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1 Introduction

Suppose we want to calculate the expectation of a function f under a distribution 7 on
some space E. If F is of high dimension, or if 7 is defined indirectly, it may be difficult
to calculate the expectation 7f = E,f = [7(dx)f(z) analytically or even by numerical
integration. (The notation 7 f will be used throughout the paper.) The classical Monte
Carlo method generates i.i.d. realizations X°, ..., X" from 7, and approximates 7 f by
the empirical estimator

Bf= > f(XY)
i=1

If f is m-integrable, the estimator is strongly consistent. If f is m-square-integrable, the
estimator is asymptotically normal with variance w(f — f)2. Often, however, this Monte
Carlo method is difficult to implement. One reason is that high dimensional distributions
are hard to simulate. Additional difficulties arise when 7 is defined indirectly, as in many
Bayesian modeling situations, or known only up to a normalizing constant, as is usually
the case for random fields.

Markov chain Monte Carlo methods (MCMC) generate realizations X°, ..., X" of a
Markov chain with 7 as invariant law. (Here and in the following, by Markov chain we
mean a discrete-time Markov process with arbitrary state space, not a continuous-time
Markov process with discrete state space.) Again, the empirical estimator E, f can be
used to approximate 7 f, and we have an explicit expression for the asymptotic variance
of the estimator from the ergodic theory for Markov chains; see Section 2.

Choice of an MCMC method amounts to choice of a transition distribution ) from
the large family of those with invariant law 7. One important criterion is the speed with
which the law of the Markov chain converges to . This problem is well-studied, together
with the associated question of how long the sampler must run until the observations are
satisfactorily close to stationarity. Recent references are Schervish and Carlin (1992),
Chan (1993), Frigessi, Hwang, Sheu and Di Stefano (1993), Tierney (1994), Meyn and
Tweedie (1994), Ingrassia (1994), Roberts and Polson (1994), Athreya, Doss and Sethu-
raman (1996), Rosenthal (1995), Mengersen and Tweedie (1996), Roberts and Tweedie
(1996), Johnson (1996), Roberts and Sahu (1997), Kira and Ji (1997), Robert (1998),
Diaconis and Saloff-Coste (1998), Jerrum (1998), Roberts and Rosenthal (1998), Roberts



and Tweedie (1999, 2000) and Jarner and Roberts (2000). The initial observations from
this “burn-in” period are usually discarded.

At this point the transition distribution, (), used in the sampler may be changed to
one which is optimized according to a different criterion. Now the simulated data will
be used to estimate 7 f using either the empirical estimator or possibly an improved
estimator which exploits some property of the sampler. It is reasonable to judge the
sampler by the asymptotic variance of the empirical estimator. This criterion is utilized
by Peskun (1973), Frigessi, Hwang and Younes (1992), Green and Han (1992), Liu,
Wong and Kong (1994, 1995), Clifford and Nicholls (1995), Liu (1996), Fishman (1996),
and Mira and Tierney (1999). This survey will be about efforts to choose a sampler and
an estimator of 7 f where one starts from an already (approximately) stationary initial
distribution. For a short overview see Wefelmeyer (1998).

MCMC methods originated with the study of interacting particle systems (Metropo-
lis, Metropolis, Rosenbluth, Teller and Teller, 1953). More recently, MCMC methods
have been applied extensively to image analysis, starting with the Gibbs sampler of
Grenander (1983) and Geman and Geman (1984), and to Bayesian statistics (Smith
and Roberts, 1993), spatial statistics (Besag and Green, 1993, and Graham, 1994),
expert systems (Pearl, 1987, Spiegelhalter, Dawid, Lauritzen and Cowell, 1993), incom-
plete data problems (Tanner and Wong, 1987), and hierarchical models (Gelfand, Hills,
Racine-Poon, A. and Smith, 1990).

The algorithm of Metropolis, Metropolis, Rosenbluth, Teller and Teller (1953) and
its generalization by Hastings (1970) construct MCMC samplers as follows. Let K (x, dy)
be a candidate transition distribution on E. Write €,(dy) for the one-point probability
measure with mass at z. Find a function a(z,y) with values in [0, 1] such that

QU dy) = Kz, dy)a(z,) + ea(dy) [ Qa, d2)(1 ~ oz, 2))
is in detailed balance with 7,

7(dz)Q(z, dy) = 7(dy)Q(y, dz). (1.1)

This implies that 7 is the invariant law of (), and the chain is reversible under the
stationary distribution. Assume, for simplicity, that K (z, dy) has density k(z,y), except
perhaps for an atom at z = y. We refer to Tierney (1998) for a more general discussion.
The Metropolis algorithm takes k(x,y) symmetric, and

min{1, 29}, 7(2)k(z,y) > 0,

“%”:{1, (2)k(z,y) = 0.

The Hastings algorithm does not assume k to be symmetric, and takes

min{1, ZUHEEL - 7 (2)k(z, y) > 0,

1, m(z)k(z,y) = 0.

a(z,y) = {



The independence Hastings algorithm uses independent candidate realizations, k(z,y) =
k(y),

ale.y) = { P FERG L T(@)k(@) >0,
’ 1, (2)k(y) = 0.

The algorithms accept the proposal from K (z,dy) with probability a(z,y). If the pro-
posal is rejected, the same position is retained by the chain and the next transition is
considered. Tierney and Mira (1999) show that performance is improved if, upon rejec-
tion, instead of moving on to the next transition, another attempt to move is made by
proposing a new candidate, generated from a different distribution, which is allowed to
depend on the previously rejected value. This idea of delaying the rejection and adapt-
ing the proposal distribution is generalized to a more flexible class of methods in Green
and Mira (1999). These methods apply in particular to settings in which the dimension
varies. Optimal scaling of K (z,dy) for high-dimensional state space E is discussed in
Gelman, Roberts and Gilks (1996) and Roberts, Gelman and Gilks (1997).

Auziliary variable algorithms (also called substitution sampler or data augmentation)
consider 7 as the marginal of an appropriate distribution. For notational convenience,
we write m and F4 for the distribution and state space of interest. Introduce a new state
space Fy and a distribution 7(dzy,dzy) on E = E; X E,, with first marginal 7 (dzx,).
The distribution 7 can be factored into marginal and conditional distributions in two
different ways:

m(dz) = mi(dz1)pa(x1, dxe) = p1(x2, dx1)ma(dLs).

The auziliary variable algorithm is the Markov chain with transition distribution

Q(z1,dy:) = /p2($1ad$2)171($2adyl)- (1.2)

The algorithm of Swendsen and Wang (1987), see also Edwards and Sokal (1988), is a
data augmentation algorithm. The monograph of Tanner (1996) has a chapter on data
augmentation. We refer also to Besag and Green (1993), Higdon (1998) and Mira and
Tierney (1999).

Another example of an auxiliary variable method is the slice sampler. See Neal
(2000), Damien, Wakefield and Walker (1999), Roberts and Rosenthal (1999) and Fish-
man (1999). The underlying idea is that, as in ordinary rejection sampling, one can
simulate from a distribution by simulating uniformly from under its density. For the
simple slice sampler, we write again m; and FE; for the distribution and state space
of interest. We assume that 7 (dz;) has density proportional to f(z1), and choose a
factorization

f($1) = f1($1)f2($1)a

where sup,. fo(z1) = 1. We take E;, = (0,00) and py(z1,dx;) the uniform distribution
on (0, fo(z1)), and introduce the joint distribution

7(dx) = m(dz1)pa(x1, dxs).
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The conditional distribution p;(x9, dz1) of 1 given x5 has density proportional to

J1(@1) 1o (21)>20) (#1)-

The transition distribution of the simple slice sampler is now defined by (1.2).

The Gibbs sampler requires that the state space E is a product space, say F =
E, x...x Ey. Foreach j =1,...,k, we can express x € E by separating out the j-th
component = (xj,7_j), Where x_; is obtained from z by omitting the j-th component
xj. Factor 7 in k different ways,

n(dz) = n_;(dz_;)p;j(x_;,dz;), j=1,...,k, (1.3)

with p;(z_;,dz;) the one-dimensional conditional distribution under 7 of z; given z_;,
and 7_j(dz_;) the (k — 1)-dimensional marginal distribution of z_;. Gibbs samplers
successively use the transition distributions

Qj(z,dy) = pj(z—;, dy;)e._;(dy—;)

which change only the j-th component of z.

The Gibbs sampler with deterministic (and cyclic) sweep applies @), cyclically ac-
cording to the numbering j = 1,...,k of the components. The transition distribution
at time ¢ = (¢ — 1)k + j is @;. The chain is neither homogeneous nor reversible.
For j = 1,...,k — 1, the realization X@ Y*+J is determined by X D*¥ and X% as
(X<J,X(q 1)k) where z<; = (x1,...,%;), T>; = (Tj41,...,%x). Hence nothing is lost if
we observe only the chain X(@ 1k ¢ =12 .... By “Gibbs sampler” one often means
this subchain of full sweeps, with transition distribution

k
Q(z,dy) = Q1+ Qu(z, dy) = H (Y<j» T>j, dy;), (1.4)

The subscript (d) stands for deterministic. The auxiliary variable method may be viewed
as the marginal of a two-step full sweep Gibbs sampler, k = 2.

For the Gibbs sampler with random sweep (with equal probabilities), each index j
is picked according to the uniform distribution on 1,... k, independently at successive
time steps. The transition distribution of the corresponding Markov chain at each time
is

k
Qey(z,dy) = Z (z,dy) = ij (x_j, dyj)ec_; (dy—;).

] 1

?rl»—'

The subscript (r) stands for random. The chain is reversible.

Sections 2 and 3 recall probabilistic and statistical results for general Markov chains.
The asymptotic variance of the empirical estimator F,, f is described in Section 2. Section
3 determines a lower bound for the asymptotic variance of estimators for 7 f when
the observations come from a Markov chain model. Section 4 shows, for reversible



Markov chains, that for arbitrary f the asymptotic variance of E, f is reduced if f is
replaced by an appropriate conditional expectation, a form of Rao—Blackwellization of
the empirical estimator. Section 5 applies Section 3 to Gibbs samplers with deterministic
and random sweep and compares the asymptotic variances of the empirical estimator
obtained using these samplers. The asymptotic variance under deterministic sweep is
about half that under random sweep. Section 6 applies Section 4 to Gibbs samplers and
gives lower bounds for the asymptotic variance of estimators for 7w f. The information
bounds coincide for continuous 7. If the components of 7 are not strongly dependent,
the empirical estimator is close to efficient under any deterministic sweep. In Sections 7
and 8 we consider Gibbs samplers for random fields on a square lattice and exploit local
interactions and symmetries of the random field to improve empirical estimators.

For an introduction to MCMC methods, with emphasis on convergence diagnos-
tics, we refer to the monographs by Robert (1996), Gamerman (1997) and Robert and
Casella (1999). For a review with applications to probabilistic inference see Neal (1993).
MCMC methods for Gibbs fields are described in Brémaud (1999). Applications to
Bayesian statistics are discussed in Besag, Green, Higdon and Mengersen (1996) and in
the monograph by Gilks, Richardson and Spiegelhalter (1996).

Preprints on MCMC methods can be downloaded via the MCMC Preprint Service
of the Statistical Laboratory at the University of Cambridge. The BUGS software for
various samplers is developed jointly by the Biostatistics Unit of the Medical Research
Council in Cambridge and by the Imperial College School of Medicine at St Mary’s in
London; see Spiegelhalter, Thomas and Best (1996). Christian Robert has a web page on
convergence diagnostics; see also Mengersen, Robert and Guihenneuc-Jouyaux (1999).
The homepages are:

http://www.statslab.cam.ac.uk/~mcmc/,

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml,

http://www.crest.fr/pageperso/ls/robert/robert.htm.

2 The asymptotic variance of empirical estimators
for Markov chains

In this section we consider observations X°, ..., X" from an Markov chain on an arbi-
trary state space E, with transition distribution Q(z,dy). See Tierney (1996) for an
introduction to Markov chains on general state spaces. We give conditions under which
the empirical estimator

=1

is asymptotically normal, and describe its asymptotic variance in various ways. Appli-
cations to MCMC methods will be given in later sections.
As usual, we write

T Q Q(dz,dy) = n(dz)Q(x,dy).
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For functions f(z) and h(z,y), we write

Quf =Q.f) = [Qdy)f().
Quh=Q,h) = [ Q,dy)h(z,y)
TQQh = /W(d:v)/Q(x,dy)h(:v,y).

Then (Qf)(z) = Q. f defines an operator on Ly(7). We assume that the chain is positive
Harris recurrent, with invariant distribution 7(dx), and that it is V-uniformly ergodic,
ie,V:FE —[1,00) and

|Qzv — ]
sup sup —————

— 0 forr— oo.
s pi<v - V(2)

We refer to Meyn and Tweedie (1993) for these concepts. Under these assumptions, if
f%2 <V, the empirical estimator E,, f is asymptotically normal. The asymptotic variance
is described as follows. Introduce the potential U by

Uwf:iO:Q;f if 7f =0 (2.1)
r=0

Define the operator A by centering U conditionally given z,
Af(a) = U(f =) = QU = /) = 3(@3 - Q3. (2.9
The empirical estimator admits a martingale approrimation
n2(E,f —7f) = n‘l/QiAf(Xi‘l,Xi) +0p(1). (2.3)
i=1
The approximation is due to Gordin (1969). Write
H=A{h(z,y) :he Ly(r®Q), Qh=0 forxe E}. (2.4)

Under the stationary distribution of the chain, h(X* !, X?) is a martingale increment.
For h € H we have a martingale central limit theorem,

n-1/2 Z h(Xz'—l,Xi) = (T® Qh2)1/2 "N, (2.5)
i=1

where N is a standard normal random variable, and convergence is in distribution. See
e.g. Meyn and Tweedie (1993, Chapter 17). Note that Af is in H. Hence the term
Af(X* 1 X% is a martingale increment. From the martingale approximation (2.3) and
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the central limit theorem (2.5) it follows that the empirical estimator E, f is asymptot-
ically normal with variance

r®QAf)? = w(U( —nf) —m(QU(f )
= w(f-mp A ((f ) @) (20

Suppose that the Markov chain is reversible. This means that () is in detailed balance
(1.1) with 7. Then the asymptotic variance of the empirical estimator can be written
in the following way; compare Mira and Geyer (1999). By Theorem 2.1 of Roberts and
Rosenthal (1997) and the V-uniform ergodicity of @, the transition distribution @ is
Lo (m)-geometrically ergodic: There are constants p < 1 and C' < oo such that

sup m(Qf —7f)* < Cp.

mf2<1

Further, detailed balance is equivalent to selfadjointness of () as an operator on Ly(7),

7(f-Qg) =m(Qf -g) for f,g € Ly(m). (2.7)

Write I(x, dy) = €,(dy) for the identity kernel. The spectrum o of @ is the set of A such
that AI — @ is not invertible. It is a nonempty closed subset of [—1,1]. Let

Lyo(m) ={f € Ly(w) : mf = 0}.

By the spectral theorem, there is a unique spectral measure M on Borel sets of o such
that

Qf :/)\M(d)\)f for f € Loo().
See e.g. Conway (1990, Theorem I1X.2.2). Introduce

M¢(d\) =7n(f - M(dN)f) for f € Lyo(m). (2.8)

For f € Ly(m), the asymptotic variance of the empirical estimator E, f can be written
as

1
[ My (), (29)
see Kipnis and Varadhan (1986). We refer to Mira and Geyer (1999) for an exposition
of these results.

As noted in the Introduction, it is reasonable to judge an MCMC sampler by the
asymptotic variance of empirical estimators. Let P(z,dy) and Q(z,dy) be transition
distributions of reversible Markov chains with common invariant distribution 7(dx).
Write v(f, P) for the asymptotic variance of the empirical estimator E, f if the Markov



chain is generated by P. Mira and Geyer (1999) say that P is at least as efficient as Q
if

v(f,P) <v(f,Q) forall fe Ly(m).

They show that this efficiency ordering is equivalent to covariance ordering,

n(f-Pf) <w(f-Qf) forall fe Lyy(m).
Tierney (1998) says that P dominates Q off the diagonal if
P(z,B) > Q(z,B) for B not containing z, and for m-a.a. x.

He proves that in this case P is at least as efficient as (0, and () — P is positive definite on
Ly (7). Domination off the diagonal is a strong ordering. If the probability of staying in
x is zero under ), then we must have P(z,-) = Q(z, -). Domination off the diagonal was
introduced by Peskun (1973) for discrete state space; he also proved that the property
implies efficiency ordering. Mira and Tierney (1999) show that, given any independence
Metropolis algorithm, it is possible to construct a slice sampler that dominates it off the

diagonal.
Suppose that the state space E is finite, with NV elements. Let 1 = A; and 1 > Ay >
--- > Ay be the eigenvalues of (), and e; =1, e,, ..., ey the corresponding eigenvectors,

with me, = 1 for all r. For all f,

T((f=7f)-e))=n(f—7f)=0
and

f-nf= ;W((f_ﬂ—f)'er)e'r-

If the chain is reversible, we have
N
M(d\) =D ex (dN)(7(f -¢,))* for f with mf =0, (2.10)
r=2

and the asymptotic variance (2.9) of E,, f is

> iij (n((f =) -e))" (2.11)

r=2

We refer to Frigessi, Hwang and Younes (1992) and Green and Han (1992).

A large spectral gap 1 — Ay entails a fast rate of convergence of the Markov chain
to stationarity. On the other hand, the asymptotic variance (2.11) of the empirical
estimator involves all eigenvalues and is small if g, ..., Ay are small and negative.

Suppose P and () are reversible transition matrices with common invariant proba-
bility vector 7 and eigenvalues 1 = A\jp > Agp > -+ > Aypand 1 = Ajg > Mg > -+ >
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Ang. Mira and Geyer (1999) note that if Q — P is positive, then \,p < A, for all r.
This follows from the Courant—Fisher minimax representation

m(f-Qf)

r+1,Q 91 yeemsGr f:ﬂ(]i-gs):o 7T(f : f) ’
s=

..... T

where the minimum is taken over all vectors gy, ..., g,. For this representation see e.g.
Horn and Johnson (1985, Theorem 4.2.11).

For Monte Carlo methods based on i.i.d. realizations X°,..., X" from 7, a well-
known variance reduction method consists in generating antithetic variables Y°,... Y™
with the same distribution as X, ..., X™ but negative correlation between f(X"*) and
f(Y?). Then the empirical estimator 5= 37 (f(X") + f(Y")) has smaller asymptotic
variance than the usual empirical estimator based on 2n realizations. Similar results
hold for MCMC data; see in particular Frigessi, Gasemyr and Rue (2000) for Gibbs

samplers.

3 Efficient estimation for Markov chain models

In this section we determine a lower bound for the asymptotic variance of estimators for
7 f when the observations X° ..., X" come from a Markov chain on an arbitrary state
space E. For a review of efficient estimation of functionals on Markov chain models we
refer to Wefelmeyer (1999). The variance bound is based on a nonparametric version of
Héjek’s (1970) convolution theorem. It requires the model to be locally asymptotically
normal in the following sense.

Let © be a possibly infinite-dimensional set, the parameter space. A Markov chain
model is described by a family Qy, ¥ € O, of transition distributions on the state space
E. Fix 9 € © such that the Markov chain corresponding to () = Qy is positive Harris
recurrent with invariant distribution 7 = my. Assume that © is smooth in the following
sense. There are a linear space M, the tangent space of © at ¥, and a linear map
D : M — H, with H defined in (2.4), and for each m € M there is a sequence ¥, such
that Qnm = Qy,,,, is Hellinger differentiable with derivative Dm,

d@

where 7, decreases to 0 pointwise and is m-integrable for large n. This version of Hellinger
differentiability is due to Hopfner, Jacod and Ladelli (1990).

Write P, and P,,, for the joint distribution of X° ..., X™ under Q and Q,,, re-
spectively. As in Hopfner (1993) we have a nonparametric version of local asymptotic
normality for the likelihood ratio. For m € M,

1 AP,
8P,

[ @Gy ((dQ"T"(x,y))l/Q—l—%n“Dm(x,w) <ntn@@), (3

n ) ) 1
=n~'2% " Dm(X'LXY) = om @ Q(Dm)’ + op, (1),

i=1



1/

n V23 Dm(XL X)) = (r@Q(Dm)?) " N under B, (3.2)

=1

where N is a standard normal random variable. The last result is just the central
limit theorem (2.5). Local asymptotic normality for Markov chains was first proved by
Roussas (1965) for parametric models, and by Penev (1991) for nonparametric models.

The norm 7 ® Q(Dm)? induces an inner product 7 ® Q(Dm - Dm’) on M. Consider
myf as a functional of 1. The functional is differentiable at ¥ with gradient g if g € H
and

2 (Tpmf —7f) > 7@ Q(Dm - g) for m € M. (3.3)

The canonical gradient gy = Dmyg is the projection of g onto DM. The function my is
uniquely determined by

M2 (Tpmf — 7f) = 7 ® Q(Dm - Dmg)  for m € M. (3.4)

The canonical gradient is not always easy to calculate. Sometimes it is easier to find
another gradient first (which may, in turn, be canonical in a larger model). One can then
try to project that gradient into the tangent space. One such gradient is the function
Af defined in (2.2), as follows from the perturbation expansion of Kartashov (1985a, b)
and (1996, Section 4.2), and using @QDm = 0: For m € M,

n1/2(7rnmf —7nf)— /W(dx)Q(x,dy)Dm(x, YU, f =7 Q(Dm - Af). (3.5)

Another approach to calculating the canonical gradient is possible when the tangent
space M comes equipped with some inner product, as is usually the case. This approach
is used in Section 6 for the Gibbs sampler. We denote the inner product by (m,m').
It may then be possible to find the gradient m,; with respect to this inner product,

Y2 (pmf — wf) = (m,mar)y for m e M.
Comparing with (3.4), we see that the canonical gradient Dmy is now determined by

(m,muy)m =7 Q@ Q(Dm - Dmg) for m € M.
If D has an adjoint D* : H — M, we have

T ® Q(Dm - Dm') = (m, D*Dm')y;  for m,m' € M.
Hence, if D*D has an inverse, the canonical gradient is Dmg with
mo = (D*D) 'my,.

In fact, one can avoid calculating D*. It suffices to find an operator C such that

7 ® Q(Dm - Dm') = (m,Cm')y  for m,m' € M.
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Then the canonical gradient is Dmgy with mg = C 'my,. It may happen that C!
is difficult to determine but that C' can be written as a perturbation of the identity
operator, say C = I — B. If B is not too large, C~! may then be written as the von
Neumann series C~1 = 322 B", and mg = Y02 B'myy.

Efficient estimators for 7w f are characterized as follows. Call an estimator 7, regular
for 7 f with limat L if

n*?(T, — Tpmf) = L under P, for m € M.

Call T,, asymptotically linear with influence function h if h € H and

n'?(T, —nf) =n 23 WX, X7) + op, (1).
i=1

By a result of LeCam, see Bickel, Klaassen, Ritov and Wellner (1998, Section A.9),
an asymptotically linear estimator is regular if and only if its influence function is a
gradient. The martingale approximation (2.3) says that the empirical estimator E, f is
asymptotically linear with influence function Af. Since Af is a gradient by (3.5), the
empirical estimator is regular.

The convolution theorem of Hajek (1970) in the version of Pfanzagl and Wefelmeyer
(1982, Theorem 9.3.1), or see Bickel, Klaassen, Ritov and Wellner (1998, p. 63, Theorem
2), applied now for Markov chains, says that if T, is regular with limit L, then

<n—1/2 ZgO(Xi_I;Xi); nl/Z(Tn o ﬂ—f) - n—l/?zgo(Xi—l’Xi)>

= ((7r®Qg§)1/2-N, M) under P,, (3.6)
with M independent of N, and gy the canonical gradient. In particular,
L=(m®Qg)Y* N+ M in distribution.

For every a > 0 we have P(—a < ¢N < a) > P(—a < ¢N + M < a). This justifies
calling T;, efficient if

L=(r®Qg)Y* N in distribution.
It follows from (3.6) that T, is efficient if and only if it is asymptotically linear with
influence function equal to the canonical gradient,
n'2(T, —7f) =n""3 go(X1, XP) + op, (1).
i=1

An efficient estimator is asymptotically normal with variance 7 ® () gg. We call this vari-
ance the asymptotic variance bound. In Section 6 we calculate the asymptotic variance
bound for Gibbs samplers with random and deterministic sweep.
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4 Improving empirical estimators by conditioning

To begin let X', ..., X" be independent and identically distributed as 7, and let f be
a m-square-integrable function. The empirical estimator F,f = %Z?Zl f(X?) for the
expectation 7 f is asymptotically normal with variance 7(f — 7 f)?. Now replace f(X?)
by a conditional expectation E,(f(X?)|h(X?)), where h is some function. Then the
Rao—Blackwellized empirical estimator

EL(fh) = > Bx(F(X) A(X) (1.1)

2
has asymptotic variance 7T(E7r( flh) —=nf ) . The Rao—Blackwell theorem says that it is
smaller than the asymptotic variance of £, f,

W(Ew(f‘h) - 7rf)2 <7w(f —7f)> (4.2)

Of course, the “estimator” E,E,(f|h) can be used only if E;(f|h) does not depend on
7, e.g., when h is sufficient.

Recently, there has been considerable interest in developing versions of the Rao—
Blackwell theorem in the context of stochastic simulation, and for Markov chain Monte
Carlo (MCMC) in particular. See Casella and Robert (1996) and the references cited
therein. Early references are Kalos and Whitlock (1986, Section 4.2) and Pearl (1987).
See also Neal (1993, Section 6.3). Gelfand and Smith (1990, 1991) consider i.i.d. runs
of a Gibbs sampler. In the empirical estimator based on the final value of each run,
they replace f by a conditional expectation under 7. For long runs, the final values are
distributed approximately according to m, so the classical Rao-Blackwell theorem (4.2)
implies that the variance is reduced. Single runs of Markov chains are studied in the
following references. Liu, Wong and Kong (1994) consider auxiliary variable algorithms
of the form Q(z1,dy;) = [p2(x1,22)p1(x2,dy;) and the Rao—Blackwellized empirical
estimator

E.p.f = %Z/pl(Xé,dyl)f(yl)-
i=1

They prove that the variance is always reduced. Casella and Robert (1996) propose some
types of Rao—Blackwellization for the Metropolis-Hastings algorithm. Their approach
is to integrate out some or all of the uniform random variables involved.

Let X°, ..., X" be realizations of an arbitrary Markov chain with transition distri-
bution Q(z,dy) and invariant distribution 7(dz). Assume that the Markov chain is
positive Harris recurrent and V-uniformly ergodic, and that f2 < V. Then the Rao-
Blackwellized empirical estimator F, E.(f|h) is asymptotically normal, and by (2.6) its
asymptotic variance is

w (B (fIh) —nf)” +22 ((Bx(flR) =7 f) - @ (Ex(fIh) = 7f)).
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Geyer (1995) gives necessary and sufficient conditions for E,E,(f|h) to have smaller
asymptotic variance than F, f for all f simultaneously, and points out that these con-
ditions are unlikely to be satisfied in practice.

McKeague and Wefelmeyer (2000) suggest a different version of Rao—Blackwelliza-
tion. Rather than conditioning f(X*) on a function h(X?), they condition on the previous
value of the chain. The function f(z) in the empirical estimator E, f is replaced by
Q(z, f) = E(f(X")| X! = z). Their Rao-Blackwellized empirical estimator is therefore

12 ;
E.Qf = -2 QX )
i=1
Rao—Blackwellization can be repeated, leading to the estimator
1 .
Eanf = 5 Z Qk(XZa f)
i=1

For reversible chains, this Rao—Blackwellization reduces the asymptotic variance simul-
taneously for all f. Schmeiser and Chen (1991) prove this result for the Hit-and-Run
algorithm proposed by Belisle, Romeijn and Smith (1993). The result does not hold, in
general, for non-reversible chains.

Theorem 1. Let X°, ..., X" be realizations of a Markov chain which is positive Harris
recurrent, V -uniformly ergodic and reversible. For f € Lo(r), the asymptotic variance
of E,QFf is less than that of E, f, and the variance reduction is

Z ([ + Q@ (f - 1)

The asymptotic variance of E,Q* f tends to zero as k goes to infinity.

The proof is simple. By (2.6) and selfadjointness (2.7), the asymptotic variance of
E,Q"f is

T(Q*f-nf)- (I+2 2 Q)Q (f - 7))

=n((f=rf)-@¥f-7H))+2 > #((f-7f))-Q(f-7f). (43)

r=2k+1

The asymptotic variance (4.3) of E,QF f is obtained from the asymptotic variance (2.6)
of E, f by omitting the term 7(f — 7 f)?, the terms of order r = 1,...,2k — 1, and half
the term of order 2k. This implies the second part of Theorem 1.

The difference between (2.6) and (4.3) can be written as

k—1

w((f=7f)- U+ QQ¥(f —nf)).

=0
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This implies the first part of Theorem 1.
Theorem 1 can also be expressed in terms of the spectral measure. By (2.9) and
(2.8), the asymptotic variance of E,QFf is

L1+A

T ((f =) B@)( =),

and the variance reduction over E, f is

14X
[ =X ((f =7 ) - BN (S = 7).
-11=2A
Suppose that the state space F is finite, with NV elements. Let 1 =X\ > Ay > --- >
An be the eigenvalues of (), and e; = 1,e,,..., ey the corresponding eigenvectors, with
me, = 1. Then the variance reduction is

> = (= m) -e)”

r=2

McKeague and Wefelmeyer (2000) illustrate Theorem 1 with simulations for the Ising
model and the Gibbs sampler, and for f the r-th nearest neighbor correlation.

5 Asymptotic variance of empirical estimators for
Gibbs samplers

Let F = E; x ... x E}; be a product of measurable spaces, with product o-field, and let
7(dz) be a distribution on E. Gibbs samplers successively use the transition distributions
Qj(r,dy) = pj(x_j,dy;)es_;(dy ;), with p;(z_;, dz;) the one-dimensional conditional
distribution under 7 of x; given z_;, introduced in (1.3). For a function f(x) we have
by definition of @,

,j,

Qj(z, f) = /Qj(x,dy)f(y) = /pj(x,j,dxj)f(x,j,xj) = pj(z—j, f)-
In particular, Q;(z, dy) does not depend on z,;. Hence Q); is idempotent,

Qi = Q. (5.1)

This means that @), is a projection operator on Ly(7). Indeed, we can write Ly(7) as the
orthogonal sum of two subspaces, one consisting of functions f with Q;f = 0, the other
of functions f(z) not depending on z;, and @); is the projection on the second subspace
along the first. Therefore,

7(f-Q;f) =7(Q;f -Q;f") for f,f' € Ly(m). (5.2)

14



Relation (5.2) implies that @;, as an operator on Lo(7), is positive,

m(f-Q;f) =m(Q;f-Q;f) =0 for f e Ly(m), (5.3)
and selfadjoint,
T(f - Qif) =m(Q;f - Qif) =m(Q;f - f') for f, f" € La(m). (5.4)
The last relation is seen to be equivalent to detailed balance,
m(dz)Q;(z, dy) = m(dy)Q;(y, dx). (5.5)

This, in turn, implies again that (); has invariant law .

The Gibbs sampler for 7 with deterministic (and cyclic) sweep has transition distri-
bution Q; at time 7 = (¢ — 1)k +J; the subchain of full sweeps has transition distribution
Q1---Qp. Let X° ..., X" be realizations from the Gibbs sampler with deterministic
sweep, with n a multiple of k, say n = pk. We want to estimate the expectation 7 f of a
function f. The most common estimator for 7 f is the empirical estimator based on the
subchain X*, ... XPk

k 1 u k

The empirical estimator based on the full chain X!,..., X" is
1 n 1E&
Ef==> f(X")=>-> E)f
iz k=
with
, 12
Eif ==3 fe;(X@ Dk x%)
and

f<i(@,y) = f(y<)s 7).
The estimator EJ f is based on the subchain X7, X*k+7 . . X®-Dk+],

To fix things, by asymptotic distribution of an estimator 7,, we will mean the asymp-
totic distribution of n'/2(T;, — 7 f), even though standardizing by p'/? rather than n'/?
is more common for the empirical estimator EY f.

Greenwood, McKeague and Wefelmeyer (1998) calculate the asymptotic variance
of EJf and E,f, using the form (2.6) of the asymptotic variance in the central limit
theorem for Markov chains.

Theorem 2. Assume that the Gibbs sampler for m with deterministic sweep is positive
Harris recurrent and the subchains are V -uniformly ergodic, and that f2 < V. Then the
empirical estimator EJ f is asymptotically normal with variance

02 = kn(f — 7 f)? + 2k le((f —nf) B = wf)),
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where pCyCI " =pipjt1- - PrP1D2 - - - with T terms.

Theorem 3. Under the assumptions of Theorem 2, the empirical estimator E,f is
asymptotically normal with variance

?rln—k

00 k
cg=n(f—nf)’ +2 3 - Y ((f —af) -5 (f — 7).

r=1" j=1

Because the empirical estimator E¥f based on the subchain of full sweeps is often
used in practice, we have included the description of its asymptotic variance in Theorem
2. However, we do not recommend this estimator; the simulations in Figure 1 below
show that E¥f can be considerably worse than E,, f. This is true even when 7 has only
two components; see Greenwood, McKeague and Wefelmeyer (1996).

Theorem 4. Assume that the Gibbs sampler for m with random sweep is positive Harris
recurrent and V -uniformly ergodic, and that f € Lo(w). Then the empirical estimator
E, f is asymptotically normal with variance

ofy = m(f—7f)?+2 gw((f —7f) - Qp(f—f))

k

= W(f—ﬁf)%r?ilm' ZZIW((f—Wf)'pjl"'pjr(f—ﬁf))-

Ji#di+1

The second summation in of, contains k(k — 1)"~" terms, each being an r-order

autocovariance of the form 7r((f —nf) o v (f — 7Tf)). From Theorem 3, the
r-order term in O'(Qd) is an average of k of these r-order autocovariances, those of the

form 7r((f —7f)-p Cyd R(f - 7rf)). One might expect that o) ~ (k/(k — 1))o,), or
that O'(QT) is slightly larger than O'(Qd). Such a result holds if one considers a random
sweep without repetition, see Fishman (1996, Theorem 8). Greenwood, McKeague and
Wefelmeyer (1996) argue, however, that a(zr) can be up to twice as large as 0(2d), even if
k is large. This is also seen in simulations; see Figure 1. The reason is that the higher-
order terms in 0(2,) can decay more slowly than those in O'(Qd) This is easily seen in the
special case of independent components. Then 7r(( f—nf)-p Cyd f -7 f)) vanishes
for s > k, because integration of f(z) cyclically over k components gives 7 f. However,

7r((f —nf) pj 0 (f — 7Tf)) vanishes only if all £ components are present among
Ji---,Js- Also, if some of the j; are equal, fewer than r components are integrated

out, 5o 7((f —f) -y, <++p;, (f = wf)) is laxger than any 7 ((f =) p" ™ (f = 7))
“covering” ji..., Jp-
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6 Asymptotic variance bounds for Gibbs samplers

In Section 5 we have determined the asymptotic variance of the empirical estimator for
an expectation 7 f under the Gibbs sampler with random and deterministic sweep. In
this section we consider another criterion by which MCMC methods can be judged: How
much information about 7 f is contained in the simulated values X°, ..., X" given the
knowledge that a particular sampler was used to generate them? In particular: What
fraction of the information is exploited by the empirical estimator? It is assumed that
no information about 7 itself is made available to the statistician, apart from the link
between 7 and the transition distribution of the observed Markov chain. Of course, 7 is
known in principle, and part of that knowledge can sometimes be exploited to improve
upon the empirical estimator. An example is Rao—Blackwellization, see Section 4. If 7
is a random field on a lattice and the interactions between the sites are known to be
local, improved estimators are described in Section 7. Symmetries of 7 are exploited
Section 8.

We keep the setting of Section 5. Consider first the Gibbs sampler with deterministic
sweep. The subchain of full sweeps has transition distribution Q4 = Q1 - - - Qx, see (1.4).
It is parametrized by w. To determine the information bound of (regular) estimators of
7 f, we must prove that the model is locally asymptotically normal (3.2). A perturbation
of 7 is of the form

Tk (dz) = 7(dz)(1 +n~"k()),

with £ in
M = {m(x) : m measurable, bounded, 7m = 0}. (6.1)
Write pj nm(2—;, dz;) for the one-dimensional conditional distribution under 7, (dz) of

x; given z_;. The effect of the perturbation of m on p; is easily obtained as follows
(Greenwood, McKeague and Wefelmeyer, 1998, Lemma 1): Uniformly in z,

Pim(@ s dj) = pj(x_j, dz;) (1407 °m;(@) + O(n™))

with m;(z) = m(z) — Qj(z,m) = m(x) — pj(xz_;, m).
Write Q(qynm for the transition distribution (1.4) of the Gibbs sampler for 7, with
deterministic sweep,
k
Q(d)nm (SC, dy) = (Ql,nm e Qk,nm)(mv dy) = H pj,nm(y<ja T>j, dy])

j=1

It follows easily that Q(4nm is obtained by perturbing @) as follows: Uniformly in z
and y,

Q(d)nm(wa dy) = Q(d) (l‘, dy) (1 + n_1/2 (D(d)m(l‘a y) + O(n_l)) (62)
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with
k
Dgym(z,y) =Y m;(y<j, T>;)- (6.3)

Jj=1

Relation (6.2) implies that Q(q)n, is Hellinger differentiable (3.1) with derivative D gym.

Write Pg), for the joint distribution of X0 Xk .. XPkif 7 is true, and Paynm if Tpm
is true. If the Gibbs sampler for 7 with deterministic sweep is positive Harris recurrent,
we obtain local asymptotic normality (3.2) of the form

P 1
log dPaynm/dPgyn = n~* 2‘1 Dgym(X Dk Xk — 5™ @ Q(D@m)” + op,,(1)- (6.4)
q:

The desired minimal asymptotic variance of regular estimators of 7 f is the squared
length of the gradient of mf. To determine this gradient, we note that by definition of
Tpm, and since mm = 0,

2 (Tpmf — 7f) =7rmf=7r(m-(f—7rf)) for m € M.

Comparing this relation with definition (3.4) of the gradient, we see that the canonical
gradient is 9@ = D@yma) with m(q) fulfilling
T ® Q(Dgym - Digymyq)) = 7T<m- (f — 7rf)) for m € M.
The left side can be written
(m- (I = Qu)m);

see Greenwood, McKeague and Wefelmeyer (1998, Lemma 2). Surprisingly, this inner
product for deterministic sweep involves the transition distribution for random sweep.
Let || ||z be the operator norm on Ly(7), defined by [|Q|5 = sup, j2c; 7(Qf)> for an
operator @ on Ly(7). If ||Q{,|l2 < 1 for some ¢, we obtain

m@y = I = Qu) ' (f —7f).
Hence the asymptotic variance bound is
w((f=7f)- (I = Q) '(f—7f)).

After some calculation we arrive at the following result; see Greenwood, McKeague and
Wefelmeyer (1998, Theorem 1).

Theorem 5. Let f € Ly(m), and assume that ||Q,lla < 1 for some t. For the Gibbs
sampler with deterministic sweep, the asymptotic variance bound is

Bay = n((f=7f)- (I = Qw)™(f - 7))

9] k
= - X . 5 2 (=) pop (f = 7).
" g
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Note that B(g does not depend on the order of the deterministic sweep; it only
depends on 7 and f-

The result for random sweep is more involved. Write Q(;),m for the transition dis-
tribution of the Gibbs sampler with random sweep for 7,

Q( nm(x dy ZQj,nm x, dy Zp],nm x—jadyj)gx_J (dy ])

] 1

The perturbation of Q) now involves the probabilities of not changing the value when
updating a component. The reason is that the transition distribution Q;(z,dy) is sup-
ported by the line through z parallel to the j-th coordinate axis, {y : y_; = z_;}. Hence
the support of Q) (z,dy) is contained in the union of the & lines. The supports of the
Q,(z,dy) are disjoint except for the point x, which may be charged by some or all of
them. Therefore, to calculate the Q(x, dy)-density of Qqyum (2, dy), we must treat
separately. We assume that the o-field on each E; contains the one-point sets, which
will be the case in all applications.

Greenwood, McKeague and Wefelmeyer (1998, Lemma 4) show that for m € M, and
uniformly in z and v,

Qurynm (7, dy) = Q@) (w, dy) (1 + ™2 Diym(z, y) + O(n™")) (6.5)
with

Dgym(z,y) = ;(Djm)(fc,y),

Dm)ay) = (s =25)— (1 - 291 = o))y ),
ri(x) = pjlz_;{z;}), r(z)=>_ri(=).

Relation (6.5) implies that Q(,)nm, is Hellinger differentiable (3.1) with derivative Dym
Write Py, for the joint distribution of X% X*, ... XP*if & is true, and Py if Tnm
is true. If the Gibbs sampler for 7 with random sweep is positive Harris recurrent, we
obtain local asymptotic normality (3.2) of the form

" . . 1
log dP(,«)nm/dP(r)n =n1/? Z(K(’”)m) (Xz_l, XZ) - 571’ &® Q(D(r)m)Q + OP(r)n(]')' (6.6)
=1

Similarly as for deterministic sweep, the canonical gradient is gy = D(ym() with m,
fulfilling
T Q(D(T)m . D(r)m(r)) = 7T( (f — ’ﬂ'f)) for m € M.

By Greenwood, McKeague and Wefelmeyer (1998, Lemma 5), the left side can be written
7r<m . (I — Q(,«) + S)M(r))
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with
1 k
Sm = % Z: Z]QJ
Rij(z) = 6yrj(x) — ri(z)r;(z)/r(z).

If |(Qury — S)!||l2 < 1 for some t, we obtain

m() = (I — Q(T) + S)_l(f — 7Tf)

After some calculation, we arrive at the following result, Greenwood, McKeague and
Wefelmeyer (1998, Theorem 2).

Theorem 6. Let f € Ly(m), and assume that ||(Qqy — S)||2 < 1 for some t. For the
Gibbs sampler with random sweep, the asymptotic variance bound is

By = w((f—wf)-<I—Qr>+s>*1(f—wf>)
= a(f —7f)? +Z ((f=7f)- Q@ — S (f —=f)).

Both S and I — @), are positive operators on Ly(m). Write K > L if K — L is
positive. Then I — Q)+ S > I — Q) and therefore (I — Qy +5) ' < (I — Q)"
Thus the variance bound is no larger for random sweep than for deterministic sweep:
B < B

Suppose that 7 is continuous in the sense that it is absolutely continuous with respect
to the product of its marginals, and the marginals have no atoms. Then p,(z_;, dz;)
has no atoms for 7_;(dz_;)-a.s. z_;. Hence rj(z) = p;(z_;,{z;}) = 0 for 7m-a.a. z,
and therefore R;;(z) = 0 for 7-a.a. , and the operator S reduces to 0. This implies
that information bound for random sweep coincides with the information bound for
deterministic sweep: B(;) = B(y).

The last term in the asymptotic variance bound By, for deterministic sweep appears
with a factor 2 in the asymptotic variance 0(27,) of the empirical estimator for random
sweep. In most applications, the leading term 7(f — 7 f)? of the variances is relatively
small. Then 0(2,") is nearly twice as large as B(g. When 7 is continuous, we have
B(q) = B(y. Hence the efficiency of the empirical estimator for random sweep is close to
50%.

As mentioned in Section 5, the asymptotic variance of the empirical estimator is
about twice as large for random sweep as for deterministic sweep. This implies that the
empirical estimator for deterministic sweep is close to efficient.

We illustrate the results with an exchangeable k-dimensional multivariate normal
distribution 7 in which each component has zero mean and unit variance, and all the
pairwise correlations are identical. This example has been widely used in the literature
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k=10

-0.10 -0.05 0.0 0.05 0.10 0.15 0.20

pairwise correlation

k=20

-0.05 0.0 0.05 0.10 0.15 0.20
pairwise correlation

Figure 1: Exchangeable k-dimensional normal example. The information bounds for
both random and deterministic sweep (solid line) and the asymptotic variances (in units
of km(f —mf)?) of the usual empirical estimator E¥ f under deterministic sweep (dotted
line), and the full chain estimator E,f under deterministic sweep (short dashed line)
and random sweep (long dashed line).

for studying convergence rates of Gibbs samplers, see, e.g., Raftery and Lewis (1992,
Example 3) and Roberts and Sahu (1997). The function f is taken to be the indicator
that the random field exceeds a unit threshold: f(z) = 1(max;z; > 1). The results for
10 and 20 dimensions are shown in Figure 1.
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7 Improving empirical estimators for random fields
with local interactions

To begin let 7 be a distribution on a K-dimensional space £ = E; X -+ X Eg, and
let X!,..., X" be independent and identically distributed as 7. Let f be a m-square-
integrable function. In the nonparametric setting, with nothing known about 7, the
empirical estimator E, f = % " f(X?) is efficient; see Bickel, Klaassen, Ritov and
Wellner (1998, Section 3.3). If the components of 7 are known to be independent,
T=m ®---Qng, then E,f is no longer efficient, and a better estimator of 7 f is the
generalized von Mises statistic

1 " , :
M,f = K Z FXT, . XE).
21,0l =1
Since it is the expectation of f under the product of the marginal empiricals, M, f is
again efficient if nothing is known about the components 7y, ..., 7Tx; see Levit (1974)
and Koshevnik and Levit (1976).

Note that the terms (X{',..., X¥) have law m: They are obtained by mixing the
components from the different i.i.d. copies X’ = (X{,..., X%). In other words, the
von Mises statistic is obtained by replacing values of the components by values with
different time indices. This works because there are no interactions either among the K
components or among values with different time indices.

Greenwood, McKeague and Wefelmeyer (1999) extend the idea behind the von Mises
statistic to samplers on random fields with local interactions. For simplicity, we restrict
attention to nearest neighbor random fields and the Gibbs sampler with a specific sweep.
Let S ={0,...,k —1}? be a square lattice of dimension d. For simplicity, take k to be
even. The lattice has K = k? sites. Let m be the law of a random field on E°. As in
(1.3), factor 7 in K different ways,

m(dz) = m_s(dz_s)ps(x_s, dxs), sES,

where z_; is obtained from z by omitting z;. The one-dimensional conditional distribu-
tions ps(z_s, dzs) are called the local characteristics of the random field.

A Gibbs sampler with deterministic sweep is based on some ordering si,..., sk of
the sites. Let n = ¢K. The subchain X% X¥ ... X9 of full sweeps, see (1.4), has
transition distribution

Q(‘ra dy) = Hps(y<5a T>s, dys)a

where x is the subconfiguration of all sites that come before site s. As in Section 5,
the usual estimator for 7 f is the empirical estimator based on the subchain,

p

EXf =Ly p(xeK).
[ et
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For each s, the partially updated configuration (X<s , XS (e-1K ) also has stationary law
7, and further empirical estimators are

Eyf = Zf X4, XU, 05,
The empirical estimator based on the full chain X*,..., X" is
Baf = 2> f(X) = £ S Bl
" n i=1 B K s e

The set of nearest neighbors of a site s is ds = {t : |t — s| = 1}, with |t — 5| =
>; |t; — sj|. We use a free boundary, in which case the boundary sites have fewer than
2d neighbors. We assume nearest neighbor interactions,

Ds (:r—sa dms) = ps(l“as, dxs)a (71)

i.e., the local characteristics at site s depend only on the nearest neighbors of s.

A widely used updating scheme for nearest neighbor models respects the checkerboard
pattern of the lattice in the sense that it updates first the sites with, say, even parity and
then those with odd parity. See, e.g., Heermann and Burkitt (1992). The corresponding
Gibbs sampler updates a single site s using the local characteristic ps(zgs, dzs). There-
fore, all even, or all odd, sites can be updated simultaneously, and the sampler can be
written as a two-step Gibbs sampler. Write a configuration z = (v, y,), where y, and
Y, are the subconfigurations of x on the even and odd sites, respectively. The subchain
of full sweeps has transition distribution

QWes Yo, d(2e, 20)) = Qe(Yor d2e) Qo (2, d2,) (7.2)
with
Qe(Yos dye) = syvenps(yo,as,dys),
Qo(Ye, dys) = l_gdps(ye,as,dys)-

Let X% = (Y% Y1) be an initial configuration. The Gibbs sampler based on this updat-
ing scheme first creates a subconfiguration Y2 on the even sites, then a subconfiguration
Y3 on the odd sites, and so on. Here, rather than counting the update of a com-
plete configuration as a time step, we define a full time step to be the update of an
even or an odd subconfiguration. This means that the output of the Gibbs sampler is
YO Y1 V2, ..., and the sequence of complete configurations, or full sweeps, is given by
X0 = (YO,Yl) XK =(Y273),..

To motivate the construction of our estimators, we assume for now that the initial
configuration X is distributed according to the stationary law . Then the Gibbs sam-
pler Markov chain X° X! ... is stationary. Now suppose that we replace a component
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XK of the configuration X% by a future value X(@)X_ Which replacements leave
the joint law of the configuration unchanged? We have already seen in E;f an exam-
ple of such replacements for the general case with possibly non-local interactions — we
replaced the values thK by X§q+1)K for t < s. We will see that for nearest neighbor
models more general replacements are possible.

It is convenient to describe such replacements by an wupdate function I : S —
{0,1,...}, with I(s) even for s even, and odd otherwise. An update function I describes
a new configuration Z/ = (Y/(*)),cs in terms of the observed chain Y° Y Y2 ... by
specifying, for each site s, the time index I(s) of the value Y(*) going into this configu-
ration. For example, the initial configuration is X° = (Y? V1) = Z where

0, s even,
I(s) = { 1, sodd (73)

and X% is obtained from X0 by shifting I° to yield X% = Z7"+2 for ¢ = 1,2,. ...
We say that an update function is admissible if its values at any two neighboring sites
differ by 1. A mowve picks a site s, then replaces I(s) by I(s) + 2, leaving I unchanged
otherwise. A move is admissible if it preserves admissibility of the update function, see
Figure 2. Note that an admissible move can be made at site s if and only if

I(t)y=1I(s)+1 forallte0s.

Note also that I° is an admissible update function, and that all admissible update
functions are built up by applying finitely many admissible moves to I°.

qg+2

S

Figure 2: An admissible move at site s.

The following theorem of Greenwood, McKeague and Wefelmeyer (1999) shows that
for an admissible update function I, the process Z/12¢ ¢ = 0,1,... is distributed as
output from another Gibbs sampler for 7. The sweep of this new Gibbs sampler is ordered
by I in the sense that it first updates the sites on the lowest level of I, then proceeds
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upwards layer by layer. In general, the new sweep does not respect the checkerboard
pattern.

Theorem 7. Suppose m has nearest neighbor interactions and X', i = 0,1,..., is
generated by a Gibbs sampler for m whose updating respects the checkerboard pattern of
the lattice. If I is an admissible update function, then Z'72, ¢ =0,1,..., is distributed
as a full sweep Gibbs sampler for m having sweep ordered by 1.

The idea of the proof is simple: Note that an update at a site s is obtained by adding
2 to the current value of the update function at that site. Thus, the configuration Z/2¢
is obtained from Z by applying Gibbs sampler updates site by site in the order of the
sweep associated with I. A more formal version of this argument is as follows. Let I
denote the update function obtained from I by applying the moves at the sites before
s in the order of the new sweep. If I;(s) = ¢, then since I is admissible, I5(t) = ¢ + 1
for t € 0s. The move at s replaces I;(s) = ¢ by ¢ + 2. Recall that Y2 = ZI*2 was
generated using the conditional law p, (Y, dz,) which equals py(Z%,, dz,). Hence Z7+2
is obtained from Z! using the Gibbs sampler with the new sweep.

Call an admissible update function I a update function if it uses part of the initial
configuration X9, i.e., if min I equals 0 or 1. Each update function I gives an estimator

for v f,

I 1 n_z:hﬂ I+2
Blf=— 'S j(zt+m)
n—h+2 =

Here h is the height of I, i.e., the number of full time steps, or half sweeps, it straddles.
This means that max I equals 2h — 2 or 2h — 1.

The asymptotic variance of EXf can be substantially different from that of the usual
empirical estimator F, f. Estimators with reduced variance might be obtained by aver-
aging over some family Z of update functions:

> Euf,

IeT

1

T
ELf 7]
where |Z| denotes the cardinality of Z.

Averaging over update functions can be interpreted as symmetrizing F, f, as in a
generalized von Mises statistic. In general we expect such estimators to have smaller
variance for larger families of update functions. However, there is a trade-off in terms of
computational cost: For high update functions we would need to store more configura-
tions, and for large families we would need to evaluate f more frequently, which could
be critical in large lattices or when f(z) is expensive to compute.

If the random field is arbitrary, with not necessarily local interactions, we can only
use the update functions involved in the empirical estimators E; f. For s even the update
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function I° is
0, t>s,teven,

P(t)y=<X 2, t<s,teven,
1, t odd.

The update function for s odd is similar:

1, t>s,todd,
IF(t)y=< 3, t<s,todd,
2, t even.

To make use of the nearest neighbor assumption, we must go beyond the update
functions just described. For large lattices it may not be computationally feasible to use
all update functions. If one uses only a few update functions, they should be well spaced
to reduce correlation between different EIf. The higher the update functions we allow,
the better we can space them. However, high update functions require more storage: To
calculate E!f for a update function I of height h, we must store h configurations at a
time.

Simulations in Greenwood, McKeague and Wefelmeyer (1999) for the Ising model
and the Gibbs and Metropolis samplers, and for f the r-th nearest neighbor correlation,
show that the variance reduction can be considerable, even if only a few of the update
functions are used.

8 Exploiting symmetries of random fields

Let X° ..., X" be observations from an arbitrary Markov chain with transition dis-
tribution Q(x,dy). Assume that the chain is positive Harris recurrent, with invariant
distribution 7(dz), and V-uniformly ergodic. Let 7' be a measurable transformation on
E which leaves 7 invariant and has a measurable inverse. For f2 <V, we obtain a new
consistent and asymptotically normal empirical estimator for 7 f,

n

Eu(foT) =3 f(TX).

i=1

The same is true for any power 77 of T.

Suppose now that the transition distribution () is invariant under 7" in the sense that
Q(z,dy) = Q(Tx,Tdy). This forces m to be invariant under 7. Also, for the stationary
chain, (X% X! ..., X") is distributed as (TX°,...,TX"). Hence E,(f o T’) has the
same asymptotic variance as F,, f. Better estimators, in the sense of asymptotic variance,
can be obtained by linear combinations of E,(foT?). The following result of Greenwood,
McKeague and Wefelmeyer (1996) shows how best to use linear combinations of such
estimators if the powers form a finite cyclic group.
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Proposition 1. Let Q be invariant under a transformation T with T™ = T° for some
m > 2. Then the best linear combination of E,(foT7), 7 =0,...,m—1, is the average,

mz fo T]

1
m

The proof is simple. Observe that the pair E,(f o T*), E,(f o T7?) is the pair
E.f, E,(f o TU=k)modm) evaluated with the chain X° X' ... replaced by the chain
TFXO TEX! ... Hence the asymptotic covariances of the two pairs agree. Therefore,
the asymptotic covariance matrix of E,(f oT7), j =0,...,m — 1, is circulant. In par-
ticular, it has equal row sums. If the covariance matrix is nonsingular, Proposition 1
follows from Greenwood, McKeague and Wefelmeyer (1996, Lemma 2). Proposition 1
also follows from the observation that if 3 is positive semidefinite with equal row sums,
then b'Yb is minimized over vectors b with 3°7*, b; = 1 by b; = 1/m for all j. To see this,
let ey, ..., e, be an orthonormal basis of eigenvectors of > with non-negative eigenvalues
[y . Assume w.lg. that e, = (m~Y/2,...,m~"?). Write b = Y7y Ajej. Then
A =m /% and

bWYh = Z)\?,Uj =pu/m+> A?Mja
j=1 §=2
which is minimized by A\; =0 for j =2,...,m

Greenwood, McKeague and Wefelmeyer (1996) apply Proposition 1 to the two-step
Gibbs sampler. Let 7 be a distribution on a two-dimensional space £ = F; X F,. Let
p1(z2, dz1) be the conditional distribution of z; given x5, and po(z1, dz) the conditional
distribution of zo given x;. Let n = 2p, and let X% X! ... X% be observations from
the two-step Gibbs sampler with deterministic sweep. The subchain X° X2 ... X% of
full sweeps has transition distribution

Q(l", dy) =M ($2, dyl)pQ(yl, dy2)-

Call a transformation 7" on E; X Ej parallel if it is a direct product T'(xi,z2) =
(Th121, Tooxy), and transverse if T(z1,x9) = (T9122,T1221). Note that the composi-
tion of two transverse transformations is parallel, and the composition of a parallel with
a transverse is transverse. If T is parallel and leaves 7 invariant, then

p1(332, dl‘l) = 101(T22$2,T11d$1), p2($1, d$2) = pQ(T11$1,T22d$2)- (8.1)
It follows that under the stationary law of the sampler,
(X0, XY ... X)) = (TX°,TX"',..., TX?) in distribution.
If T is transverse and leaves m invariant, then

p1($2, d»’El) = pz(T21fU2,T12d331), p2(331, d332) = pl(T12$1,T21d$2)- (8-2)
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It is easy to see that the transformed time-reversed chain has the same law as the original
chain:
(X, X' ... X)) = (TX*,TX*" .. TX" in distribution.

As in Section 5, the empirical estimator E,f = % " f(X?) can be written as the

average 3(E}f + EZf) of the empirical estimators based on the two subchains,

1 1 £ 2q—1 2 1 2 2
E.f=-> f(X*), Eif=-% f(X").

Greenwood, McKeague and Wefelmeyer (1996, Theorem 2) use Proposition 1 to show
the following result.

Theorem 8. Assume that the two-step Gibbs sampler for w is positive Harris recurrent,
and that the two subchains are V -uniformly ergodic. Let m be invariant under a parallel
or transverse transformation T with T™ = T°, and let f2 < V. Then the empirical
estimators EX(f o T7), E*(f o T7), j = 0,...,m — 1, have equal asymptotic variances,
and the best linear combination is the average,

mz fo T]

1
- m

Theorem 8 can be generalized to more than one transformation, as long as the trans-
formations commute; see Greenwood, McKeague and Wefelmeyer (1996, Theorem 3).
Theorem 8 can be applied to nearest neighbor random fields. For simplicity, let

S:{O,...,kl—l}X{O,...,kg—l},

where k; and ko are even. Let m(dz) be the law of a random field on E® with near-
est neighbor interactions (7.1). As in Section 7, number first the even and then the
odd sites, respecting the checkerboard pattern of the lattice. Then the Gibbs sampler
with deterministic sweep can be written as a two-step Gibbs sampler, with full sweep
transition distribution (7.2),

Q(yea Yo, d(Ze, Zo)) = Qe (yoa dze)Qo(Ze: dzo)a

where y. and y, are the subconfigurations of x on the even and odd sites, respectively.

Define addition on S by (s +t); = s; + t; mod k1, (s + t)s = sy + t3 mod ko. For
t € S, the translation of S by t is defined as 7;s = s — t. This induces a translation on
ES by (Tyx), = Tyt = Tsit- Translations on E° by an even or odd number of sites are
parallel or transverse transformations, respectively. For a horizontal translation, think
of the lattice as wrapped around a cylinder so that the vertical boundaries meet. The
neighbors of each site s = (s1, s2) along the vertical boundary now include (s; £ 1, s9)
with addition mod £;.
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A horizontal translation by an even number of sites is 1" = T{; o), with p even. This
translation takes even into even sites and odd into odd and is a parallel transformation
in the sense of Section 4. Suppose that k; is a multiple of p, say k1 = mp. Suppose
that 7 is invariant under 7. Then it is also invariant under powers 77 = Tijpoy,J =
0,...,m — 1. These transformations form a cyclic group. Theorem 8 implies that the
empirical estimators

E'rlL(f OT(J'P;O))7 Ez(f oT(j]J,O))7 .7 = ]-7 cee, M — ]-:

have equal asymptotic variances, and the best linear combination is the average.

A horizontal translation by an odd number of sites is T" = T{; ¢y, with p odd. This
translation takes even into odd sites and odd into even and is a transverse transformation.
Even powers of T are parallel. Suppose that k; is a multiple of p, say k1 = mp. Suppose
that 7 is invariant under 7. As above, the best linear combination of the corresponding
empirical estimators is the average.

Horizontal and vertical translations commute. Hence the best linear combination of
the corresponding empirical estimators is again the average. Greenwood, McKeague and
Wefelmeyer (1996) present simulations for the Ising model without and with external
field, and for f the nearest neighbor correlation.
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