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Abstract

A concept of asymptotically efficient estimation is presented when a mis-
specified parametic time series model is fitted to a stationary process. Ef-
ficiency of several minimum distance estimates is proved and the behavior
of the Gaussian maximum likelihood estimate is studied. Furthermore, the
behavior of estimates that minimize the h-step prediction error is discussed
briefly. The paper answers to some extent the question what happens when
a misspecified model is fitted to time series data and one acts as if the model

were true.

1 Introduction

Let Xq,..., X, be a sample from a real valued stationary process X;,t € 7, with
mean 0, spectral density f(A),A € [—m, 7], and covariance function ¢(u),u € 7.
Suppose for example that we want to make a one step ahead prediction, and that
we want to use for convenience an AR(p)-model (autoregressive model of order p -

for this model the predictor has a simple form), i.e. we use the model
Xe+ar Xeq + o4+ a, Xy = 64,

where &; are iid with mean 0 and variance o2. The best linear predictor of X,,; in

an AR(p)- model is

~

P
Xowr = =D a;Xnp1— (1.1)
=1

(c.f. Brockwell and Davis, 1987, p.170, Example 5.3.1). The mean square prediction

error under the true distribution of the process (ag = 1,0 = (a4, ...,a,)) is

PEO,) = B %)’ = 3 agmetk —3) = [ 100 | A3,

s
3,k=0 o
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where Ag(X) = Y7_ga;exp(—iAj). Here PE(H, f) is a kind of distance between
the true process and an AR(p)-process. Suppose now that we wish to estimate the
parameter 6, which leads to the best mean square prediction error (note that the
process is misspecified and hence there exists no ‘true’ value 6), i.e. we want to

estimate

0o = argmin PFE(0, f).
0

A natural way to estimate ) is to replace the covariance function ¢(u) or the spectral
density f(A) by a nonparametric estimate and to minimize the resulting empirical
function. For example, we may take as an estimate of f(\) the periodogram

2

I.(X) = .

 92mn

Z Xiexp(—1At)

=1

and minimize

PE,1,) = /_” 1,(\) [ As(A)]? dA.

This leads to the Yule-Walker estimate én of fy. (Estimates with better small sample
properties such as maximum likelihood estimates and tapered Yule-Walker estimates
will be discussed in Section 4). The innovation variance may be ‘estimated’ by
6 = PE(én, I,); the corresponding theoretical value is o3 = PFE(fq, f). We can
proceed in a similar way if we wish to estimate those parameters of an AR(p)-model
that lead to the best h-step ahead prediction error (cp. section 4).

An equivalent approach to the minimization of the one step ahead prediction
error is to look for the model which is closest in the sense of the (asymptotic)
Kullback-Leibler information divergence. For a Gaussian process and a (Gaussian

model this divergence has the form
1T g A A
7/ {1og~f”( ) | ] )]}d)\ (1.2)
4m J FO) fo(X)

where fz(A) is the spectral density of the model (cf. Pinsker, 1963; Parzen, 1982,
1992). Thus, the best fit is achieved by

0o = argmin D(0, f) (1.3)
o

where now

0.5 = - [ fow s+ 200 (1.4)



It may be estimated by

A

0, = argmin D(0,1,).
0

A

0, is called Whittle estimate (Whittle, 1952). For AR(p)-models we have fp(A) =

% Py Y exp(—i)\.j)‘iz (we now set 8 = (ai,...,a,,0%)). Since Kolmogorov’s for-
mula gives

1T 1 o?

— 1 A)d) = —log —

am |, (0B Jo)AA = G leg o

(cf. Brockwell and Davis, 1987, p. 184, Theorem 5.8.1), the values #, and 0, are
exactly the same as the values obtained by minimization of the one step ahead
prediction error. In addition, o2 and 0:2 are the same as the values obtained by
minimization of the one step ahead prediciton error. o2 and (;Z are now also obtained
as solutions of a minimization problem.

Since D(8, 1,,) converges uniformly to D(#, f) (see (3.1)) we immediately get that
én is a consistent estimate of fy. In this paper we prove that an is also efficient if
the true underlying process is Gaussian (Theorem 3.2). The same holds for the
Gaussian maximum likelihood estimate (Theorem 3.3). This is rather surprising
since the MLE is in general not an efficient estimate for the ‘best’ approximating
parameter if the model is misspecified (where ‘best’ is meant in the sense of the
Kullback-Leibler distance). As an example consider the situation where the true
distribution of the process is AR(p) with &; following an unknown distribution.

Our efficiency result is proved by considering the best fit §4 as a functional 85 =
T(f) of the unknown spectral density f and then applying a nonparametric version
of the convolution theorem of Hajek (1970). Other functionals and estimates are
treated by Hasminskii and Thragimov (1986) and Ginovyan (1988). Their efficiency
concept is based on a local asymptotic minimax theorem rather than a convolution
theorem.

Note that in our setting the true spectral density lies outside the parametric
model. Furthermore, it does not approach the parametric model asymptotically.
Hence our setting is not covered by the general results of Millar (1984) on optimality
of minimum distance estimates. Efficiency in our sense is considered by Beran (1977)

for i.i.d. observations and the Hellinger distance, and by Greenwood and Wefelmeyer

(1993) for Markov chains and the Kullback-Leibler distance.



More generally, we consider in this paper distance functions of the form

DO, 1) = [ K0, 5(0),3)dx

o =T

We set
T(f) = argmin D0, /)
9

and make the following assumption.

(1.1) Assumption O C R* is compact and K : © x (0,00) x [~7,7] — R is three
times differentiable in (0, ) with continuous derivatives in (6,x,)). For the true

spectral density [ we assume that T(f) exists, is unique and lies in the interior of

0.

One would usually consider functions with T'(f;) = 6. However, we do not need

this assumption. Taniguchi (1987) considers distance functions of the special type

K0, f(A),A) = K (J;f((j))), where fg(A) is the spectral density of the model. An

important distance function which is not of this form in the h-step prediction error

(cf. section 4). If we take K (‘f;((j))) as the distance function, then Assumption 1.1

is fulfilled if K'(x) is three times continuously differentiable with unique minimum

at x = 1 and the model spectral densities fy fulfill

(1.2) Assumption @ C R is compact and the model spectral density fa()) is
three times continuously differentiable with respect to 6 with continuous (in § and

A) derivatives.

Note that we do not assume f3, # fg, for ; # 6,. Instead we assume that
T(f) exists uniquely. This is of importance when only part of the parameters are

estimated (as is the case for the prediciton error where o?

is not estimated by
minimizing a distance function).

The assumptions on the observed process are

(1.3) Assumption X;,t € 7, is a Gaussian stationary process with EX; =0 and
spectral density f € Lip, (k is specified below).

As estimates of T'(f) we consider in this paper T'(1,) and T(.fn), where

£ = ‘/W I() + o)W, (a)da (1.5)

— T

is a kernel estimate of f. For the kernel we need the following.
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(1.4) Assumption W,(a) = mW (ma), where n'/* < m < n'? and W is bounded
and non-negative with W(x) = 0 for |z| > ¢ and [° W(z)dx = 1. The Fourier

transform Vi(?") is assumed to be continuous with [~ |ﬁ(7")|(]?" < o0

The above assumptions are discussed after Lemma A.7.

The use of ,]En instead of [, is important for distance functions that are not
linear in f, since in this case D(0,1,) will usually not converge to D(6, f), with
the consequence that T'(1,) is not a consistent estimate of T'(f). Taniguchi (1987)
has proved asymptotic normality of T(.fn) for general stationary time series, and
efficiency when the model is correctly specified. Asymptotic normality of T'(1,)
for the Whittle distance has been proved by several authors. We mention Whittle
(1952), Walker (1964), Dzhaparidze (1971), Hannan (1973), Hosoya and Taniguchi
(1982), Hosoya (1989).

We also study the efficiency of the exact Gaussian maximum likelihood estimate
under model misspecification. The asymptotic distribution of this estimate was
derived under model misspecification by Ogata (1980).

In particular, we prove that T(,fn) is an efficient estimate of T'(f) even if the
model is misspecified. T(7,) turns out to be efficient if the distance function is
linear in f while the MLE is only efficient if the Kullback-Leibler divergence is used
as a distance function.

The asymptotic variance bound is derived in Section 2. FEfficiency of several
estimates is proved in Section 3. The results are discussed together with some
examples in Section 4. In particular, we consider the h-step prediction error in some

detail. Some technical lemmas are put into an appendix.

2 The asymptotic variance bound

In this section we derive a lower bound for the asymptotic variance of ‘regular’
estimates of the functional T'(f) introduced in Section 1. Let Xy, ..., X,, be a sample
form a real-valued stationary (Gaussian process with mean 0 and unknown spectral
density f. The distribution of the process is determined by the spectral density.
Hence we may consider f as an infinite-dimensional ‘parameter’ of the distribution.
We want to prove that certain estimates of T'(f) are efficient.

In a first step, we prove that the true model is locally asymptotically normal,



[LAN. If the spectral density were to depend on a finite-dimensional parameter 8,
we would consider the likelihood ratio corresponding to # and a nearby parameter
0+ \/Lﬁh7 with h an arbitrary vector, the so-called local parameter. Local asymptotic
normality in this case was first proved by Davies (1973). In our case, however,
the spectral density is completely unknown. Hence we fix a spectral density f
and consider a nearby spectral density of the form f(}) (] + ﬁh()\)), with A an
arbitrary (bounded) function. The function A now plays the role of local parameter.

Let 15 denote the space of functions on (—m, 7) which are square-integrable with

respect to Lebesgue measure. Introduce the inner product,

k) = —— [T (RN

mJ—m
and the norm ||h]|> = (h,h) on L. For a bounded function A(X) set

fan(A) = f(A) (1 + %hm) .

Furthermore, let

Salg) = { [ g3 exp (M — )}

-7 rs=1,...n

be the Toeplitz matrix of g and X, = (X, ..., X,,)". If g is a vector function, ¥,(g)

is the corresponding vector of matrices. For example, by ||2,(V f3)|| we mean

L o\ 1/2
(Sl

=1
where || A is the spectral norm of A (cp. the appendix).
The following result is due to Dzhaparidze (1986).

9
00;

En( fe)

(2.1) Theorem et f(X) be positive, bounded and bounded away from 0. Let P,y
be the distribution of the observations Xy,..., X, of a Gaussian stationary process

with mean 0 and spectral density fo.n = f (] + ﬁh), where h(X) is bounded. Then

we have under the law P,
APy 1 P

] _
& ap

where

20 =y (X058 [



(Note that 7,(h) can be written in the form (h,7)).) Furthermore,

Za(h) 5 N(0, (h,h)),

i.e. the sequence P,, is LAN.

PROOF. See Dzhaparidze (1986), p.64, Section 1.3, Theorem 4(3) and p. 155,
Section II, Theorem A1.2. O

The following result is also due to Dzhaparidze (1986), p.64, Section 1.3, Theorem
4(4). We prove it under slightly different conditions.

(2.2) Theorem Suppose h is bounded and f € Lip, with k > 1/2. Then

Vo L) — f(A) P
o Th(/\)d/\ — Z.(h) 5o

PROOF. Lemma A.7. (iv) implies

Vi EL(A) — f(A)
e By 51 h(N\)dX

=o(1).

Since [T I,(M)g(A\)d\x = -2 X!%,(g)X, the variance of the above expression is

2mn—

| 71 h -1 h -
s (7)== ()

If X is Gaussian with covariance matrix X, then var(X'AX) = tr(LAXA)+ir(X AL A").
Therefore, this variance is with ¥y = 3, (f) equal to

R R R o
Cbr {gn(ir)zlfzn(élzf)} +tr {2(4};)2(4/;)”

which tends to zero with LLemma A.3.

equal to

We now derive a lower bound for the asymptotic variance of ‘regular’ estimates of
T(f). Local asymptotic normality, see Theorem 2.1, induces the norm (h, h) on the

local parameter space. The norm determines how difficult it is, asymptotically, to



distinguish between f and f (] + ﬁh) on the basis of a sample Xy, ..., X,,. Consider
now the problem of estimating the functional T(f). The convolution theorem says
that a variance bound for ‘regular’ estimates of T'(f) is given by the squared length
of the gradient of the functional in terms of the inner product (h, k). The gradient
is given in Corollary 2.4 below.

We need the following Taylor expansion which will also be used in section 3. Let
fn be a spectral density which converges to f. Let us assume for the moment that
T(f,) is also in the interior of ©. Let VK denote the derivative of K(0,z,)) with
respect to 6, and K’ the derivative with respect to z. We obtain with K(8,z) =
K, z,-)

0 = VO(T(£,).F)
VD). S +{ [ RN | () = T()
H{ [V REW, D - DT - T)
50— [ VRGP T e

o =T

where |]E(/\) —fN)] < 1faX) = fFN)| and |t —=T(f)| < |T(fn) — T(f)|- Furthermore,

VD(T(f), fn) = VD(T(f),f)+ [z YETU). D )
by [YRIT D 2.2)

Note that VD(T(f), f) = 0. As a first consequence we obtain the following result.
(A similar result was proved by Taniguchi, 1987, Theorem 1(b) and Theorem 2 in
the special case K (0, f(A),A) = K (%))

(2.3) Theorem Suppose that f, is a sequence with ||f, — f|| = 0 and 0 < C; <
oy f < Cy. Then we have

(i) T(f2) = T(f).
(ii) If ]
Hy = [ R(T(), f(3), )

is a nonsingular matriz, then we have with

9¢(X) = —An H "V K'(T(f), f(A), A f(A) -



100700 = 4 [ oqs, ),

PROOF. (i) is exactly analogous to Theorem 1(b) in Taniguchi (1987).
(i1). Since T(f.) = T(f), the value T(f,) lies in the interior of © for n large enough.
Furthermore, f,, and f are bounded from above and below. Therefore, all derivatives

of K in the above Taylor expansion are bounded and we obtain

T(fa) =T+ 00T ()Illfnffll)JrO(lT(fn) T(HI?)

(f)
L Aﬂ”uwwmm%

which implies with part (i) the result. O

As a consequence we obtain

(2.4) Corollary Let h be bounded and f,, = f (1 + ﬁh). Then

1 T

VA(T(far) = T(N) = 1 [ g/(BAA,

The function g¢ is called the gradient of T at f. We are now in a position to
formulate our efficiency concept for estimates of T'(f). An estimate T, is regular for
T at f with limit L if its distribution converges continuously to . in the following

sense:
V(T — T (for)) 2 T, for h bounded.

The convolution theorem says that the limit I, is the convolution of some dis-
tribution M with a normal distribution the variance of which equals the squared
length of the gradient:

=M« N(0,(gs,95))- (2.3)

By a well-known result of Anderson (1955), I is less concentrated in symmetric

intervals than N (0, (gs, gs)). This justifies calling T, efficient for 7" at f if its limit

distribution is N(0, (gs, gs)). We say briefly that (g;, g¢) is a variance bound for reg-
ular estimates. Note, however, that the optimality result is much stronger: it holds
for all (bounded) symmetric bowl-shaped loss functions, not just for the (truncated)

quadratic loss function.



We also have the following useful characterization: An estimate 7T, is regular and

efficient for T" at f if and only if it admits the following stochastic approximation:

V(Tw = T(f)) ~ Zulgs) 0. (2.4)

A convenient reference for the above version of the convolution theorem, and
the characterization, is Greenwood and Wefelmeyer (1990). There it is also pointed
out that the convolution theorem implies its own multivariate version. Specifically,
let T = (Th,...,Ty)" be a finite-dimensional functional of the spectral density. If
g; is the gradient of T;, then g; = (g1,...,qx) is called the gradient of 7. The
convolution theorem (2.3) is true with a k-dimensional normal distribution with

covariance matrix (gy, g5). The characterization (2.4) is true with vectors 7" and g;.

3 Efficient estimates

In this section we study several estimates of T'(f). We start with T(,fn) where f, is
a kernel estimate as in (1.4). As seen in Section 2, proving efficiency means proving

the stochastic approximation (2.4).

(3.1) Theorem Suppose Assumptions 1.1, 1.3 (with & = 1) and 1.4 hold and H;

is nonsingular. Then we have

A

Va(T(fa) = T(f) — Za(gs) 50,

N

i.e. T(fn) is an efficient estimate of T(f).

Proofr. We start by proving consistency. We cannot apply Theorem 2.3 directly,
since fn(/\) is not necessarily bounded. However, if sup, |fw(/\) — fN)] < m/2 we
know that fn is bounded. We therefore obtain from Theorem 2.3 (1) that there
exists for all e > 0 a § > 0 with

PUT(fa) = T(D] > &) < Pllfa = 11 > 8) 4+ P(sup |Fa(3) = FN)] = m/2)

which implies consistency with Lemma A.7. Since P(sup, |]Eﬂ(/\)—f()\)| >m/2) =0

we obtain as in the proof of Theorem 2.3

() — T =V [

A

= LTy A O )

10



which by using Lemma A.7 (i) and (iii) is equal to

Vi [y BO) IO

4 ) s oy Ared)

(cp. also Taniguchi, 1987, proof of Theorem 2). Theorem 2.2 implies that this is
Zu(gs) + 0p(1). [

We now study the estimate T'(7,) with distance functions that are linear in f(A).
An example is the Kullback-Leibler distance as in (1.4).

(3.2) Theorem Suppose Assumptions 1.1 and 1.3 (with & > 1/2) hold, where
K(0,2,)) = ag(X) + bg(N)z. If Hy is nonsingular then

V(T (1)~ T(f)) — Zalgs) 20

i.e. T(I,) is an efficient estimate of T'(f). Here

Hy = .L (V2ar() + Vbr(nf)

and

.C]f = *47T H;1Vb7“(f)f

PROOF. Lemma A.7(v) implies that
wup D6, 1) D6, 50 (31)
o

Since

D(T(I.), T.) < D(T(f), I.)
and
D(T(f), f) < D(T(1.), f),

it follows that D(T(1,), f) — D(T(f), f) in probability and therefore also
T(I,) — T(f) in probability. A modification of the Taylor expansion (2.1) yields

with [T(f) — T())| < T(1.) — T())]:

vno[r In(A) = f(A)
E. . .Qf()‘) f(/\)

= 1 [V RED D+ [ g D VAT () - T)

dX

11



Since

n

A /j; .Q_f(/\>Md/\ = Zn(gs) + op(1) (Theorem 2.2),

f)
/7r VQK(TA(._]E)L]C) L H; (smoothness of K),

and

/j; Vi (o~ /)50 (Lemma A7(v))

the result is proved. O

In the next theorem we consider the Kullback-Teibler distance D(8, f) as in (1.3)
(i.e. ag(A) = ;- log fo(X) and bg(A) = ;—ngq with bg(A) as in Theorem 3.2). We then
have

Hf - 4]7r /,7; {(f - fé’o)vz.fﬁ;1 + (V]Og ft‘/’o)(v}()g ff%),} dA.

As a consequence of Theorem 2.1 and Theorem 3.2 we now obtain for the Whittle

estimate én =T(1I,)

Vb, —8) B w (0, L;Hf‘ {/ .fQ(V.f%‘)(Vf%‘)'dA} Hf‘) :

a result already proved by Taniguchi (1979). However, we now know that this limit
variance is the smallest which can be achieved under model misspecification.
We now study the behavior of the Gaussian maximum likelihood estimate 9~n

of the fitted model, i.e.

6, = argmin L, (6),
where
1 S
L,(0) = ——log likelihood
n

1 1 1, o
= 5 log(27r) + 5 log |En(.ff?)| + 7Xn2n(f9) 1An'
2 2n 2

Below we prove that 6, is also an asymptotically efficient estimate of . Tt is
obvious that 6, cannot be efficient for any point different from 6,. Thus, if we choose
a distance function different from the Kullback-ILeibler divergence, the maximum
likelihood estimate will usually not be consistent. In particular, this holds if §; is

the parameter that gives the best h-step prediction error for A > 2 (cp. Section 4).

12



(3.3) Theorem Suppose 8 is the unique solution of (1.3) and lies in the interior of
0. Suppose further that Assumption 1.2 and 1.3 (with & > 1/2) hold and in addition
foy € Lips, s > 1/2. If Hf is nonsingular, then we have with gy = fH;‘fo;O‘

Vil — 00) — Za(gr) 50,

i.e. the Gaussian mazimum likelithood estimate is efficient for the point 8y which

mainimizes the asymptotic Kullback-Leibler information divergence.

Proofr. Unfortunately, it is much more difficult to prove the analogous result to
(3.1) with £,(0) instead of D(0,1,). Therefore, we follow the method of proof of
Walker (1964), Section 2 to prove consistency of f,. We start by proving that for
all ; € O, 0, # f, there exists a constant ¢(6;) > 0 with

lim E{La(6:) — La(60)} > ().

n—00

Let X = X,(f5), X5 = X.(f) and Xg¢ = X,,(Vfy,). We obtain

1 1
EA{L(B) — La(Bo)} =, log [, 5[+, tr {255 — 2}

which tends with Szego’s identity (cf. Grenander and Szego, 1958, p.64, Section 5.2)

and LLemma A.5 to

D0y, f) — D(o, f) = e(61) > 0
due to the uniqueness of 5. Furthermore,
1 . 102
var(La(01) — £a(00)) = ot { [550%" — 53]}
tends to zero with Lemma A.5 which implies
lim P(L,.(61) — L,.(0o) < ¢(61)/2) = 0.

n—00

Using Lemma A.1 we obtain with |6 — 6;] < [0, — 6]

Ln(02) — La(61)

1 b a A o—1 0 —1 vt

Lemma A.1 and Lemma A.2 now imply with Us(6,) := {0, € © : |6, — 6,] < 6}

1
sup  |La(02) — L.(0))] < I\"(S{] + X’an} .
n

A E[J5(91)

13



Since F%X;Xﬂ = ¢(0) = [7_f(A)dX and var (%X;XW) = O(T7"), it follows that
there exists for all §; # 0y a ¢(6) > 0 with

im P inf (La(8s) — La(0,)) > 0(91)/4) —1

n—00 (6’2 €Us(f1)
for sufficiently small §. With a compactness argument we obtain as in Walker (1964)
that 6, 2> 6.

We now obtain with a Taylor argument

VL(0,)i = VL(B0): = {V*L(09) (0, — 00) }

where |97(7’) — | < |9~77 — Ol (2 = 1,..k). Tf 0, is an interior point of ® we have
Vﬁn(én) =0.If én lies on the boundary of © then the assumption that g is in the

interior implies |§77 — fo| > & for some § > 0, i.e. we obtain
P(V/n|VL,(0,)] >¢e) < Pl0, — 6| >8) =0

for all € > 0. Therefore, it is sufficient to prove

VL, (00) 5 Hy (3.2)
and
VY La(00) ~ Za (fVf5) 5 0. (3.3)

We have with LLemma A.1
1 1
VLL(0) = —tr {3 'SV o)} — - X030 S.(V )% ' X,
2n 2n

and

VL) = ot { (% ST h0) {5 S (7))

n
1
+ ;X;E;1 E'n(vfé’)251 En(vfﬁ)z‘;]X'n
1
— 55;,E;‘En,(vz.fe>2;‘zn.

LLemma A.6 implies

E(VnVL(00) -~ Za( 1Y fi))

= Gum (tr{marse) - {mmvesy )
= Y ) VA A+ o)

VD00, f) + o(1) = o(1)

14



Furthermore,
var (V/nV Ly (00) — Zo(fV f7:1))
1
= [Qtr { (zfz(;‘ zvzg‘)z} — 2tr {zfzg‘ Yvy, ' T, (fv_fg‘) }
4n 0 0 0 0 2m ’

—I—tr{Ef]En(QJ;erO]) E.fEn,(éiV.f%1)}]-

Lemma A.5 implies that this tends to zero which proves (3.3). We only sketch the
proof of (3.2). By using the smoothness properties of f; we can prove with Lemma

A.1, Temma A.2 and Lemma A.5 that
V2L, (09) — V2L, (6,) 5 0
(cp. Dahlhaus, 1988, proof of Theorem 3.3). With Lemma A.5 it then follows
EN2L,(00) — H;

and

va,r(vzﬁn(lgo)) = O(ni1 )

which implies the result.

We now discuss the question whether the above estimates remain efficient when
the model is correctly specified, i.e. when f = fp . In this case
1

10):= 1~ [ (V1og fs(0)(Vlog fo())'dA

is the Fisher information matrix. If the model is correct, then the MLE is known
to be efficient (this also follows in the same way as in Theorem 3.4). For the other

estimates we obtain

(3.4) Theorem /et 0., be one of the estimates of Theorem 3.1 and 3.2. Suppose
that the conditions of the corresponding theorem hold. If the model is correctly
specified (f = fq,), then 0, is efficient for Oy if and only if

TV S (N = VR B, fi,(3).0)

for all X € [—m, 7].

15



PROOF. Theorem 4.2 and Theorem 4.4 of Davies (1973) imply that the sequence of
experiments {P,, : h € ]R,k}, where P, is the Gaussian distribution of n observa-

tions with spectral density fg, +h/\/n, is locally asymptotically normal with central

sequence
7, = ] I0,) " (X'% 'Y (VD Xt} 'y (V
o = 5 (00 (X0 30(Fa0) 7 SV fa0) S fa0) ™ Xy — 0 {50 ( o) " 8V fir) }) -

We therefore have efficiency if and only if 7, — Zn(_qfeo) 0. We have
(%0 — Zu(gs,,)) = 0 and with So = S(fs, ), To = 1(o)

F (Zn — Z”(-qf‘?o )), (Z'n. - Zn(.quo ))

1 & o e _ B B 1 ,
~ un ; var (X'n. {20 p (([0 1Vf90)7;) S0 — % Za (%(.Qfeo )7) } Xn)

which tends by similar arguments as in the proof of Theorem 2.2 or Theorem 3.3 to

™ 1 2
An [ Jan O 10 (0 H TR (B, f(3),2)] A
J—m ™
where | - | is the Euclidean norm. This implies the result. O

We now give an important class of estimates that are also efficient if the model

is correctly specified.

(3.5) Corollary Let K(0, f(A),A) = K (ff”((;))) where K is three times differentiable

with unique minimum at x = 1. Suppose the model is correctly specified. Then the

PROOF. Let ¢ = K"(1). Direct calculation gives
Hy= [ V2K (8o, fa(3), \)dX = dmel(6o)

and

VK (B, fa(A), ) = eV f,!

which implies the result.

The above result has been derived directly by Taniguchi (1987, Theorem 5). An
example for an estimate that is not efficient when the model is correctly specified

will be given in the next section.

16



4 Discussion, extensions and examples

Minimizing the linear h-step prediction error

Suppose that we have observed X, ..., X,, and wish to make a linear prediction

of X,4n. If the process is an AR(p)-process, the best linear predictor is given by
N+h = Z(J )ﬁN+h i

where Xn4p—; 1s the best linear predictor of Xny,_; given Xy, ..., Xy. This means

that we can start with (1.1) and calculate X’N+h iteratively. In particular,

N+h: ZF XN41-;

where ¢; := ¢j(aq, ..., a,) are certain functions of the parameters.

If we proceed as if the process were AR(p), the mean square prediction error is

given by (0 = (a1,...,a,))

PELO,f) = FE (XN+h — X7N+h)2

= [

o —T0

2

exp (1A(h — 1)) + zp: c;exp(—iAy)| dA

J=1

This is an example for a distance function which is linear in f and different from the
Kullback-T.eibler distance. Theorem 3.1 and 3.2 imply that :‘jn = argmin Pﬁh(f),fn)
and é; = argmin PF,(0,1,) are efficient estimates of 8, = argmin PF,(0, f). As
indicated in the discussion prior to Theorem 3.3, the MLE 6, will in general not
even be consistent.

To be specific, let h =2 and p = 1. Then § = ay, ¢; = —a?, and

m

PEy(0, f) = / FON(T — 26% cos 2X + 6)dA

o —T

which leads with ¢(u) = var( Xy, Xiy.) to

™

VPE(, f) :/ )[40 cos 2 + 46%]

o =T

and

0y — [ffﬂ j]fgj,)fc(();)(jj)dww B [Z%]W.
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The corresponding efficient estimate obtained e.g. by minimizing PFy(0,1,) is

o[

Cp,
where ¢, = %th] XiXigw = [T I.(N) exp(idu)dX is the empirical covariance.

If we take instead h = 1 we obtain
(1
g — ).
<(0)
If the true process is AR(1) then 6 = 6, while in general 65 # 6,. The MLE 0, is
an efficient estimate for 85 but not for 6.

Since

PEAG,f) = [ (0 (), \)dA

o =T

with K(0,2,X) = 2[1 — 26? cos 2\ + #*], we have
VK (8o, fo,(X), A) = 48 cos 2\ + 407,

Since

2
Vi = 0—2(2 cos A+ 20),

the condition of Theorem 3.4 is not fulfilled, and 9;7, is therefore not efficient if the
model is correctly specified.

From a practical point of view the situation becomes difficult when the AR(p)-
model is ‘close’ to the true f (which usually is the case when the order is selected
by an information criterion). Then 65 = 6, and it will depend on the (unknown)
difference between 85 and 6, whether én or :‘jn will lead to the better estimate of 6.

The fitting of time series models by minimizing multi-step ahead prediction errors
has recently been discussed under more practical aspects by Haywood and Tunnicliffe

Wilson (1993). They also use the frequency domain approach.

Distances between spectral densities

As in Corollary 3.5 Taniguchi (1987) has considered several distances of the

form K(0,f(A\),A) = K ("}9((;))). Examples are K(z) = logz + 1; (Kullback-Leibler

distance), K(z) = —logz + z or K(z) = (2% — ])2.

Taniguchi (1987, Section 4) recommends choosing the distance function K(z)
dependent on the parameter space to obtain non-iterative efficient estimates (e.g.

for M A-models K = —log x 4+ x instead of log z + 1;)

18



We mention that different K lead in the misspecified case to different
fo = argmin [ K (%) d\ (e.g. for an MA(1)-model K(z) = —logz 4+ = leads
to another fy as K(z) = logx + ). This means that one is estimating efficiently
different values of the parameter space. Therefore, the above mentioned advice has

to be handled with care.

Small sample effects

It is well known that estimates based on the nontapered periodogram 7,,(X) have
a poor small sample behavior. The small sample behavior of 7,,(A) and of 0, may
be drastically improved by applying a data taper (cp. Dahlhaus, 1988). If the data
taper stays constant with increasing sample size the tapered estimates are no longer
efficient due to an increase of the asymptotic variance. However, if the proportion
of tapered data tends to zero as n — oo, the resulting estimates T'(/,,) and T(,fn)
will be efficient as well. This can be proved by suitable modifications of the above
results. In order not to complicate the calculations we have omitted these results.

For linear distance functions we recommend using 7'(7,) instead of T(,fn) since

the convolution in ,]En may lead to a loss of sharpness of the peaks in fn and therefore

also in -fT(fn,)'

Appendix

In this appendix we briefly summarize some properties of matrix norms and Toeplitz
matrices (cp. also Grenander und Szego, 1955; Davies, 1973; Azencott and Dacunha-
Castelle, 1986; Dzhaparidze, 1986; Taniguchi, 1991). Furthermore, we prove some
convergence results for spectral estimates.

Suppose A is an n x n matrix. We denote

[Al = sup =

|Ax| (m*A*Am)Vz

— [maximum characteristic root of A*A]'/?
where A* denotes the conjugate transpose of A, and
4] = [ir(AAT)] 2

If A is a real nonnegative symmetric matrix, i.e., A = P'DP with PP’ = P'P =1
and D = diag{\,..., \,}, where )\; > 0, then we define A'/2 = P'D'2P_ where
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D'? = diag{v/ A1, ...,/ A }. Thus, A2 is also nonnegative definite and symmetric
with AV2AY2 = A Furthermore, A7"/2 = (AY2)71if A is positive definite.

The following results are well known [see, e.g., Davies (1973), Appendix II, or
Graybill (1983), Section 5.6].

(A.1) Lemma Let A, B be n x n matrices. Then

(a) [tr(AB)| <|A[|B],

(b) [AB| < [AllBI,

(¢c) [AB]<[AlllBI,

(d) [IAIl < [A[ < Vnl[Al,

(¢) [IABI < [IAlIBI,

(F) A= 1A=,

(9) [tr(A)] < /nlA],

(h) o Ar| < s al| Al 7 € €,

(i) logdet A <tr{A—T}, A>0.

Suppose now that the elements of A are continuously differentiable functions of 6.
Then

() ZA =—AT(LA) AT,
(k) Dlogdet A=tr{A~" 2 A},
) 1A0) — A0 < 5100~ ad
(m) 1A — AB)]| < 5 6vi — 0

a7 A0)
7 AO)]

, with a mean value 0,

with a mean value 0.

)

(A.2) Lemma Suppose h is a real, symmetric function such that there exist con-

stants with 0 < ¢; < h(X) < ¢y. Then

||En(h)1/2|| < \/2mey  and ||En(h)_1/2|| < 1/\/2me;

and, as a consequence,
ISa(B)]| < 27 and  [[Sa(h) ] < 1/(2mer)

PROOF. Since 5

Z zrexp(—iAt)| dA

t=1

7S, (h)x = / h())

we obtain the result.
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(A.3) Lemma Suppose that g; € L, with 1 <p; <oo (5 =1,...,k) are symmet-
ric functions with Z'I;ﬂ p;] < 1. Then

Jim ;‘rr{ﬂ } (2m)*= 1/ {ﬂ7 194 ( )}d)\

Lemma A.3 was first obtained by Grenander and Szego (1958, Chapter 8.1). The

above version is due to Avram (1988, Theorem 1).

we have

(A.4) Lemma Suppose f € L4 is a real symmetric function with f=' € L4. Then
1

AN £\
| E”(aw) E”(zw) E”(aw)

i.€e. En<%) is an approximate inverse of En(%)

— o(1) (A1)

PrOOF. let
=3 exp(—ija).
7=1

Since [T A,(z — y)A,(y — 2)dy = 27, (x — 2z) the square of the left-hand side of
(A.1) is equal to

el () s () e (L) (5]

_a 4 f(x1) f(z3)
- e (.fm) - ]) (.f(.m) - ]) |

AL (e — 22) A (12 — 23)An (23 — 24)An(Ts — 71)d2
— ./[Wﬂr]3 G(x1, 72, 73)On(T1, T2, 23)dT

where

On (11,29, 23) = (2’“—)73”71An(m1)An,(mQ)An,(mf%)Aw.(*m] — Ty — T3)

and

O (febnets) )\ (Jate)
G(mhmg,mg)%r/_r( Fot o+ 1) ])( (o) ])d.,

(G is continuous in 0 with G(0,0,0) = 0 and ¢, is an approximate convolution

identity (cf. Dahlhaus, 1983, LLemma 3). This implies the result. O
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(A.5) Lemma Suppose that g; are real symmetric functions with 0 < ¢; < g;(A) <

]7 7€[1
0; = .
7]7 .76171

where {1,...,k} =1+ 1_1. Then we have

. ] k C] 71 ] T - a
Jim {H % (22) } =5/ {H 9(}) "}‘“-
- L= Y

ProOF. We have
i ()
* N ()]}

co. Let

=1 7=1 =141
1 i—1 q”7 g T; qo-l k g; a;
<3 () () () T ()
R [ 2T 2 2 it 2T
1€l 7 J=t

Since |[A™" — B| < ||ATV2)2|T — AV?2BAY?| Lemma A.2, Lemma A.3 and Lemma

A.4 imply that this converges to zero.

For the expectation of the maximum likelihood estimate in Theorem 3.3 we need
the convergence of Lemma A.5 with rate o(n~'/2). We state the result as we need

it in Theorem 3.3.

(A.6) Lemma Suppose g, [ and f, are real symmetric functions, bounded from

above and below with f, f, € Lip, with & > 1/2. Then

and

e B e A 11 AR

The proof is omitted. It is quite technical and uses calculations in the frequency
domain similar to the proof of Lemma A.4. Under stronger conditions the result

would e.g. follow from Theorem 2.1.1 of Taniguchi (1991) or from Lemma 4.5 in

Azencott and Dacunha-Castelle (1986, Chapter XTIT).
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(A.7) Lemma Suppose Xy, t € 7. is a fourth order stationary process with FX; = 0,

Lipschitz- continuous spectral density f(X) and bounded fourth order spectrum. Un-

der Assumption 1.2 we have

(i) B (Fa0) — FO)) dh = 0(m ) + 0 () = o(n'1?),

(ii) P (supy |fa(X) — FN)] > ) = o),

(111) \/n [T (N) {fw I.( )\)} dr 5o for () continuous,

() /n [T DM {FETL(A) — f(A)}dA = o(1) for (X)) bounded,

(v) supgee |[n ho(A) {T.(A) — f(A }(])\‘ 0 for © compact and hg continuous on
O x [~m, .

PrROOF. (i) and (iv) are standard. (iii) is contained in the proof of Theorem 3
in Taniguchi (1987). (iv) is proved by approximating hg(A) by the Cesaro sum of

its Fourier series (cp. Hannan, 1973, Lemma 1). (ii) follows since

A’
w| —
n

L) ERO| <50 Xl Fe)

[ <m—1

sup |,
A

and

vare, (u) = O(7f1)

uniformly in . O

If we make the stronger assumption that f is differentiable with Lipschitz con-
tinuous derivative then we get in (i) the stronger result O(m~*) + O (%) We then

can relax the conditions in Assumption 1.2 to n'/® < m <« n'/2.
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