
Estimating functionals of the error distribution

in parametric and nonparametric regression

Ursula U. Müller

Universität Bremen

Anton Schick ∗

Binghamton University

Wolfgang Wefelmeyer

Universität Siegen

Abstract

We consider estimation of linear functionals of the error distribution for two regression
models: parametric and nonparametric, and for two types of errors: independent of the
covariate and centered (type I), and conditionally centered given the covariate (type II).
We show that the residual-based empirical estimators for the nonparametric type I model
remain efficient in the type II model. For the parametric type I regression model, efficient
estimators are obtained by correcting the empirical estimator using that the errors are
centered, and using an efficient estimator for the regression parameter. Since such efficient
parameter estimators do not remain consistent in the parametric type II model, neither
does the empirical estimator. We construct efficient estimators for linear functionals of the
error distribution in the parametric type II regression model, starting from residual-based
empirical estimators, correcting it for the fact that the errors are conditionally centered, and
using an appropriate efficient weighted least squares estimator for the regression parameter.

Key words and Phrases. Plug-in estimator, local polynomial smoother, i.i.d. representation,
constrained model, efficient influence function.

1. Introduction

Suppose we have independent observations (X1, Y1), . . . , (Xn, Yn) from a regression model Y =
r(X) + ε. We are interested in efficient estimation of a linear functional E[h(ε)] of the error
distribution. A natural estimator is the empirical estimator

Ĥ =
1
n

n∑
i=1

h(ε̂i)

based on the residuals ε̂i = Yi − r̂i, with r̂i an estimator for r(Xi). We discuss when Ĥ is
efficient, and under which structural assumptions on the regression model it can be improved.
∗Supported in part by NSF Grant DMS 0072174
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We distinguish between two types of model. Historically, it was first assumed that the
errors are independent of the covariates. For identifiability, we assume that they are centered,
E[ε] = 0. We call such models type I models. Most of the literature makes these assumptions.
In many applications, especially in the recent econometrics literature, independence of error
and covariate is considered too strong an assumption. For identifiability, we assume that the
error is now conditionally centered given the covariate, E(ε | X) = 0. We call such models
type II models.

For each of the two types of model, we focus attention on two models for the regression
function. In the nonparametric regression model, the function r is unspecified (up to smooth-
ness). In the parametric regression model, the function r = rϑ is assumed known up to a
finite-dimensional parameter ϑ. This includes of course the linear regression model.

Type II models can also be characterized as bivariate models with a possible constraint
on the conditional distribution of Y given X. The nonparametric regression model is just
the full nonparametric bivariate model, with no structural constraint, but with smoothness
assumptions on the conditional expectation r(X) = E(Y | X). It depends on the problem at
hand which description is more convenient. For the calculation of efficient influence functions
in Sections 2 and 3 we find it convenient to use the same parametrization of the law P (dx, dy)
of (X,Y ) for all four models: by the regression function r, the covariate distribution M , and
the conditional density f(x, z) of ε given X = x,

P (dx, dy) = M(dx)f(x, y − r(x)) dy.

On the other hand, for the construction of efficient estimators it is better to use the simplest
description for the specific model at hand, and to avoid introducing unnecessary parameters.
The parametric type II regression model is now best described by the constraint E(Y | X) =
rϑ(X), which suggests a weighted least squares estimator for ϑ. The nonparametric type II
regression model is best described as the nonparametric bivariate model, with E[h(Y − r(X))]
as functional of interest. The residual-based empirical estimator Ĥ is then seen as a plug-in
estimator for a specific functional on a nonparametric model.

The contrast between model descriptions convenient for efficiency considerations and for
constructions of estimators is also reflected in the organization of the paper. Sections 2 and
3 calculate efficient influence functions for arbitrary type II and type I models, respectively,
while in Sections 4 and 5 we distinguish between parametric and nonparametric regression
models, the essential difference now lying in the estimation of the regression function, through
local polynomial smoothers and through parameter estimators, respectively. Sections 2 and 3
are written general enough to allow calculation of efficient influence functions for functionals
not just of the error distribution but also of the joint distribution of the observations (X,Y ),
including functionals of the regression function. This generalizes results of Schick (1993) and
Müller, Schick and Wefelmeyer (2003) (in the following: MSW), both by treating type II

2



models and by considering more general functionals. At a first reading, Sections 2 and 3 may
be skipped. In Sections 4 and 5 we discuss construction of efficient estimators in the four cases.

1. For the nonparametric type II model we show in Theorem 1 that the residual-based
empirical estimator has the i.i.d. representation

Ĥ =
1
n

n∑
i=1

(
h(εi) + µ′(Xi, 0)εi

)
+ op(n−1/2),

where µ′(Xi, 0) is the derivative of v 7→
∫
h(z− v)f(Xi, z) dz at v = 0, and ε̂i = Yi− r̂i with r̂i

a leave-one-out polynomial smoother. In particular, we allow a linear smoother. In that case
we assume that the regression function has one derivative fulfilling a Hölder condition, and we
take a bandwidth of smaller order than the optimal bandwidth for estimating the regression
function under these conditions, i.e. we undersmooth.

It follows from Section 2 that Ĥ is efficient. We note that efficiency is almost automatic here
because the nonparametric type II model is just the full nonparametric bivariate model, and
efficiency theory tells us that the i.i.d. representation of regular estimators in nonparametric
models is unique. To use this argument, we would however need to show that Ĥ is regular,
which is most easily done by checking that its influence function is the efficient one, i.e. by
doing what we did anyway.

In the nonparametric regression model, the assumption E(ε | X) = 0 does not constitute
a restriction: it is needed for identifiability, and for interpreting the regression function as the
conditional mean of Y given X. This is reflected in the following observation. One might think
of using E(ε | X) = 0 to improve Ĥ by subtracting a correction term 1

n

∑n
i=1 a(Xi)ε̂i, where

a is a possibly random weight function. However, we can estimate the regression function in
such a way that

(1.1)
1
n

n∑
i=1

a(Xi)ε̂i = op(n−1/2)

for all weight functions a; see the proof of Theorem 1. This is an empirical version of
E[a(X)ε] = 0 for all a, which is another way of saying that E(ε | X) = 0. In view of
(1.1), any possible correction term based on E(ε | X) = 0 would be negligible.

2. In the type I models, the conditional expectation µ′(Xi, 0) does not depend on Xi, and
the i.i.d. representation reduces to that proved in MSW for the same estimator. Hence that
estimator is robust against non-independence of error and covariate. As shown in MSW, the
estimator is also efficient in the nonparametric type I model.

Theorem 1 excludes functions h with jumps, e.g. indicator functions. In particular, it does
not cover the residual-based empirical distribution function. Akritas and Van Keilegom (2001)
consider the heteroscedastic regression model Y = r(X) + s(X)ε, with ε and X independent,
and use empirical process theory to obtain an i.i.d. representation for the empirical distribution
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function based on residuals ε̂i = (Yi − r̂i)/ŝ2
i . Their model is between our nonparametric

regression models of types I and II.
3. In Section 5 we consider the parametric type II regression model Y = rϑ(X) + ε. Now

we estimate rϑ by rϑ̂, where ϑ̂ is a n1/2-consistent estimator of ϑ, and obtain the following
i.i.d. representation for the empirical estimator based on the residuals ε̂i = Yi − rϑ(Xi):

Ĥ =
1
n

n∑
i=1

h(εi) + E[µ′(X, 0)ṙϑ(X)>](ϑ̂− ϑ) + op(n−1/2).

This estimator is no longer efficient, even if an efficient estimator ϑ̂ for ϑ is used. The reason
is that now E(ε | X) = 0 is a restriction on the model, and we can no longer achieve (1.1) with
an estimator of the form r̂i = rϑ̂(Xi). However, this allows us to improve the estimator Ĥ.
The efficient influence function is calculated in Section 2 and suggests subtracting a correction
term from Ĥ, namely

Ĉ =
1
n

n∑
i=1

ρ̂i
τ̂2
i

ε̂i,

where ρ̂i estimates E(εih(εi) | Xi), and τ̂2
i estimates E(ε2

i | Xi). We show in Theorem 3 that
Ĉ has a stochastic expansion

Ĉ =
1
n

n∑
i=1

E(εih(εi) | Xi)
E(ε2

i | Xi)
εi + E

[E(εh(ε) | X)
E(ε2 | X)

ṙϑ(X)>
]
(ϑ̂− ϑ) + op(n−1/2).

The corrected estimator Ĥ − Ĉ is efficient in the parametric type II model if an efficient
estimator ϑ̂ for ϑ is used. Such an estimator ϑ̂ can be obtained as a weighted least squares
estimator with (optimal) random weights. Various such weighted least squares estimators have
already been constructed in the literature: see Carroll (1982), Müller and Stadtmüller (1987),
Robinson (1987), Schick (1987) and Chiou and Müller (1999). Some of those authors have used
additional structure on the conditional second moment, e.g. that E(ε2 | X) is a function of
the regression function. These weighted least squares estimators are not efficient in our model,
and also not in the models with additional structure; improvements under such additional
structural assumptions are obtained in Wefelmeyer (1996), Schick (1999), and Li (2000, 2001).

4. Now consider the parametric type I model, with ε and X independent. Then the
constraint E(ε | X) = 0 reduces to E[ε] = 0, and the correction term Ĉ can be replaced by
the simpler term

1
n

n∑
i=1

∑n
i=1 ε̂ih(ε̂i)∑n
i=1 ε̂

2
i

ε̂i.

In the type I model, the weighted least squares estimator ϑ̂ is asymptotically equivalent to the
ordinary least squares estimator, which is known to be inefficient. For efficiency of Ĥ − Ĉ, we
must replace ϑ̂ by an estimator that is efficient in the type I model; see Schick (1993) for a
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construction. The behavior of the residual-based empirical distribution function for linear type
I regression models is studied among others by Koul (1969, 1970, 2002) and Loynes (1980); for
increasing dimension see Portnoy (1986) and Mammen (1996). The nonlinear autoregressive
model Xi = rϑ(Xi−1)+εi with independent innovations is closely related to the parametric type
I regression model; an efficient estimator for E[h(ε)] in this autoregressive model is constructed
in Schick and Wefelmeyer (2002).

2. Efficient influence functions for type II models

Consider the regression model Y = r(X)+ε with E(ε | X) = 0. Denote the distribution of the
covariate by M(dx). Suppose that the conditional distribution of ε given X = x has a Lebesgue
density z 7→ f(x, z). In this section we calculate efficient influence functions of arbitrary real-
valued functionals of (r, f,M) for general type II models, and specialize the result to functionals
E[h(ε)] =

∫
h(z)f(x, z) dzM(dx), and to nonparametric and parametric regression. Write

Q(dx, dz) = M(dx)f(x, z) dz for the joint law of (X, ε) and P (dx, dy) = M(dx)f(x, y−r(x)) dy
for the joint law of (X,Y ), and write g(z) =

∫
f(x, z)M(dx) for the density of ε. We impose

the following assumptions on the conditional density. They are natural extensions of the
assumptions required in MSW for type I models and were already used in Koul and Schick
(2003).

Assumption A1. There exist positive cτ , Cτ such that

cτ ≤ τ2(x) = E(ε2 | X = x) =
∫
z2f(x, z) dz ≤ Cτ .

Assumption A2. The map z 7→ z2f(x, z) is uniformly integrable in the sense that

sup
x

∫
|z|>A

z2f(x, z) dz → 0 as A→∞.

Assumption A3. The map z 7→ f(x, z) is absolutely continuous with a.e. derivative z 7→
f ′(x, z) for each x, and∫∫

L2(x, z)f(x, z) dzM(dx) <∞ with L = −f ′/f.

Note that L(x, ·) is the usual score function for the location model generated by the density
f(x, ·). Thus Assumptions A1 and A3 imply

(2.1)
∫
L(x, z)f(x, z) dz = 0 and

∫
zL(x, z)f(x, z) dz = 1.
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Under the above assumptions, we have local asymptotic normality of the regression model for
local perturbations of the parameters r, f , M , described as follows.

For simplicity we treat the parametric and nonparametric models as special cases of some
arbitrary model whose tangent space at the true covariate distribution M is some closed linear
subset U of L2(M). This has the additional advantage that our calculations may later also be
used for other regression problems, with semiparametric models for the regression function.
For u ∈ U we consider a perturbation rnu such that∫

(rnu − r − n−1/2u)2 dM = o(n−1).

For the error distribution we restrict ourselves, again for simplicity, to the case where the only
restriction is conditional centering E(ε | X) = 0, but the conditional density f is unspecified
otherwise. This excludes, for example, parametric models for f . The calculations below could
however be modified to cover such models. The tangent space at the true conditional density
f is then

V = {v ∈ L2(Q) :
∫
v(x, z)f(x, z) dz = 0,

∫
zv(x, z)f(x, z) dz = 0}.

This is the space of functions orthogonal to functions in L2(Q) of the form a(x) + b(x)z. For
v ∈ V we consider a perturbation fnv such that

(2.2)
∫∫ (

f1/2
nv (x, z)− f1/2(x, z)− 1

2
n−1/2v(x, z)f1/2(x, z)

)2
dzM(dx) = o(n−1).

See Koul and Schick (2003) for a construction. For the covariate distribution we allow some
arbitrary model, with tangent space W a closed linear subspace of

L2,0(M) = {w ∈ L2(M) :
∫
w dM = 0}.

The two cases of interest to us will be: known covariate distribution (“fixed design”), W = {0},
and completely unknown covariate distribution, W = L2,0(M). For w ∈ W we consider a
perturbation Mnw such that∫ (

dM1/2
nw − dM1/2 − 1

2
n−1/2w dM1/2

)2
= o(n−1).

The tangent space of the law P of (X,Y ) is now obtained as follows. Let Pnuvw(dx, dy) =
Mnw(dx)fnv(x, y − rnu(x)) dy. Then Pnuvw has tangent

tuvw(x, y) = u(x)L(x, y − r(x)) + v(x, y − r(x)) + w(x)

in the sense that

(2.3)
∫ (

dP 1/2
nuvw − dP 1/2 − 1

2
n−1/2tuvwdP

1/2
)2

= o(n−1).
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Hence we have local asymptotic normality

(2.4) log
dPnnuvw
dPn

= n−1/2
n∑
i=1

tuvw(Xi, Yi)−
1
2
E[t2uvw(X,Y )] + op(1).

In order to express the tangent space of the model as sum of orthogonal subspaces, we rewrite
the tangent tuvw as follows. The projection kV of k ∈ L2(Q) onto V is

kV (x, z) = k(x, z)−
∫
k(x, s)f(x, s) ds−

∫
sk(x, s)f(x, s) ds

τ2(x)
z.

In particular, by (2.1), the projection LV of L onto V is

LV (x, z) = L(x, z)− z

τ2(x)
.

For better comparison with (2.4) it is convenient to express the tangent as a random
variable:

tuvw(X,Y ) = u(X)L(X, ε) + v(X, ε) + w(X)

=
u(X)
τ2(X)

ε+
(
u(X)LV (X, ε) + v(X, ε)

)
+ w(X).

We see that the tangent space

T = {tuvw(X,Y ) : u ∈ U, v ∈ V,w ∈W}

is the sum of the pairwise orthogonal spaces

U =
{ u(X)
τ2(X)

ε : u ∈ U
}
, V = {v(X, ε) : v ∈ V }, W = {w(X) : w ∈W}.

Now consider a real-valued functional χ of (r, f,M). Suppose that χ is differentiable at
(r, f,M) with natural gradient (u, v, w) ∈ U × V × W in the sense that for all (u, v, w) ∈
U × V ×W ,

n1/2(χ(rnu, fnv,Mnw)− χ(r, f,M))→
∫
uu dM +

∫
vv dQ+

∫
ww dM.

The efficient influence function is defined as the element

t∗(X,Y ) =
u∗(X)
τ2(X)

ε+ v∗(X, ε) + w∗(X)

of T that expresses the derivative of χ in terms of the inner product inherited from local
asymptotic normality (2.4): For all (u, v, w) ∈ U × V ×W ,

(2.5)
∫
t∗tuvw dP =

∫
uu dM +

∫
vv dQ+

∫
ww dM.
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For short, we call (u∗, v∗, w∗) the LAN gradient of χ.
The reason for calling t∗ the efficient influence function lies in the following semiparametric

version of Hájek’s (1970) convolution theorem. Call an estimator χ̂ regular for χ at (r, f,M)
with limit K if K is a random variable such that, for all (u, v, w) ∈ U × V ×W ,

n1/2(χ̂− χ(rnu, fnv,Mnw))⇒ K under Pnuvw.

By the convolution theorem, K is the convolution of a normal random variable with mean
zero and variance E[t∗2uvw(X,Y )], and another random variable. This justifies calling a regular
estimator χ̂ efficient if it is asymptotically normal with this variance. Also, an estimator χ̂ is
regular and efficient for χ at (r, f,M) if and only if it is asymptotically linear with influence
function equal to t∗, i.e.,

n1/2(χ̂− χ(r, f,M)) = n−1/2
n∑
i=1

t∗(Xi, Yi) + op(1).

See Bickel, Klaassen, Ritov and Wellner (1998, Section 3.3) for these results.
To calculate the efficient influence function t∗uvw, we introduce the following notation. Let

ψ be the function defined by

ψ(X) = E(v(X, ε)L(X, ε) | X).

Let Π denote the projection operator from L2(M) onto {u/τ : u ∈ U}. We show now that the
LAN gradient of χ is (u∗, v, w) with

u∗ = τΠ(τ(u− ψ)).

For these choices, the left-hand side of (2.5) becomes∫
u∗

τ2
u dM +

∫
ψudM +

∫
vv dQ+

∫
ww dM.

Here we have used (2.1) and the orthogonality properties of v(X, ε), w(X), and ε. Since for
a ∈ L2(M) and u ∈ U , ∫

au dM =
∫
τa
u

τ
dM =

∫
Π(τa)

u

τ
dM,

we see that ∫
u∗

τ2
u dM =

∫
Π(τ(u− ψ))

u

τ
dM =

∫
(u− ψ)u dM,

and (2.5) is immediate.
We are interested in linear functionals of the error distribution,

χ(r, f,M) =
∫∫

h(z)f(x, z) dzM(dx) = E[h(ε)].
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The natural gradient of such a functional is (u, v, w), where now u = 0; v is the projection
onto V of the function (x, z) 7→ h(z), so that

v(X, ε) = hV (X, ε) = h(ε)− E(h(ε) | X)− E(εh(ε) | X)
τ2(X)

ε;

and w is the projection of h̃ onto W , where

h̃(X) = E(h(ε) | X).

Since u = 0, we have u∗ = −τΠ(τψ). Thus the LAN gradient for χ(r, f,M) = E[h(ε)] is
(u∗, v∗, w∗) = (−τΠ(τψ), v, w). For this functional, the function ψ can be expressed as

(2.6) ψ(X) = E(h(ε)LV (X, ε) | X) = E(h(ε)L(X, ε) | X)− E(εh(ε) | X)
τ2(X)

.

Two models for the covariate distribution M are of interest: completely known covariate
distribution, in which case W = {0}; and completely unknown covariate distribution (up to
regularity), in which case W = L2,0(M). In the first case, w = 0. In the second case,

w(X) = h̃(X)− E[h̃(X)] = E(h(ε) | X)− E[h(ε)].

From now on we restrict ourselves to the second case. In this case, the influence function for
χ(r, f,M) = E[h(ε)] is

h(ε)− E[h(ε)]− E(εh(ε) | X)− u∗(X)
τ2(X)

ε.

We are interested in two models for the regression function, namely nonparametric regres-
sion and parametric regression. In the nonparametric regression model, r is unspecified up to
smoothness, so that the regression functions are dense in L2(M). Hence u∗ = −τ2ψ. In view
of (2.6), the efficient influence function simplifies to

tnp = h(ε)− E[h(ε)]− E(h(ε)L(X, ε) | X) ε.

The subscript np stands for ‘nonparametric’.
If X and ε happen to be independent, then f(x, z) = g(z) and L(x, z) = `(z) = −g′(z)/g(z),

so that the influence function simplifies further to

h(ε)− E[h(ε)]− E[h(ε)`(ε)] ε.

This coincides with the efficient influence function in the smaller model I where X and ε are
known to be independent, which was obtained in MSW. This means that an efficient estimator
for E[h(ε)] in model II remains efficient in model I. We show later that, conversely, the efficient
estimator constructed there for model I remains efficient in model II.
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The second model is the parametric regression model, in which r = rϑ depends on a finite-
dimensional parameter ϑ.

Assumption A4. The function rϑ+t is differentiable at t = 0 in L2(M),∫
(rϑ+t − rϑ − t>ṙϑ)2 dM = o(‖t‖2),

and Rϑ =
∫
ṙϑṙ
>
ϑ dM is positive definite.

Then U = [ṙϑ], the span of the components of ṙϑ. Now

u∗ = −τΠ(τψ) = −c̃>ϑ R̃−1
ϑ ṙϑ, with c̃ϑ =

∫
ψṙϑ dM, R̃ϑ =

∫
rϑṙ
>
ϑ

τ2
dM.

By the definition of ψ, we have

c̃ϑ = E[h(ε)LV (X, ε)ṙϑ(X)] = E[hV (X, ε)L(X, ε)ṙϑ(X)].

Hence the efficient influence function for E[h(ε)] in the parametric model is

(2.7) tp(X,Y ) = h(ε)− E[h(ε)]− E(εh(ε) | X)
τ2(X)

ε− c̃>ϑ t†(X,Y ),

where

(2.8) t†(X,Y ) =
R̃−1
ϑ ṙϑ(X)
τ2(X)

ε

is the influence function of the weighted least squares estimator of ϑ.
We show now that t† is also the efficient influence function for ϑ, understood componentwise.

The functional for the j-th component of ϑ is χj(rϑ, f,M) = ϑj = e>j ϑ. The natural gradient
is (uj , 0, 0) with uj = R−1

ϑ ṙϑ. Hence the LAN gradient is (u∗j , 0, 0) with u∗j = e>j R̃
−1
ϑ ṙϑ.

3. Efficient influence functions for type I models

Consider the regression model Y = r(X) + ε, where X and ε are independent and ε has mean
zero and finite variance σ2 = E[ε2], and density g. Let G denote the corresponding distribution
function. This is a submodel of the type II model considered in Section 2. Parallel to Section
2, we calculate efficient influence functions of arbitrary real-valued functionals of (r, g,M) for
general type I models, and specialize the result to functionals E[h(ε)] =

∫
h(z)g(z) dz, and to

nonparametric and parametric regression. The joint distribution Q of (X, ε) now factors as
Q(dx, dz) = M(dx)g(z) dz. Assumptions A1 to A3 are replaced by the following assumption.
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Assumption A5. The density g has finite Fisher information for location: It is absolutely
continuous with a.e. derivative g′ fulfilling

J =
∫
`2(z)g(z) dz <∞, with ` = −g′/g.

Assumptions A1 to A3 are then satisfied with f(x, z) = g(z). We take perturbations of r
and M as before, and replace V by the following unconditional version:

V0 = {v ∈ L2(G) :
∫
v(z)G(dz) = 0,

∫
zv(z)G(dz) = 0}.

For v ∈ V0 we consider a perturbation gnv such that∫ (
g1/2
nv (z)− g1/2(z)− 1

2
n−1/2v(z)g1/2(z)

)2
dz = o(n−1).

This is a special case of (2.2). Then Pnuvw has tangent

tuvw(x, y) = u(x)`(y − r(x)) + v(y − r(x)) + w(x)

in the sense of (2.3). Thus we have local asymptotic normality (2.4). We rewrite the tangent
tuvw as

tuvw(X,Y ) = u(X)`(ε) + v(ε) + w(X).

Now let χ be a real-valued functional of (r, g,M) which is differentiable at (r, g,M) with natural
gradient (u, v0, w) ∈ U × V0 ×W in the sense that for all (u, v, w) ∈ U × V0 ×W ,

n1/2(χ(rnu, gnv,Mnw)− χ(r, g,M))→
∫
uu dM +

∫
v0v dG+

∫
ww dM.

To describe the efficient influence function of χ, we need additional notation. We let `0 denote
the projection of ` onto V0, and J0 its variance. It is easily seen that `0(ε) = `(ε)− ε/σ2 and
J0 = J − 1/σ2. We let π denote the projection of the constant function 1 onto U . Finally let

β =
E[v0(ε)`(ε)]− E[ū(X)]J0/J

J − J0E[π(X)]
.

The efficient influence function is now

t∗0(X,Y ) =
(u(X)

J
− βπ(X)

)
`(ε) + v0(ε)− E[u(X)]

J
`0(ε) + βE[π(X)]`0(ε) + w(X).

Indeed, one verifies that for all (u, v, w) ∈ U × V0 ×W ,∫
t∗0tuvw dP =

∫
uu dM +

∫
v0v dG+

∫
ww dM.
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To check this, use E[u(X)π(X)] = E[u(X)] and E[v(ε)`0(ε)] = E[v(ε)`(ε)] to get

E[t∗0(X,Y )u(X)`(ε)] = E[u(X)u(X)]− E[u(X)]βJ + E[u(X)]E[v0(ε)`(ε]

−E[u(X)]E[u(X)]
J0

J
+ E[u(X)]βE[π(X)]J0

= E[u(X)u(X)],

E[t∗0(X,Y )v(ε)] =
(E[u(X)]

J
− βE[π(X)]

)
E[v(ε)`(ε)] + E[v0(ε)v(ε)]

−E[u(X)]
J

E[v(ε)`(ε)] + βE[π(X)]E[v(ε)`(ε)]

= E[v0(ε)v(ε)],

E[t∗0(X,Y )w(X)] = E[w(X)w(X)].

We are interested in linear functionals of the error distribution,

χ(r, g,M) =
∫
h(z)g(z) dz = E[h(ε)].

The natural gradient of such a functional is (0, h0, 0) with h0 the projection of h onto V0, which
is

h0(ε) = h(ε)− E[h(ε)]− E[εh(ε)]
σ2

ε.

The efficient influence function for E[h(ε)] now becomes

t∗0(X,Y ) = h0(ε)− β0

(
π(X)− E[π(X)]

)
`(ε)− β0E[π(X)]

ε

σ2

with
β0 =

E[h0(ε)`(ε)]
J − J0E[π(X)]

.

In the nonparametric regression model, U = L2(M) and π = 1, so that

t0,np = h0(ε)− E[h0(ε)`(ε)] ε = h(ε)− E[h(ε)]− E[h(ε)`(ε)] ε.

This result was already obtained in MSW.
In the parametric regression model we have r = rϑ. Under Assumption A4, U = [ṙϑ], and

π = a>ϑR
−1
ϑ ṙϑ with aϑ = E[rϑ(X)]. In this case the efficient influence function for E[h(ε)]

becomes
t0,p(X,Y ) = h0(ε)− c>ϑ

(
(J − J0a

>
ϑR
−1
ϑ aϑ)Rϑ

)−1
Sϑ(X,Y ),

where

cϑ = E[h0(ε)`(ε)]aϑ,

Sϑ(X,Y ) = (ṙϑ(X)− aϑ)`(ε) + aϑ
ε

σ2
= ṙϑ(X)`(ε)− aϑ`0(ε).

The covariance matrix
Λϑ = JRϑ − J0aϑa

>
ϑ

12



of Sϑ(X,Y ) has inverse

Λ−1
ϑ = (JRϑ)−1 +

J0

J − J0a>ϑR
−1
ϑ aϑ

R−1
ϑ aϑa

>
ϑ (JRϑ)−1.

It is now easily checked that

c>ϑΛ−1
ϑ =

(
J − J0a

>
ϑR
−1
ϑ aϑ

)−1
c>ϑR

−1
ϑ ,

yielding
t0,p(X,Y ) = h0(ε)− c>ϑΛ−1

ϑ Sϑ(X,Y ).

As in Schick (1993) one checks that Λ−1
ϑ Sϑ(X,Y ) is the efficient influence function for ϑ.

Indeed, the functional for the j-th component of ϑ is χj(rϑ, g,M) = ϑj = e>j ϑ. The nat-
ural gradient is (uj , 0, 0) with uj = e>j R

−1
ϑ ṙϑ. Then the efficient influence function of ϑj is

bj(X)`(ε)− E[bj(X)]`0(ε), where

bj =
ūj
J

+
E[ūj(X)]J0/J

J − J0a>ϑR
−1
ϑ aϑ

a>ϑR
−1
ϑ ṙϑ = e>j Λ−1

ϑ ṙϑ.

This shows that e>j Λ−1
ϑ Sϑ(X,Y ) is the efficient influence function for ϑj . Similar results for

nonlinear autoregression are obtained in Schick and Wefelmeyer (2002).

4. Constructions of estimators for nonparametric regression

Let (X1, Y1), . . . , (Xn, Yn) be independent observations from the nonparametric regression
model Y = r(X) + ε of type II. For simplicity we take X one-dimensional. We want to
construct an efficient estimator for E[h(ε)]. We consider the empirical estimator

Ĥ =
1
n

n∑
i=1

h(ε̂i)

based on residuals ε̂i = Yi − r̂i, where r̂i estimates r(Xi). To be specific, we take the leave-
one-out local polynomial smoother of degree L, which is the first component r̂i = β̂i0 of the
vector (β̂i0, . . . , β̂iL) that minimizes

∑
j:j 6=i

(
Yj −

L∑
λ=0

βλ

(Xj −Xi

bn

)λ)2

K
(Xj −Xi

bn

)
for a kernel K and a bandwidth bn. Throughout we assume that the kernel K is a symmetric
and bounded density with support [−1, 1]. If L = 0, then r̂i is the usual leave-one-out kernel
estimator:

r̂i =

∑
j:j 6=i YjKbn(Xi −Xj)∑
j:j 6=iKbn(Xi −Xj)

with Kbn(x) =
1
bn
K
( x
bn

)
.
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MSW use the leave-one-out local polynomial smoother to obtain an i.i.d. representation of Ĥ
in model I. More precisely, they require that h, M and r are smooth in the following sense.

Assumption B1. There are positive numbers α ≤ 1, c, C1, C2 such that∫
(h(z + w + v)− h(z + w))2g(z) dz ≤ C1|v|1+α, |v|, |w| ≤ c,

and µ(v) =
∫
h(z − v)g(z) dz is differentiable at v = 0 with

|µ(v)− µ(0)− µ′(0)v| ≤ C2|v|1+α, |v| ≤ c.

Assumption B2. The covariate distribution M has compact support [0, 1] and admits a
density that is continuous and positive on its support.

Assumption B3. The regression function r is L times differentiable, and its L-th derivative
is Hölder with positive exponent β.

Let α∗ be the smaller of 1/3 and α/(1 + α). Under the above assumptions, with L+ β >

1/(2α∗), MSW obtain the following i.i.d. representation:

Ĥ =
1
n

n∑
i=1

(
h(εi) + µ′(0)εi

)
+ op(n−1/2)

if the bandwidth fulfills

(4.1) n1/2bL+β
n → 0 and bnn

α∗ →∞.

The condition L + β > 1/(2α∗) is needed to guarantee the existence of such a bandwidth.
Indeed, we can pick bn proportional to n−γ with γ in the open interval (1/(2L+2β), α∗). Since
L + β is a measure of smoothness of r, the condition L + β > 1/(2α∗) demands a certain
amount of smoothness of the regression function. For example, if α ≥ 1/2, then α∗ = 1/3 and
L+ β must be larger than 3/2.

A similar i.i.d. representation of Ĥ holds in the larger model II under the following modified
smoothness condition on h.

Assumption C1. There are positive numbers α ≤ 1, c, C1, C2 such that, for each x in [0, 1],∫
(h(z + w + v)− h(z + w))2f(x, z) dz ≤ C1|v|1+α, |v|, |w| ≤ c,

and v 7→ µ(x, v) =
∫
h(z − v)f(x, z) dz is differentiable at v = 0 with

|µ(x, v)− µ(x, 0)− µ′(x, 0)v| ≤ C2|v|1+α, |v| ≤ c.

Note that Assumption C1 is equivalent to Assumption B1 if f(x, z) = g(z). An appropriate
modification of the arguments in MSW now gives the following result in the larger model II.
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Theorem 1. Suppose Assumptions A1, C1, B2 and B3 hold with L + β > 1/(2α∗), and bn

fulfills (4.1). Then

Ĥ =
1
n

n∑
i=1

(
h(εi) + µ′(Xi, 0)εi

)
+ op(n−1/2).

Proof. Let ∆i = r̂i − r(Xi). It suffices to show

n−1/2
n∑
i=1

(
h(εi −∆i)− h(εi)− µ(Xi,∆i) + µ(Xi, 0)

)
= op(1),(4.2)

n−1/2
n∑
i=1

(
µ(Xi,∆i)− µ(Xi, 0)− µ′(Xi, 0)∆i

)
= op(1),(4.3)

n−1/2
n∑
i=1

µ′(Xi, 0)(∆i − εi) = op(1).(4.4)

Note that the conditional variance τ2 is bounded by Assumption A1. Thus the conditions (2.3)
to (2.6) of MSW remain true in model II. The first two statements, (4.2) and (4.3), are then
proved as in Theorem 1 of MSW. It remains to prove (4.4). We prove it for µ′(·, 0) replaced
by an arbitrary function a in L2(M). This means we prove (1.1). As shown in MSW, the
estimator r̂i is a linear smoother r̂i =

∑n
j=1AijYj with weights Aii = 0 and

Aij =
1

n− 1

L∑
λ=0

qiλ
(Xj −Xi)λ

bλ+1
n

K
(Xj −Xi

bn

)
, i 6= j,

where the qiλ are functions of X1, . . . , Xn only, with q∗ = maxλ maxi |qiλ| = Op(1). MSW also
show that

(4.5) max
i=1,...,n

∣∣∣ n∑
j=1

Aijr(Xj)− r(Xi)
∣∣∣ = op(n−1/2).

Thus we can write

n−1/2
n∑
i=1

a(Xi)(∆i − εi) = n−1/2
n∑
i=1

a(Xi)
( n∑
j=1

Aijεj − εi
)

+R,

where

R = n−1/2
n∑
i=1

a(Xi)
( n∑
j=1

Aijr(Xj)− r(Xi)
)

= op(1).

Now write

n−1/2
n∑
i=1

a(Xi)
( n∑
j=1

Aijεj − εi
)

= n−1/2
n∑
j=1

εj

n∑
i=1

(
a(Xi)Aij − a(Xj)

)
.
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Its conditional second moment given X1, . . . , Xn is bounded by CτL(a), where Cτ is the bound
on τ2 and

L(a) =
1
n

n∑
j=1

(
a(Xj)−

∑
i:i6=j

a(Xi)Aij
)2
.

It remains to show that L(a) = op(1). The special case a = 1 was already obtained in MSW.
Note that

(n− 1)|Aij | ≤ q∗Kbn(Xj −Xi),

S = max
j=1,...,n

1
n− 1

∑
i:i6=j

Kbn(Xj −Xi) = Op(1).

This shows that

L(a) ≤ 1
n

n∑
j=1

(
2a2(Xj) + 2q2

∗

( 1
n− 1

∑
i:i6=j
|a(Xi)|Kbn(Xj −Xi)

)2)
≤ 1

n

n∑
j=1

(
2a2(Xj) + 2q2

∗S
1

n− 1

∑
i:i6=j

a(Xi)2Kbn(Xj −Xi)
)

≤ (2 + 2q2
∗S

2)
1
n

n∑
j=1

a2(Xj).

Moreover, for a uniformly continuous a in L2(M),

L(a) ≤ 2L(a) + 2L(a− a) ≤ 2L(a) + (4 + 4q2
∗S

2)
1
n

n∑
j=1

(a(Xj)− a(Xj))2,

L(a) ≤ 1
n

n∑
j=1

(
2a2(Xj)

(
1−

∑
i:i6=j

Aij

)2
+ 2
(∑
i:i6=j

(a(Xi)− a(Xj))Aij
)2)

≤ sup
x∈[0,1]

a2(x)L(1) + 2q2
∗S

2 sup
|x−y|≤bn

(a(x)− a(y))2.

Since L(1) = op(1) as shown in MSW, we obtain L(a) = op(1) and thus

L(a) ≤ (4 + 4q2
∗S

2)
1
n

n∑
j=1

(a(Xj)− a(Xj))2 + op(1).

Since the uniformly continuous functions are dense in L2(M), the result follows.

5. Constructions of estimators for parametric regression

Let (X1, Y1), . . . , (Xn, Yn) be independent observations from the parametric regression model
Y = rϑ(X)+ε of type II, with d-dimensional parameter ϑ. Throughout the section, we suppose
that Assumptions A1 and A2 hold. We want to construct an efficient estimator for E[h(ε)].
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As in Section 4, a natural estimator is the empirical estimator Ĥ = 1
n

∑n
i=1 h(ε̂i), now however

based on residuals ε̂i = Yi − rϑ̂(Xi), where ϑ̂ is an estimator of ϑ.
The estimator Ĥ does not use the information that the errors are conditionally centered,

E(ε | X) = 0. The form of the efficient influence function (2.7) for the parametric type II
model suggests to correct Ĥ as

Ĥ∗ = Ĥ − 1
n

n∑
i=1

ρ̂i
τ̂2
i

ε̂

with estimators τ̂2
i of τ2(Xi) and ρ̂i of ρ(Xi), where ρ(X) = E(εh(ε) | X). In Theorem 2

below we give a stochastic expansion for Ĥ, while Theorem 3 gives one for the correction term.
Together, those results give the expansion

Ĥ∗ =
1
n

n∑
i=1

(
h(εi)−

ρ(Xi)
τ2(Xi)

εi

)
+ ã>ϑ (ϑ̂− ϑ) + op(n−1/2),

where
ãϑ =

∫ (
µ′(x, 0) +

ρ(x)
τ2(x)

)
ṙϑ(x)M(dx).

Under Assumption A3 and the assumptions below,

µ′(x, 0) = −
∫
h(z)L(x, z)f(x, z) dz for M -a.a. x

and thus ãϑ = c̃ϑ. As shown in Section 2, an efficient estimator ϑ̂ of ϑ has influence function
(2.8). For such an estimator, Ĥ∗ has influence function (2.7) and is therefore efficient for
E[h(ε)].

We now analyze Ĥ and the correction term under the assumption that ϑ̂ is n1/2-consistent.
In most cases of interest, h can be written as a difference of two nondecreasing functions. Then
it suffices to consider the case of nondecreasing h. We also need assumptions on the regression
function.

Assumption R. The function t 7→ rϑ+t(x) is continuously differentiable for M -a.a. x with
derivative ṙϑ+t(x), the matrix

Rϑ =
∫
ṙϑṙ
>
ϑ dM

is positive definite, and

sup
‖t‖≤δ

‖ṙϑ+t − ṙϑ‖ → 0 in L2(M) as δ → 0.

This assumption implies L2(M)-differentiability of t 7→ rϑ+t at t = 0. This follows from
the representation

rϑ+t(x)− rϑ(x)− t>ṙϑ(x) = t>
∫ 1

0
(ṙϑ+vt(x)− ṙϑ(x)) dv.
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Thus Assumption R implies Assumption A4. The above representation also yields

(R1) |rϑ+t(x)− rt+s(x)| ≤ ‖t− s‖Aδ(x) for ‖s||, ‖t‖ ≤ δ,

where
Aδ(x) = sup

‖t‖≤δ
‖ṙϑ+t(x)‖.

Furthermore, for every constant C,

(R2) sup
‖t‖≤C

n∑
i=1

(
rϑ+n−1/2t(Xi)− rϑ(Xi)− ṙϑ(Xi)>n−1/2t

)2 = op(1).

Assumption H. Set ∆t = rϑ+t − rϑ. The function h is nondecreasing and satisfies the
following conditions.

(H1) E[h(ε−∆t(X))− h(ε)]2 → 0 as t→ 0.

There are positive constants α, cH , CH such that

(H2) E
[
h(ε−∆t(X) + vAδ(X))− h(ε−∆t(X))

]2 ≤ CH |v|α for |δ|, |v|, ‖t‖ ≤ cH .

The functions v 7→ µ(x, v) =
∫
h(z − v)f(x, z) dz are continuously differentiable for M -a.a. x,

and their derivatives µ′(x, v) satisfy E[(µ′(X, 0))2] <∞ and

(H3) E
[

sup
|v|≤δ

(µ′(X, v)− µ′(X, 0))2
]
→ 0 as δ → 0.

This assumption implies that

|µ(x,w)− µ(x, v)| ≤ |w − v|Bδ(x) for |v|, |w| ≤ δ,

where
Bδ(x) = sup

|w|≤δ
|µ′(x,w)|.

Theorem 2. Suppose Assumptions R and H hold, and ϑ̂ is n1/2-consistent for ϑ. Then

Ĥ =
1
n

n∑
i=1

h(εi) +
∫
µ′(x, 0)ṙϑ(x)>M(dx)(ϑ̂− ϑ) + op(n−1/2).

Proof. In view of the law of large numbers, it suffices to show

Ĥ =
1
n

n∑
i=1

(
h(εi) + µ′(Xi, 0)ṙϑ(Xi)>(ϑ̂− ϑ)

)
+ op(n−1/2).
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With ∆nt = ∆n−1/2t = rϑ+n−1/2t − rϑ let

Hnt = n−1/2
n∑
i=1

(
h(εi −∆nt(Xi))− h(εi)− µ(Xi,∆nt(Xi)) + µ(Xi, 0)

)
.

We first show that, for every constant C,

(5.1) sup
‖t‖≤C

|Hnt| = op(1).

For this, fix C and an integer D. Let tj = jC/D, j = (j1, . . . , jd) ∈ J = {−D, . . . ,D}d. We
have

sup
‖t‖≤C

|Hnt| ≤ max
j∈J
|Hntj |+ max

j∈J
sup

‖t−tj‖≤d1/2C/D

|Hnt −Hntj |.

For η > 0 we have by Assumption (H1),

P
(

max
j∈J
|Hntj | ≥ η

)
≤

∑
j∈J

P (|Hntj | ≥ η) ≤ η−2
∑
j∈J

E[H2
ntj ](5.2)

≤ η−2
∑
j∈J

E[(h(ε−∆ntj (X))− h(ε))2] → 0.

For s, t ∈ [−C,C]d with ‖t− s‖ ≤ d1/2C/D we have |Hnt −Hns| ≤ Knst +Knst with

Knst =
1
n

n∑
i=1

n1/2
∣∣∣h(εi −∆nt(Xi))− h(εi −∆ns(Xi))

∣∣∣,
Knst =

1
n

n∑
i=1

n1/2
∣∣∣µ(Xi,∆nt(Xi))− µ(Xi,∆ns(Xi))

∣∣∣.
We obtain from Assumption (R1) with δ = δn = n−1/2d1/2C that

Knst ≤ d1/2C

D
Un, where Un =

1
n

n∑
i=1

Bδn(Xi)Aδn(Xi),

and

Knst ≤
1
n

n∑
i=1

n1/2
∣∣∣h(εi −∆ns(Xi) +

δn
D
Aδn(Xi)

)
− h
(
εi −∆ns(Xi)−

δn
D
Aδn(Xi)

)∣∣∣
≤ 1

n

n∑
i=1

n1/2
{
h
(
εi −∆ns(Xi) +

δn
D
Aδn(Xi)

)
− µ

(
Xi,∆ns(Xi) +

δn
D
Aδn(Xi)

)}
− 1
n

n∑
i=1

n1/2
{
h
(
εi −∆ns(Xi)−

δn
D
Aδn(Xi)

)
+ µ

(
Xi,∆ns(Xi)−

δn
D
Aδn(Xi)

)}
+ 2d1/2C

D
Un.
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Hence |Hnt−Hns| ≤ Tns + 3d1/2CUn/D, where Tns is the sum of the two centered averages on
the right-hand side of the last display. By Assumption (H2) we have E[T 2

ns] ≤ 4CHδn/D and
thus maxj∈J Tntj = op(1). Since Un ≤ K + op(1) for some K,

(5.3) max
j∈J

sup
‖t−tj‖≤d1/2C/D

|Hnt −Hntj | = op(1) + d1/2C

D
(K + op(1)).

Since D is arbitrary, the desired (5.1) now follows from (5.2) and (5.3).
Next we show that

(5.4) sup
‖t‖≤C

∣∣∣n−1/2
n∑
i=1

(
µ(Xi,∆nt(Xi))− µ(Xi, 0)− µ′(Xi, 0)ṙϑ(Xi)>n−1/2t

)∣∣∣ = op(1).

Because of Assumption (R2), E[(µ′(X, 0))2] <∞, and the Cauchy–Schwarz inequality,

sup
‖t‖≤C

∣∣∣n−1/2
n∑
i=1

µ′(Xi, 0)
(
∆nt(Xi)− ṙϑ(Xi)>n−1/2t

)∣∣∣ = op(1).

Thus it suffices to show

(5.5) sup
‖t‖≤C

∣∣∣n−1/2
n∑
i=1

∫ 1

0

(
µ′(Xi, v∆nt(Xi))− µ′(Xi, 0)

)
∆nt(Xi) dv

∣∣∣ = op(1).

In view of Assumption (R2) and E[‖ṙϑ(X)‖2] <∞,

∆n = max
i=1,...,n

sup
‖t‖≤C

|∆nt(Xi)| = Op

(
max
i=1,...,n

‖ṙϑ(Xi)‖n−1/2
)

= op(1).

Thus, by the Cauchy–Schwarz inequality, the square of the left-hand side of (5.5) is bounded
by

sup
‖t‖≤C

n∑
i=1

∆2
nt(Xi)

1
n

n∑
i=1

∫ 1

0

(
µ′(Xi, v∆nt(Xi))− µ′(Xi, 0)

)2
dv

≤ sup
‖t‖≤C

n∑
i=1

∆2
nt(Xi)

1
n

n∑
i=1

sup
|s|≤∆n

(µ′(Xi, s)− µ′(Xi, 0))2,

which is of order op(1) in view of Assumptions (R2) and (H3).
The desired result now follows from (5.1), (5.4), and the n1/2-consistency of ϑ̂.

We now address the correction term to Ĥ. We require Assumption B2 on the covariate
distribution. We need estimators τ̂2

i of τ2(Xi) and ρ̂i of ρ(Xi). To keep the argument simple,
we use sample splitting and Le Cam’s (1956) discretization of ϑ̂. Our estimators are kernel
estimators based on half the sample. To avoid additional integrability assumptions, we truncate
ε2 and εh(ε) with the aid of the function ψcn(y) = (−cn) ∨ x ∧ cn, where cn increases with n
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at a rate that will be specified later. Let ϑ̂∗ be a discretized version of ϑ̂ with values on a grid
of mesh size n−1/2. Define ε̂∗j = Yj − rϑ̂∗(Xj). Set q = [n/2]. For i = 1, . . . , q define

τ̂2
i =

∑n
j=q+1 ψcn(ε̂∗2j )Kbn(Xi −Xj)∑n

j=q+1Kbn(Xi −Xj)
, ρ̂i =

∑n
j=q+1 ψcn(ε̂∗jh(ε̂∗j ))Kbn(Xi −Xj)∑n

j=q+1Kbn(Xi −Xj)
.

Here again Kbn(x) = K(x/bn)/bn for a symmetric and bounded density K with support [−1, 1],
and some bandwidth bn. For i = q+1, . . . , n, define τ̂2

i and ρ̂i correspondingly, with summation
extending from 1 to q.

Theorem 3. Suppose Assumptions A1, A2, R, H and B1 hold, and ϑ̂ is n1/2-consistent for
ϑ. Suppose that bn → 0, cn →∞, and nbn/(c2

n log n)→∞. Then

(5.6)
1
n

n∑
i=1

ρ̂i
τ̂2
i

ε̂i =
1
n

n∑
i=1

ρ(Xi)
τ2(Xi)

εi −
∫

ρ

τ2
ṙ>ϑ dM · (ϑ̂− ϑ) + op(n−1/2).

Proof. By Le Cam’s discretization argument, since ϑ̂∗ is discrete and n1/2-consistent, we can
and will assume that it is an arbitrary deterministic sequence ϑ̂∗ = ϑ+n−1/2tn with tn bounded.
To simplify notation, we write γi = ρ(Xi)/τ2(Xi) and γ̂i = ρ̂i/τ̂

2
i . We begin by showing that

(5.7)
1
n

n∑
i=1

(γ̂i − γi)2 = op(1)

implies the desired (5.6). The error term in (5.6) is Rn1 +Rn2 − (Sn1 + Sn2)(ϑ̂− ϑ)− Tn with

Rn1 = 1
n

∑q
i=1(γ̂i − γi)εi, Rn2 = 1

n

∑n
i=q+1(γ̂i − γi)εi,

Sn1 = 1
n

∑n
i=1

(
γiṙϑ(Xi)− E[γiṙϑ(Xi)]

)
, Sn2 = 1

n

∑n
i=1(γ̂i − γi)ṙϑ(Xi),

Tn = 1
n

∑n
i=1 γ̂i

(
rϑ̂∗(Xi)− rϑ(Xi)− ṙϑ(Xi)>(ϑ̂− ϑ)

)
.

We have Sn1 = op(1) by the law of large numbers. It follows from (5.7) and the Cauchy–
Schwarz inequality that Sn2 = op(1). By (5.7), Assumption (R2) and the Cauchy–Schwarz
inequality we obtain Tn = op(n−1/2). Since ϑ̂∗ is taken to be deterministic, and τ2 is bounded,
we get from (5.7),

E(nR2
n1 | X1, . . . , Xn, Yp+1, . . . , Yn) =

1
n

q∑
i=1

(γ̂i − γi)2τ2(Xi) = op(1)

and hence Rn1 = op(n−1/2). Similarly, Rn2 = op(n−1/2).
Let us now show (5.7). We begin by showing

(5.8)
1
n

q∑
i=1

(γ̂i − γi)2 = op(1).

21



Since ‖ṙϑ‖ is in L2(M), it follows from Assumption (R2) that maxj ∆ntn(Xj) → 0 in proba-
bility. Thus there is a sequence of functions ∆n with |∆n| ≤ |∆ntn | and

(5.9) sup
0≤x≤1

|∆n(x)| → 0

such that P
(
∆ntn(Xj) 6= ∆n(Xj) for some j = q + 1, . . . , n

)
→ 0. In view of the latter, it

suffices to verify (5.8) with γ̂i replaced by γ̃i = Φn1(Xi)/Φn2(Xi), where

Φnk(x) =
1

n− q

n∑
j=q+1

ϕnk(εj −∆n(Xj))Kbn(x−Xj)

with ϕn1(z) = ψcn(zh(z)) and ϕn2(z) = ψcn(z2). Both Φn1(x) and Φn2(x) are special cases of
the statistic

Φn(x) =
1

n− q

n∑
j=q+1

ϕn(εj −∆n(Xj))Kbn(x−Xj),

where ϕn is a sequence of bounded measurable functions with ‖ϕn‖∞ bounded away from zero.
The expected value of Φn(x) is

Φn(x) = E[Φn(x)] =
∫
ϕn(u)Kbn(x− u)M(du)

with ϕn(u) =
∫
ϕn(z −∆n(u))f(u, z) dz. We show now that

(5.10) max
i=1,...,q

|Φn(Xi)− Φn(Xi)| = op(1) if
nbn

‖ϕn‖2∞ log n
→∞.

Indeed, we have for 0 < η < 1,

P
(

max
i=1,...,q

|Φn(Xi)− Φn(Xi)| > η
)
≤

q∑
i=1

E
[
P
(
|Φn(Xi)− Φn(Xi)| > η | Xi

)]
≤ q sup

0≤x≤1
P
(
|Φn(x)− Φn(x)| > η

)
.

The summands of Φn(x) − Φn(x) are independent and bounded by en = 2‖ϕn‖∞‖K‖∞/bn,
have common mean zero, and common variance bounded by dn = β‖ϕn‖2∞

∫
K2(u) du/bn,

where β is a bound for the density of M . Thus we get from the Bernstein inequality, see e.g.
Hoeffding (1963), that

q sup
0≤x≤1

P
(
|Φn(x)− Φn(x)| > η

)
≤ 2q exp

(
− (n− q)η2

2dn + (2/3)enη

)
≤ n exp(−η2an log n)

for some sequence an → ∞. Hence the right-hand side tends to zero and gives the desired
(5.10).
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Since ‖ϕnk‖∞ ≤ cn for k = 1, 2, we get as special cases of (5.10) that

max
i=1,...,q

|Φnk(Xi)− Φnk(Xi)| = op(1), k = 1, 2.

Thus we obtain

(5.11)
1
n

q∑
j=1

(Φn1(Xi)
Φn2(Xi)

− Φn1(Xi)
Φn2(Xi)

)2
= op(1)

if Φn2 is uniformly bounded away from zero. We now show the latter. We have

inf
0≤u≤1

ϕn2(u)mn(x) ≤ Φn2(x) ≤ sup
0≤u≤1

ϕn2(u)mn(x)

with mn(x) =
∫
Kbn(x − u)M(du). By Assumption B2, M has a density with values in a

compact subinterval [2α, β] of (0,∞), and thus mn(x) takes values in [α, β] for x ∈ [0, 1]. Since
τ2(x) + ∆2

n(x) =
∫

(z −∆n(x))2f(x, z) dz, we have

∣∣ϕn2(x)− τ2(x)−∆2
n(x)

∣∣ ≤ ∫
|z−∆n(x)|≥c1/2n

(z −∆n(x))2f(x, z) dz.

We get from Assumption A2 and (5.9) that ‖ϕn2 − τ2‖∞ → 0. Thus, in view of Assumption
A1, for sufficiently large n we have 0 < c∗ ≤ ‖ϕn2‖ ≤ c∗∗ < ∞ for some c∗, c∗∗ and hence
0 < αc∗ ≤ c∗mn ≤ Φn2 ≤ c∗∗mn ≤ c∗∗β < ∞. This completes the proof of (5.11). Thus (5.8)
follows if we show

(5.12)
1
n

q∑
j=1

(ρn(Xi)
τ2
n(Xi)

− ρ(Xi)
τ2(Xi)

)2
= op(1),

where ρn = Φn1/mn and τ2
n = Φn2/mn. We have∣∣∣ρn
τ2
n

− ρ

τ2

∣∣∣ ≤ 1
c∗

(
|ρn − ρ|+

|ρ|
τ2
|τ2
n − τ2|

)
.

An application of the Cauchy–Schwarz inequality gives

ρ2(X) =
(
E(εh(ε) | X)

)2 ≤ τ2(X)E(h2(ε) | X).

Hence ρ/τ2 is in L2(M). Since |τ2
n − τ2| ≤ c∗∗ +Cτ , we see from the above that (5.12) follows

if we show that ρn converges to ρ and τ2
n to τ2 in L2(M).

Let us now show that these are implied by the convergence of ϕn1 to ρ and of ϕn2 to τ2

in L2(M). This follows from the following more general result. If ϕn converges to some ϕ in
L2(M), then so does Φn/mn. Indeed, using α ≤ mn ≤ β and the Cauchy–Schwarz inequality,
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we obtain ∫ (Φn

mn
− ϕ

)2
dM =

∫ (∫ (ϕn(u)− ϕ(x))Kbn(x− u)M(du)
mn(x)

)2
M(dx)

≤ 1
α

∫
(ϕn(u)− ϕ(x))2Kbn(x− u)M(du)M(dx)

≤ β2

α

∫∫
(ϕn(u)− ϕ(x))2Kbn(x− u) dudx

≤ β2

α

∫∫
(ϕn(u)− ϕ(u+ vbn))2K(v) dudv,

where we interpret ϕn and ϕ as zero off the interval [0, 1]. The right-hand side converges to
zero because ϕn converges to ϕ in L2, and since the map w 7→

∫
(ϕ(u + w) − ϕ(u))2 du is

bounded and uniformly continuous; see e.g. Rudin (1974, Theorem 9.5).
Since we already know that ϕn2 converges to τ2 uniformly, and hence in L2(M), we are left

to show that ϕn1 converges to ρ in L2(M). Let ρn(x) =
∫

(z −∆n(x))h(z −∆n(x))f(x, z) dz.
Since {z : zh(z) > cn} ⊂ {z : |z| > c∗n} for some c∗n →∞, we obtain from an application of the
Cauchy–Schwarz inequality that

|ϕn1(x)− ρn(x)|2 ≤
∫
|z−∆n(x)|>c∗n

(z −∆n(x))2f(x, z) dz
∫
|h(z −∆n(x))|2f(x, z) dz.

In view of (5.9) and Assumptions A2 and (H1), it follows that ϕn1 − ρn converges to zero in
L2(M). By an application of the Cauchy–Schwarz inequality,

|ρn(x)−ρ(x)|2 ≤ 2τ2(x)
∫
|h(z−∆n(x)−h(z)|2f(x, z) dz+2∆2

n(x)
∫
|h(z−∆n(x)|2f(x, z) dz.

Thus (5.9) and Assumptions A1 and (H1) imply that ρn− ρ converges to zero in L2(M). This
establishes that ϕn1 converges to ρ in L2(M) and completes the proof of (5.8). Similarly one
verifies 1

n

∑n
i=q+1(γ̂i − γi)2 = op(1). This completes the proof of (5.7).
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