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Abstract

This paper addresses estimation of linear functionals of the error distribution in non-
parametric regression models. It derives an i.i.d. representation for the empirical estimator
based on residuals, using undersmoothed estimators for the regression curve. Asymptotic
efficiency of the estimator is proved. Estimation of the error variance is discussed in detail.
In this case, undersmoothing is not necessary.
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1. Introduction

Consider a regression model Y = r(X) + ε, where the error ε has mean zero, finite variance,
and an otherwise unknown distribution, and the covariate X is random and independent of
ε. One is primarily interested in estimating the regression function r, but it is also of interest
to estimate features of the distribution of the error. If we have independent observations
(X1, Y1), . . . , (Xn, Yn) from the regression model, we can estimate first r by r̂, say, and then
the errors εi by the residuals ε̂i = Yi − r̂(Xi). The expectation Eh(ε) of some function h can
then be estimated by the empirical estimator 1

n

∑n
i=1 h(ε̂i) based on the residuals. Most of the

literature is on estimating the distribution function F (t) = P (ε ≤ t), i.e. h(z) = 1[z ≤ t], or
the variance Eε2, i.e. h(z) = z2.

Estimation of the residuals is particularly simple if the regression function r = rϑ is known
up to a finite-dimensional parameter ϑ. Then one usually has n1/2-consistent estimators ϑ̂
∗Supported in part by NSF Grant DMS 0072174
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for ϑ and can estimate r by rϑ̂ and εi by εi(ϑ̂) = Yi − rϑ̂(Xi). Weak convergence of the
empirical process based on the residuals of parametric regression models is studied by Koul
(1970), Loynes (1980), and Shorack (1984), among others; see also the monograph Koul (2002).
We refer to Ghoudi and Rémillard (1998) for general results on empirical processes based on
“pseudo-observations”. Analogous results exist for ergodic autoregressive models with para-
metric autoregression function; see Boldin (1982, 1983), Koul and Sen (1991), and Koul and
Ossiander (1996) for linear autoregression, Boldin (1989) for moving average processes, Kreiss
(1991) for general linear processes, Bai (1994) for ARMA models, Koul (1996) for nonlin-
ear time series, and Boldin (1998) for ARCH models. Extensions to explosive autoregressive
models are in Koul and Leventhal (1989).

Here we are concerned with the nonparametric regression model Y = r(X) + ε, with r

unknown (up to smoothness). Then the problem arises that an estimator r̂ for r will not be
n1/2-consistent any more, and hence the residuals ε̂i = Yi− r̂(Xi) will differ from the true errors
εi by more than the order n−1/2. Nevertheless, the empirical estimator 1

n

∑n
i=1 h(ε̂i) based on

the residuals will still be n1/2-consistent for Eh(ε) under appropriate conditions. This is an
instance of the plug-in phenomenon: Smooth functionals of function estimators may have
parametric rates. (There is a large literature on plug-in, especially for nonlinear functionals of
densities and regression functions; we refer to Goldstein and Messer 1995, Birgé and Massart
1995, Eggermont and LaRiccia 1999, and Efromovich and Samarov 2000.) Specifically, in
Section 2 we give conditions for the i.i.d. representation

n−1/2
n∑
i=1

h(ε̂i) = n−1/2
n∑
i=1

(h(εi)− E[h′(ε)]εi) + op(1).(1.1)

Simple sufficient conditions would be that the regression function r has a bounded second
derivative, the function h has a bounded derivative, and the covariate X is bounded with
a density that is continuous and positive on its support. A discussion of our assumptions
is in Section 3 where we construct explicit estimators using undersmoothed local polynomial
smoothers. We assume that h is smooth. This excludes the distribution function F (t) =
P (ε ≤ t). Under stronger assumptions on the error and covariate distributions, a functional
central limit theorem for the empirical distribution function based on the residuals from a
heteroscedastic regression model is proved in Akritas and Van Keilegom (2001). For symmetric
error distribution see also Koshevnik (1996).

We use representation (1.1) to prove, in Section 5, that 1
n

∑n
i=1 h(ε̂i) is asymptotically

efficient if the error density f , the regression function r, and possibly the covariate density
g, are unknown. Representation (1.1) implies that 1

n

∑n
i=1 h(ε̂i) is asymptotically normal,

with variance τ2
∗ = E[(h(ε)− Eh(ε)− E[h′(ε)]ε)2]. Perhaps surprisingly, this variance can be

considerably smaller than the asymptotic variance τ2 = E[(h(ε) − Eh(ε))2] of the empirical
estimator 1

n

∑n
i=1 h(εi) based on the true errors. Suppose, for example, that the errors are
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normal with mean zero and variance σ2. Consider estimating the third moment. Then h(z) =
z3. The empirical estimator 1

n

∑n
i=1 ε

3
i has asymptotic variance 15σ6. On the other hand, we

have Eh′(ε) = 3σ2; hence the asymptotic variance of 1
n

∑n
i=1 ε̂

3
i is (15− 9)σ6 = 6σ6. This is a

considerable variance reduction.
The paradox is explained by noting that the empirical estimator 1

n

∑n
i=1 h(εi) based on the

true errors makes no use of the information that the errors have mean zero. We can use this
information to introduce modified empirical estimators

Hn(c) =
1
n

n∑
i=1

(h(εi)− cεi).

Their variance is minimized by

c =
∫
zh(z)dF (z)/σ2.(1.2)

This constant depends on F and must be estimated, e.g. by a ratio of empirical estimators,

ĉn =
1
n

n∑
i=1

εih(εi)
/ 1
n

n∑
i=1

ε2
i .

The resulting plug-in version Hn(ĉn) (which still uses the actual errors) is never worse than
1
n

∑n
i=1 h(ε̂i). We prove this at the end of Section 5. There we also compare 1

n

∑n
i=1 h(ε̂i) and

Hn(ĉn) in terms of the information in knowing the regression function and in knowing that the
errors have mean zero. It is quite obvious that 1

n

∑n
i=1 h(εi) does not use that the errors have

mean zero. But how does our estimator 1
n

∑n
i=1 h(ε̂i) exploit this information? This can be

seen from condition (2.6): The estimator for the regression function is constructed such that
1
n

∑n
i=1 ε̂i = op(n−1/2). This means that we have a better “estimator” for zero than 1

n

∑n
i=1 εi,

which is Op(n−1/2). The faster rate 1
n

∑n
i=1 ε̂i = op(n−1/2) might be surprising, but we should

remind the reader that for least squares estimates one has even 1
n

∑n
i=1 ε̂i = 0. In view of

this faster rate, replacement of the actual errors in Hn(ĉn) by residuals leads to an estimate
equivalent to 1

n

∑n
i=1 h(ε̂i).

It is easy to check that τ2
∗ = τ2 if and only if E[h′(ε)] = 0 or σ2E[h′(ε)] = 2E[h(ε)ε],

and that τ2
∗ < τ2 if and only if 0 < σ2E[h′(ε)] < 2E[h(ε)ε] or 0 > σ2E[h′(ε)] > 2E[h(ε)ε].

For normal errors one can show that σ2E[h′(ε)] = E[h(ε)ε] under the assumptions needed for
the representation. Then the first inequality holds if E[h(ε)ε] < 0, and the second holds if
E[h(ε)ε] > 0. Thus, if the errors happen to be normal, then τ2

∗ ≤ τ2 so that the empirical
estimator based on the residuals has an asymptotic variance that is never bigger than that of
the empirical estimator based on the actual errors. However, one cannot always expect that
τ2
∗ ≤ τ2 for other densities. For example, take h(x) = x2sgn(x) − 3x and f(x) = exp(−|x|)/2

for a case where τ2
∗ > τ2.
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It is instructive to compare our result with corresponding results for parametric regression
Yi = rϑ(Xi)+εi. For simplicity we take ϑ one-dimensional. A straightforward Taylor expansion
gives

n−1/2
n∑
i=1

h(εi(ϑ̂)) = n−1/2
n∑
i=1

h(εi)− n1/2(ϑ̂− ϑ)Eh′(ε)Eṙϑ(X) + op(1),

with ṙϑ(x) the derivative of rϑ(x) with respect to ϑ. For linear regression and the empirical
distribution function, i.e. h(z) = 1[z ≤ t], see e.g. Koul (1969, 1970, 1987) and also Shorack
and Wellner (1986, Section 4.6). We refer to Mammen (1996) for such a stochastic expansion
in linear models of increasing dimension. Nonlinear (and heteroscedastic) autoregression and
smooth functions h are considered in Schick and Wefelmeyer (2002). In general, the empirical
estimator based on the residuals is not efficient, even if an efficient estimator ϑ̂ for ϑ is used.
Again the reason is that, unlike r̂, the estimator rϑ̂ for rϑ does not use the information that
the errors have mean zero. Efficient modifications are in Wefelmeyer (1994) and Schick and
Wefelmeyer (2002) for linear and nonlinear autoregression, respectively.

The function h(z) = z2 is of particular interest. Then Eh(ε) = Eε2 is the error variance
σ2 =

∫
z2dF (z). This function is a degenerate special case: It is the only function h for which

Eh′(ε) vanishes for all error distributions with zero mean. This means that the first-order term
in the stochastic expansion (1.1) vanishes. In particular, the empirical estimator 1

n

∑n
i=1 ε̂

2
i is

adaptive with respect to the regression function in the sense that it is asymptotically equivalent
to 1

n

∑n
i=1 ε

2
i , the best estimator based on the true errors, i.e. for known regression function.

We show in Section 4 that in this simple case we get by with weaker assumptions and can
avoid undersmoothing the regression estimator. If the errors have finite fourth moments,
then 1

n

∑n
i=1 ε̂

2
i is asymptotically normal with mean zero and variance

∫
z4dF (z) − σ4. The

asymptotic variance of this estimator has been calculated before; see Buckley, Eagleson and
Silverman (1988) for normal errors, and Hall and Marron (1990). There are many papers
on simpler, difference-based, estimators with larger asymptotic variances; see Hall, Kay and
Titterington (1990) and the references there. For comparisons of different estimators see Carter
and Eagleson (1992) and Dette, Munk and Wagner (1998, 1999). An efficient version of a
difference-based estimator is in Müller, Schick and Wefelmeyer (2001).

Let us briefly mention possible applications and extensions. We have already discussed the
degenerate case of the error variance. Our result in Section 2 applies also to other moments
and absolute moments. It leads in particular to efficient estimators for skewness E(ε3)/σ3

and kurtosis E(ε4)/σ4. We can also use it to estimate the characteristic function E[exp(itε)]
and other such transformations of the error distribution. This can for example be used to
test normality of the errors. Minimum contrast functionals are defined as minimizers in t of
expectations Eht(ε); they can be estimated by minimizers of 1

n

∑n
i=1 ht(ε̂i). Here one would

want a version of our result that is uniform over a class of functions h. The distribution of
such estimators can also be studied by writing them as integrals with respect to the empirical
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distribution function, but results on the latter require stronger conditions.

2. Result

Let (X1, Y1), . . . , (Xn, Yn) be independent observations from the nonparametric regression
model Y = r(x)+ε, with an error ε that has mean zero and finite variance, and is independent
of the random covariate X. Our goal is to estimate E[h(ε)]. We consider the estimator

Ĥn =
1
n

n∑
i=1

h(ε̂i),

based on the residuals ε̂i = Yi − r̂ni where r̂ni estimates r(Xi).
We make the following assumptions on h and the estimators r̂ni. Set

µ(s) =
∫
h(z − s)f(z) dz, s ∈ R.

Assumption 1. There are positive numbers α ≤ 1, c, C1, C2 such that∫
(h(z + t+ s)− h(z + t))2f(z) dz ≤ C1|s|1+α, |s|, |t| ≤ c,(2.1)

and µ is differentiable at 0 with

|µ(s)− µ(0)− µ′(0)s| ≤ C2|s|1+α, |s| ≤ c.(2.2)

We write X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) and Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yn) for
the vector with Yi left out. Set

r̂nij = E(r̂ni|X,Y−j).

Assumption 2. The estimator r̂ni is a leave-one-out estimator in the sense that it does not
depend on Yi, so that r̂nii = r̂ni. Moreover, for α as in Assumption 1,

max
i=1,...,n

|r̂ni − r(Xi)| = op(1),(2.3)

1
n

n∑
i=1

|r̂ni − r(Xi)|1+α = op(n−1/2),(2.4)

1
n

∑∑
i6=j

E(|r̂nij − r̂ni|1+α|X) = op(1),(2.5)

n−1/2
n∑
i=1

(r̂ni − r(Xi))− n−1/2
n∑
i=1

εi = op(1).(2.6)
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The leave-one-out estimator is chosen for technical convenience. The last condition (2.6)
is equivalent to 1

n

∑n
i=1 ε̂i = op(n−1/2), a condition we already stressed in the Introduction.

Assumption (2.5) is similar to an assumption used in Condition R of Schick (1993). The proof
of the following theorem relies also on his arguments. A detailed discussion of Assumptions 1
and 2 is in the next section.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then

Ĥn =
1
n

n∑
i=1

(h(εi) + µ′(0)εi) + op(n−1/2).

Consequently, n1/2(Ĥn − Eh(ε)) is asymptotically normal with mean zero and variance

τ2
∗ = E[(h(ε)− Eh(ε) + µ′(0)ε)2].

3. Discussion of the assumptions

Let us first look at Assumption 1. If h is Lipschitz, then assumption (2.1) holds with α = 1.
If h is absolutely continuous and∫

sup
|t|≤2c

|h′(z + t)|2f(z) dz <∞,

then assumption (2.1) holds with α = 1. If h is twice differentiable with an f -integrable
derivative h′, and if ∫

sup
|s|≤c
|h′′(z − s)|f(z) dz <∞,

then assumption (2.2) holds with α = 1 and µ′(0) = −
∫
h′(z)f(z) dz. Differentiability of h is

not required if f is sufficiently smooth. For example, if f is twice continuously differentiable
with integrable derivatives, then assumption (2.2) holds with α = 1 for every bounded h.

If
∫
|z|2mf(z) dz is finite for an integer m > 1, then the function h(z) = zm fulfills as-

sumption (2.1) with α = 1. In this case, assumption (2.2) holds as well with α = 1, and
µ′(0) = −m

∫
zm−1f(z) dz. Similarly, Assumption 1 holds for h(z) = |z|m with α = 1 and

µ′(0) = −m
∫
|z|m−1sgn(z)f(z) dz.

Let us now address Assumption 2. Using the moment inequality, a sufficient condition for
assumptions (2.4) and (2.5) is

1
n

n∑
i=1

(r̂ni − r(Xi))2 = op(n−1/(1+α)),(3.1)

1
n

∑∑
i6=j

E((r̂nij − r̂ni)2|X) = op(n−1/(1+α)).(3.2)
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Now consider linear smoothers

r̂ni =
n∑
j=1

AnijYj =
n∑
j=1

Anijr(Xj) +
n∑
j=1

Anijεj ,(3.3)

where Anij depends on the covariates only. For r̂ni to be a leave-one-out estimator, we must
have Anii = 0. Sufficient conditions for assumptions (2.3) to (2.6) are

max
i=1,...,n

∣∣∣ n∑
j=1

Anijεj

∣∣∣ = op(1),(3.4)

1
n

n∑
i=1

n∑
j=1

A2
nij = op(n−1/(1+α)),(3.5)

1
n

n∑
j=1

(
1−

n∑
i=1

Anij

)2
= op(1),(3.6)

max
i=1,...,n

∣∣∣ n∑
j=1

Anijr(Xj)− r(Xi)
∣∣∣ = op(n−1/2).(3.7)

Indeed, relations (3.4) and (3.7) imply (2.3). Relations (3.5) and (3.7) imply (3.1) in view of

1
n

n∑
i=1

E((r̂ni − r(Xi))2|X) = σ2 1
n

n∑
i=1

n∑
j=1

A2
nij +

1
n

n∑
i=1

( n∑
j=1

Anijr(Xj)− r(Xi)
)2
.

Since r̂nij − r̂ni = −Anijεj , we immediately see that (3.5) implies (3.2). In view of (3.7),
relation (2.6) is equivalent to

n−1/2
n∑
i=1

n∑
j=1

Anijεj − n−1/2
n∑
j=1

εj = n−1/2
n∑
j=1

εj

( n∑
i=1

Anij − 1
)

= op(1).

But the conditional second moment given X of this expression equals σ2 times the left-hand
side of (3.6).

Assumption (3.7) controls the maximal bias and requires smoothness of r. Let L be a
non-negative integer, and let bn denote a bandwidth. Assume that r is L-times differentiable
with L-th derivative Hölder with exponent β, and that∑n

j=1Anij = 1,(3.8) ∑n
j=1Anij(Xj −Xi)l = 0, l = 1, . . . , L, if L > 0,(3.9)

Anij = 0 if |Xj −Xi| > bn,(3.10)

maxi=1,...,n
∑n

j=1 |Anij | = Op(1).(3.11)

Under (3.8) and (3.9) we can write

n∑
j=1

Anijr(Xj)− r(Xi) =
n∑
j=1

Anij
(
r(Xj)− r(Xi)−

L∑
l=1

(Xj −Xi)lr(l)(Xi)
)
.
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Now use (3.10) and the Hölder continuity of r(L) to bound the left-hand side of (3.7) by a con-
stant times bL+β

n maxi=1,...,n
∑n

j=1 |Anij |. Under (3.11), this is of order Op(b
L+β
n ). Hence con-

dition (3.7) holds if n1/2bL+β
n → 0. Under standard assumptions, local polynomial smoothers

fulfill (3.8) to (3.11) if the bandwidth bn does not converge to zero too fast. Under the above
assumptions on r, the optimal bandwidth is proportional to n−1/(2L+2β+1). For this choice, we
do not have n1/2bL+β

n → 0. This means that we must undersmooth this type of estimator.
To be specific, we introduce explicit weights Anij and give assumptions on g and r such that

Assumption 2 holds. The weights will be those of a leave-one-out local polynomial smoother
of degree L. To define them, introduce

Λni(β0, . . . , βL) =
n∑
j=1
j 6=i

(
Yj −

L∑
l=0

βl

(Xj −Xi

bn

)l)2

w
(Xj −Xi

bn

)
, β0, . . . , βL ∈ R,

for some symmetric density w with support [−1, 1] and bounded derivative. Denote the
minimizer of Λni(β0, . . . , βL) by (β̂ni0, . . . , β̂niL). We estimate r(Xi) by r̂ni = β̂ni0. For
l = 0, 1, 2, . . . and i = 1, . . . , n let

wnl(x) = w
( x
bn

) xl

bl+1
n

and pnil(x) =
1

n− 1

n∑
j=1
j 6=i

wnl(Xj − x).

The estimator r̂ni = β̂ni0 is a linear smoother with weights

Anij =
1

n− 1

L∑
l=0

qnilwnl(Xj −Xi), i 6= j,

where (qni0, . . . , qniL) is the first row of the inverse of the (L + 1) × (L + 1) matrix Mni =
[pni,l+k(Xi)]l,k=0,...,L. If L = 0, this is the usual leave-one-out kernel estimator:

r̂ni =
n∑
j=1
j 6=i

w
(Xi −Xj

bn

)
Yj

/
n∑
j=1
j 6=i

w
(Xi −Xj

bn

)
.

Theorem 2. Suppose g is continuous and positive on its support [0, 1]. Assume that r is L
times differentiable on [0, 1] and that its L-th derivative is Hölder with positive exponent β.
Suppose the bandwidth bn fulfills n1/2bL+β

n → 0, bnn1/3 → ∞, and bnn
α/(1+α) → ∞. Then

Assumption 2 holds for the leave-one-out local polynomial smoother r̂ni = β̂ni0 of degree L

described above. Hence, if h satisfies Assumption 1, we have again

Ĥn =
1
n

n∑
i=1

(h(εi) + µ′(0)εi) + op(n−1/2).
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The assumptions on the bandwidth in the above theorem can only be met if 2L + 2β is
sufficiently large. If α ≥ 1/2, we need 2L+ 2β > 3 and can then take bn proportional to n−γ

with γ in the open interval (1/(2L+ 2β), 1/3). If α < 1/2, we need 2L+ 2β > (α+ 1)/α and
can then take bn proportional to n−γ for some γ in the open interval (1/(2L+ 2β), α/(1 +α)).
In particular, if r is twice continuously differentiable on [0, 1] and α ≥ 1/2, then we can take
bn = n−γ with γ ∈ (1/4, 1/3). The proof of Theorem 2 is sketched in Section 6.

4. Estimating the error variance

An important special case is the estimation of the error variance σ2 =
∫
z2f(z) dz. We have

already seen that in this case Theorem 1 shows that the estimator Ĥn = 1
n

∑n
i=1 ε̂

2
i based on

the residuals is asymptotically equivalent to the empirical estimator based on the true errors,

1
n

n∑
i=1

ε̂2
i =

1
n

n∑
i=1

ε2
i + op(n−1/2).(4.1)

For this result, a simpler, more direct, argument can be given. Moreover, this argument avoids
the undersmoothing of the regression estimator needed in Section 3. Write

1
n

n∑
i=1

ε̂2
i =

1
n

n∑
i=1

ε2
i −

2
n

n∑
i=1

εi(r̂ni − r(Xi)) +
1
n

n∑
i=1

(r̂ni − r(Xi))2.

One sees that (4.1) holds if

V1 =
1
n

n∑
i=1

(r̂ni − r(Xi))2 = op(n−1/2),(4.2)

V2 =
1
n

n∑
i=1

εi(r̂ni − r(Xi)) = op(n−1/2).(4.3)

The argument used for (6.3), but now with Dni = εi(r̂ni − r(Xi)), gives

nE(V 2
2 |X) ≤ σ2 1

n

n∑
i=1

E((r̂ni − r(Xi))2|X) + σ2 1
n

∑∑
i6=j

E((r̂nij − r̂ni)2|X).

Thus we have the following result.

Theorem 3. Suppose r̂ni does not depend on Yi, and

1
n

n∑
i=1

E((r̂ni − r(Xi))2|X) = op(n−1/2),(4.4)

1
n

∑∑
i6=j

E((r̂nij − r̂ni)2|X) = op(1).(4.5)
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Then (4.1) holds:
1
n

n∑
i=1

ε̂2
i =

1
n

n∑
i=1

ε2
i + op(n−1/2).

If r̂ni is the linear smoother (3.3) again, with Anii = 0, then sufficient conditions for (4.4)
and (4.5) are

1
n

n∑
i=1

n∑
j=1

A2
nij = op(n−1/2),(4.6)

1
n

n∑
i=1

( n∑
j=1

Anijr(Xj)− r(Xi)
)2

= op(n−1/2).(4.7)

If conditions (3.8), (3.10) and (3.11) hold and r is Hölder with exponent β, then the left-
hand side of (4.7) is of order Op(b

2β
n ). Since the left-hand side of (4.6) is typically of order

Op(n−1b−1
n ), one needs n1/2b2βn → 0 and n1/2bn →∞ for (4.6) and (4.7) to hold. This of course

requires β > 1/2.

Corollary 1. Suppose g and r are as in Theorem 2 with L + β > 1/2 and r̂ni is the
leave-one-out polynomial estimator of degree L with bandwidth bn such that n1/2bL+β

n → 0 and
n1/2bn →∞. Then (4.1) holds:

1
n

n∑
i=1

ε̂2
i =

1
n

n∑
i=1

ε2
i + op(n−1/2).

The requirements on the bandwidth are satisfied for the optimal bandwidth which in this
case is proportional to n−1/(2L+2β+1). So no undersmoothing is needed here.

5. Efficiency

Now we show that Ĥn is efficient for
∫
h(z)f(z) dz under the additional assumption that f has

finite Fisher information for location:

Assumption 3. The error density f is absolutely continuous with almost everywhere deriva-
tive f ′, and J =

∫
`(z)2f(z) dz <∞, where `(z) = −f ′(z)/f(z).

We recall that the nonparametric regression model (1.1) is locally asymptotically normal
in the following sense. Let F and G denote the distribution functions associated with the
densities f and g. Introduce a local model at (r, f, g) by perturbing (r, f, g) as follows. For
u ∈ L2(G) set

rnu(z) = r(z) + n−1/2u(z).

10



Set

L2,0(F ) = {v ∈ L2(F ) :
∫
v(z) dF (z) = 0},

V = {v ∈ L2,0(F ) :
∫
zv(z) dF (z) = 0}.

Note that the projections of h and ` onto V are

h0(z) = h(z)−
∫
hdF − z

∫
xh(x)dF (x)/σ2 and `0(z) = `(z)− z/σ2.

Write
J0 =

∫
`0(z)dF (z) = J − 1/σ2.

For v ∈ V choose densities fnv with
∫
zfnv(z)dz = 0 which are Hellinger differentiable at f

with derivative v, ∫ (
n1/2

(
fnv(z)1/2 − f(z)1/2

)
− 1

2
v(z)f(z)1/2

)2
dz → 0.

For w ∈ L2,0(G) choose densities gnw which are Hellinger differentiable at g with derivative w,∫ (
n1/2

(
gnw(x)1/2 − g(x)1/2

)
− 1

2
w(x)g(x)1/2

)2
dx→ 0.

Now let prfg(x, y) = f(y − r(x))g(x) denote the density of an observation (Xi, Yi) from our
model (1.1). It follows from arguments in Hájek and Šidák (1967, pages 210–214), see also
Schick (1993, Lemma 3.4), that prnufnvgnw is Hellinger differentiable at (r, f, g),∫ (

n1/2(prnufnvgnw(x, y)1/2 − prfg(x, y)1/2)

− 1
2
(
`(y − r(z))u(z) + v(y − r(z)) + w(z)

)
prfg(x, y)1/2

)2
dydz → 0.

Hence we have the stochastic expansion
n∑
i=1

log
prnufnvgnw
prfg

(Xi, Yi) = n−1/2
n∑
i=1

(
`(εi)u(Xi) + v(εi) + w(Xi)

)
−1

2
E
[(
`(ε)u(X) + v(ε) + w(X)

)2]+ op(1),(5.1)

and n−1/2
∑n

i=1

(
`(εi)u(Xi) + v(εi) + w(Xi)

)
is asymptotically normal by the central limit

theorem. This is local asymptotic normality (LAN). We call the norm of (u, v, w) in (5.1) the
LAN norm. Since ε and X are independent with E`(ε) = Ev(ε) = 0, the LAN norm can be
written

‖(u, v, w)‖2LAN = E
[(
`(ε)u(Z) + v(ε) + w(Z)

)2]
= J

∫
u2dG+ 2

∫
`0vdF

∫
udG+

∫
v2dF +

∫
w2dG.

11



Here we have replaced ` by its projection `0 onto V . The corresponding LAN inner product is

((u, v, w), (u1, v1, w1))LAN = J

∫
uu1dG+

∫
`0vdF

∫
u1dG+

∫
`0v1dF

∫
udG

+
∫
vv1dF +

∫
ww1dG.

The natural inner product of the local model is

((u, v, w), (u1, v1, w1)) =
∫
uu1dG+

∫
vv1dF +

∫
ww1dG.

Consider a real-valued functional χ of (r, f, g). Suppose χ is differentiable at (r, f, g) with
natural gradient (u∗, v∗, w∗) ∈ L2(G)× V × L2,0(G),

n1/2(χ(rnu, fnv, gnw)− χ(r, f, g)) → ((u, v, w), (u∗, v∗, w∗))

for all (u, v, w) ∈ L2(G)× V × L2,0(G).

The LAN gradient (uχ, vχ, wχ) ∈ L2(G) × V × L2,0(G) of χ at (r, f, g) is the gradient of χ
expressed in terms of the LAN inner product, and determined by

((u, v, w), (u∗, v∗, w∗)) = ((u, v, w), (uχ, vχ, wχ))LAN

for all (u, v, w) ∈ L2(G)× V × L2,0(G).(5.2)

Call an estimator χ̂ regular for χ at (r, f, g) with limit L if L is a random variable such that

n1/2(χ̂− χ(rnu, fnv, gnw)) ⇒ L under Prnufnvgnw
for all (u, v, w) ∈ L2(G)× V × L2,0(G).

The convolution theorem (see Bickel et al., 1998, Section 3.3) says that L is the convolution of
a normal random variable with mean zero and variance ‖(uχ, vχ, wχ)‖2LAN, and some other ran-
dom variable. This justifies calling χ̂ efficient for χ at (r, f, g) if χ̂ is regular and asymptotically
normal with mean zero and variance ‖(uχ, vχ, wχ)‖2LAN. It also follows from the convolution
theorem that χ̂ is efficient if and only if

n1/2(χ̂− χ(r, f, g)) = n−1/2
n∑
i=1

(
`(εi)uχ(Xi) + vχ(εi) + wχ(Xi)

)
+ op(1).(5.3)

The LAN gradient (uχ, vχ, wχ) can be written in terms of the natural gradient (u∗, v∗, w∗)
of χ as follows. Set u, v = 0 in (5.2) to obtain∫

ww∗dG =
∫
wwχdG for all w ∈ L2,0(G),

and hence wχ = w∗. Set u,w = 0 in (5.2) to obtain∫
vv∗dF =

∫
`0vdF

∫
uχdG+

∫
vvχdF for all v ∈ V,
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and hence
vχ = v∗ − `0

∫
uχdG.

To calculate uχ, it will be convenient to write L2(G) as an orthogonal sum of functions with
mean zero and of constants, L2(G) = L2,0(G) ⊕ [1], or u = u −

∫
udG +

∫
udG. Set v, w = 0

in (5.2) and use J − J0 = σ−2 to obtain∫
uu∗dG =

∫ (
u−

∫
udG

)(
u∗ −

∫
u∗dG

)
dG+

∫
udG

∫
u∗dG

= J

∫ (
u−

∫
udG

)(
uχ −

∫
uχdG

)
dG+ σ−2

∫
udG

∫
uχdG

+
∫
`0v∗dF

∫
udG for all u ∈ L2(G).

This implies

uχ −
∫
uχdG =

1
J

(
u∗ −

∫
u∗dG

)
,∫

uχdG = σ2
(∫

u∗dG−
∫
`0v∗dF

)
.

Hence we have the following result.

Proposition 1. If the functional χ has natural gradient (u∗, v∗, w∗), then the LAN gradient
of χ is (uχ, vχ, w∗) with

uχ =
1
J

(
u∗ −

∫
u∗dG

)
+ σ2

(∫
u∗dG−

∫
`0v∗dF

)
,

vχ = v∗ − `0σ2
(∫

u∗dG−
∫
`0v∗dF

)
.

We are interested in the functional χ(r, f, g) = Eh(ε) =
∫
h(z)dF (z). We have

n1/2
(∫

h(z)dFnv(z)−
∫
h(z)dF (z)

)
→
∫
h(z)v(z)dF (z) =

∫
h0(z)v(z)dF (z).

Hence Eh(ε) is differentiable with natural gradient (u∗, v∗, w∗) = (0, h0, 0). From Proposition
1 we obtain the following result.

Corollary 2. The LAN gradient of Eh(ε) is (uh, vh, 0) with

uh = −σ2

∫
`0h0dF and vh = h0 + `0σ

2

∫
`0h0dF.
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Hence by (5.3) an efficient estimator Ĥn of Eh(ε) is characterized by

n1/2(Ĥn − Eh(ε)) = n−1/2
n∑
i=1

(
`(εi)uh(Zi) + vh(εi) + wh(Zi)

)
+ op(1)(5.4)

= n−1/2
n∑
i=1

(
h0(εi)− (`(εi)− `0(εi))σ2

∫
`0h0dF

)
+ op(1)

= n−1/2
n∑
i=1

(
h0(εi)− εi

∫
`0h0dF

)
+ op(1)

= n−1/2
n∑
i=1

(
h(εi)−

∫
hdF − εi

∫
`hdF

)
+ op(1).

For the last equation we have used `(z)− `0(z) = z/σ2 and
∫
`0h0dF =

∫
`0hdF =

∫
`hdF −

σ−2
∫
zh(z)dF (z).

Finite Fisher information for location implies continuous Hellinger differentiability for the
location model. Hence by assumption (2.1) and Lemma 7.2 in Ibragimov and Hasminskii (1981,
p. 67), we have

µ′(0) = −
∫
`hdF.

Comparing the characterization (5.4) with the i.i.d. representation in Theorem 1, we arrive at
the following result:

Theorem 4. Suppose Assumptions 1 to 3 hold. Then the estimator 1
n

∑n
i=1 h(ε̂i) introduced

in Section 2 is efficient.

The function hχ(z) = h(z) −
∫
hdF − z

∫
`hdF in (5.4) is called the efficient influence

function for estimators of Eh(ε). Suppose now that we know the regression function r. Then
we can observe the errors, and our problem reduces to estimating Eh(ε) from i.i.d. observations
ε1, . . . , εn. The efficient influence function, say h0, is obtained as above, now keeping r fixed:
h0(z) = h(z)−

∫
hdF − cz, with c defined as in (1.2). This shows that the improved empirical

estimator Hn(ĉn) introduced at the end of Section 2 is efficient if r is known. This result is
due to Levit (1975). We have the orthogonal representation

hχ(z) = h0(z)− z
∫
`0hdF.

Hence the variance increase of our estimator Ĥn over Hn(ĉn) is σ2(
∫
`0hdF )2.

The regression model is called adaptive with respect to r if we can estimate Eh(ε) for all h
as well not knowing r as knowing r. This is the case only if `0 = 0, i.e. if `(z) is proportional
to z, i.e. for normal error distribution.
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6. Proofs

Proof of Theorem 1. Write

∆ni = r̂ni − r(Xi) = εi − ε̂i.

By assumption (2.3), there is a sequence cn ↓ 0 such that P (maxi=1,...,n |∆ni| > cn) → 0.
Without loss of generality we may assume that cn ≤ c, where c is the constant appearing in
Assumption 1. Now set

Ĥ∗n =
1
n

n∑
i=1

h(εi −∆∗ni) with ∆∗ni = (−cn) ∨∆ni ∧ cn.

Since P{∆ni 6= ∆∗ni for some i = 1, . . . , n} ≤ P{maxi=1,...,n |∆ni| > cn} → 0, we have

Ĥ∗n = Ĥn + op(n−1/2).(6.1)

Also, by assumption (2.6),

1
n

n∑
i=1

∆∗ni =
1
n

n∑
i=1

εi + op(n−1/2).(6.2)

Introduce

Dni = h(εi −∆∗ni)− h(εi)−
∫

(h(z −∆∗ni)− h(z))f(z) dz

= h(εi −∆∗ni)− h(εi)− µ(∆∗ni) + µ(0).

In view of (6.1) and (6.2), it suffices to show that

T1 = n−1/2
n∑
i=1

Dni = op(1),(6.3)

T2 = n−1/2
n∑
i=1

(µ(∆∗ni)− µ(0)− µ′(0)∆∗ni) = op(1).(6.4)

It follows from assumptions (2.2) and (2.4) that

|T2| ≤ C2n
−1/2

n∑
i=1

|∆∗ni|1+α = op(1).

To verify (6.3), it suffices to show that

E(T 2
1 |X) =

1
n

n∑
i=1

E(D2
ni|X) +

1
n

∑∑
i6=j

E(DniDnj |X) = op(1).(6.5)
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By assumption (2.1),

E(D2
ni|X,Y−i) =

∫
(h(z −∆∗ni)− h(z)− µ(∆∗ni) + µ(0))2f(z) dz

≤
∫

(h(z −∆∗ni)− h(z))2f(z) dz

≤ C1|∆∗ni|1+α ≤ C1c
1+α
n .

Thus
1
n

n∑
i=1

E(D2
ni|X) =

1
n

n∑
i=1

E(E(D2
ni|X,Y−i)|X) ≤ C1c

1+α
n = op(1).

To deal with the cross-product terms, we introduce

∆nij = (−cn) ∨ E(∆ni|X,Y−j) ∧ cn,

Dnij = h(εi −∆nij)− h(εi)− µ(∆nij) + µ(0).

The key is the identity

E(DniDnj |X) = E((Dni −Dnij)(Dnj −Dnji)|X), i 6= j.(6.6)

To see this, note that

E(Dni|X,Y−i) =
∫

(h(z −∆∗ni)− h(z)− µ(∆∗ni) + µ(0))f(z) dz = 0.

Also, since Dnji does not depend on εi,

E(DniDnji|X) = E(E(DniDnji|X,Y−i)|X) = E(DnjiE(Dni|X,Y−i)|X) = 0, i 6= j.

Similarly, one verifies E(DnijDnj |X) = E(DnijDnji|X) = 0. This proves (6.6). Thus we get∣∣∣ 1
n

∑∑
i6=j

E(DniDnj |X)
∣∣∣ =

∣∣∣ 1
n

∑∑
i6=j

E((Dni −Dnij)(Dnj −Dnji)|X)
∣∣∣

≤ 1
n

∑∑
i6=j

E((Dni −Dnij)2|X)

≤ 1
n

∑∑
i6=j

E
(∫

(h(z −∆nij)− h(z −∆∗ni))
2f(z) dz

∣∣∣X).
Now use assumption (2.1) together with assumption (2.3) to bound the last term by

1
n

∑∑
i6=j

C1E(|∆nij −∆∗ni|1+α|X).

This is op(1) by assumption (2.5) because |∆nij−∆∗ni| ≤ |r̂nij− r̂ni| as the map t 7→ (−c)∨ t∧c
is Lipschitz with Lipschitz constant 1 for each c > 0. This completes the proof of (6.5) and
hence of (6.3).
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Proof of Theorem 2. We shall only sketch the proof and leave the details to the reader.
The key are the following properties.

(6.7) max
0≤l≤L

max
1≤i≤n

|qnil| = Op(1) and max
0≤l≤2L

max
1≤i≤n

|pnil(Xi)| = Op(1).

They follow from the corresponding results for the usual polynomial smoothers in which the
role of pnil is played by pnl defined by

pnl(x) =
1
n

n∑
j=1

wnl(Xj − x), x ∈ [0, 1],

and the fact that |pnil(x) − pnl(x)| ≤ ‖w‖∞n−1b−1
n for all x, l and i. Indeed, one has

sup0≤x≤1 |pnl(x) − E(pnl(x))| = op(1) for all l = 0, . . . , 2L by a standard argument and in
view of bnn1/3 → ∞, and one can show that the eigenvalues of the positive definite matrices
[E(pn,k+l(x))]l,k=0,...,L, 0 ≤ x ≤ 1, belong to a compact subset of (0,∞). It is now easy to
check that (3.8) to (3.11) hold, implying (3.7) in view of n1/2bL+β

n → 0. From (6.7) we also
obtain

1
n

n∑
i=1

n∑
j=1

A2
nij = Op(n−1b−1

n ).

Thus (3.5) follows from bnn
α/(1+α) →∞. Since the errors have finite second moment, we have

max1≤i≤n |εi| = op(n1/2). In view of this and (6.7), condition (3.4) follows from

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

wnl(Xj − x)εj
∣∣∣ = op(1), l = 0, . . . , L.

But these are verified by standard methods under the rate assumption n1/3bn → ∞: First
replace εj by εnj = εj1[|εj | < n1/2] − E[ε1[|ε| < n1/2]] and then apply the Hoeffding in-
equality. Finally, (3.6) is obtained by direct calculations utilizing that supbn≤x≤1−bn |pnl(x)−
g(x)

∫
tlw(t) dt| = op(1).

Acknowledgment. We thank an Associate Editor and two referees for suggestions that im-
proved the exposition considerably.

References

Akritas, M. G. and Van Keilegom, I. (2001). Non-parametric estimation of the residual distribution.
Scand. J. Statist. 28, 549–567.

Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models.
Ann. Statist. 22, 2051–2061.

17



Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive Estimation
for Semiparametric Models. Springer, New York.

Birgé, L. and Massart, P. (1995). Estimation of integral functionals of a density. Ann. Statist. 23,
11–29.

Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregression scheme. Theory
Probab. Appl. 27, 866–871.

Boldin, M. V. (1983). Testing hypotheses in autoregression schemes by the Kolmogorov and ω2 criteria.
Soviet Math. Dokl. 28, 550–553.

Boldin, M. V. (1989). On testing hypotheses in the sliding average scheme by the Kolmogorov–Smirnov
and ω2 tests. Theory Probab. Appl. 34, 699–704.

Boldin, M. V. (1998). On residual empirical distribution functions in ARCH models with applications
to testing and estimation. Mitt. Math. Sem. Giessen 235, 49–66.

Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of residual variance in
nonparametric regression. Biometrika 75, 189–199.

Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric
regression. J. Roy. Statist. Soc. Ser. B. (Methodological) 54, 773–780.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression —
what is a reasonable choice? J. Roy. Statist. Soc. Ser. B. (Methodological) 60, 751–764.

Dette, H., Munk, A. and Wagner, T. (1999). A review of variance estimators with extensions to
multivariate nonparametric regression models. In: S. Ghosh, Ed., Multivariate Analysis, Design
of Experiments, and Survey Sampling, Statistics: Textbooks and Monographs 159, Dekker, New
York, 469–498.

Efromovich, S. and Samarov, A. (2000). Adaptive estimation of the integral of squared regression
derivatives. Scand. J. Statist. 27, 335–351.

Eggermont, P. P. B. and LaRiccia, V. N. (1999). Best asymptotic normality of the kernel density
entropy estimator for smooth densities. IEEE Trans. Inform. Theory 45, 1321–1326.

Ghoudi, K. and Rémillard, B. (1998). Empirical processes based on pseudo-observations. In: B.
Szyszkowicz, Ed., Asymptotic Methods in Probability and Statistics, North-Holland, Amsterdam,
171–197.

Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric functional estima-
tion. Ann. Statist. 20, 1306–1328.
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