∞.(7.5)

Since G has envelope W in L2(ν), properties (7.3) and (7.5) are automatically satisfied.

Since ((
g(x− s)

√
ϕ(x− s)− g(x)

√
ϕ(x)

)
− (g(x− s)− g(x))

√
ϕ(x)

)2

= g2(x− s)
(√

ϕ(x− s)−
√
ϕ(x)

)2
,

properties (7.4) and (7.2) are equivalent if

(7.6)
∫
W 2(x− s)

(√
ϕ(x− s)−

√
ϕ(x)

)2

dx→ 0 as s→ 0.
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The above identity with g = W , together with continuity of translation in L2(λ), for which

we refer to Rudin (1974, Theorem 9.5), shows that (7.6) and (7.1) are equivalent. �

The next lemma discusses uniform differentiability of integrals with respect to Hellinger

differentiable densities.

Lemma 7.2. Let {pτ : |τ−ϑ| ≤ ∆} be a family of densities with respect to some measure

ν. Let pτ be Hellinger differentiable at ϑ with Hellinger derivative χ. Let W be a non-negative

function such that

(7.7)
∫
W 2pτ dν →

∫
W 2pϑ dν as τ → ϑ.

Then

(7.8) sup
|g|≤W

∣∣∣ ∫
g
(
pτ − pϑ − χ>(τ − ϑ)pϑ

)
dν

∣∣∣ = o(|τ − ϑ|).

Moreover, if {gτ : |τ − ϑ| ≤ ∆} has envelope W and
∫

(gτ − gϑ)2pϑ dν → 0, then

(7.9)
∫
gτ (pτ − pϑ) dν =

∫
gϑχ

> pϑ dν (τ − ϑ) + o(|τ − ϑ|).

Proof. Hellinger differentiability implies that pτ → pϑ in ν-measure. This and (7.7)

yield
∫
W 2|pτ − pϑ| dν → 0. Let sτ = p

1/2
τ and rτ = sτ − sϑ − 1

2χ
>(τ − ϑ)sϑ. Hellinger

differentiability means that
∫
r2τ dν = o(|τ − ϑ|2). Since pτ − pϑ − χ>(τ − ϑ)pϑ = rτ (sτ +

sϑ) + 1
2χ

>(τ − ϑ)sϑ(sτ + sϑ), an application of the Cauchy–Schwarz inequality shows that

the square of the left-hand side of (7.8) can be bounded by

2
∫
W 2(sτ + sϑ)2 dν

∫
r2τ dν +

1
2

∫
(χ>(τ − ϑ))2pϑ dν

∫
W 2(sτ − sϑ)2 dν.

Using (sτ + sϑ)2 ≤ 2(pτ + pϑ) and (sτ − sϑ)2 ≤ |pτ − pϑ|, we obtain (7.8). To prove (7.9),

it therefore remains to show that
∫

(gτ − gϑ)χpϑ dν → 0 as τ → ϑ. But this is an easy

consequence of
∫

(gτ − gϑ)2pϑ dν → 0. �
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