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Abstract

Suppose we observe an ergodic Markov chain and know that the stationary
law of one or two successive observations fulfills a linear constraint. We show how
to improve given estimators exploiting this knowledge, and prove that the best of
these estimators is efficient.
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1 Introduction

To begin let X1, . . . , Xn be independent with distribution P . Let t(P ) be a real-valued
functional, and t̂ an estimator with influence function b in L2(P ),

n1/2(t̂− t(P )) = n−1/2

n∑
i=1

b(Xi) + oP (1),

with Pb = Eb(X) = 0. If the distribution fulfills a constraint Pv = 0 for a known
vector-valued function v with components in L2(P ), we can introduce new estimators
for t(P ),

t̂(c) = t̂− c>
1

n

n∑
i=1

v(Xi)
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with influence function b − c>v and asymptotic variance P [(b − c>v)2]. If P [vv>] is
invertible, then by the Schwarz inequality the asymptotic variance is minimized by
c = cb with

cb = (P [vv>])−1P [vb].

The constant cb depends on the unknown distribution and must be estimated, say by

ĉb =
( n∑

i=1

v(Xi)v(Xi)
>
)−1

n∑
i=1

v(Xi)b̂(Xi),

leading to the estimator t̂(ĉb). It is easily seen to be efficient if all we know about the
distribution is that it fulfills the constraint Pv = 0. If t(P ) is linear, say t(P ) = Pf , then
estimation of t(P ) and cb is particularly easy. A simple estimator of t(P ) is the empirical
estimator t̂ = 1

n

∑n
i=1 f(Xi), with influence function b(x) = f(x) − Pf . Then P [vb] =

P [vf ], and a consistent estimator of P [vb] is the empirical estimator 1
n

∑n
i=1 v(Xi)f(Xi).

We refer to Levit (1975), Haberman (1984) and the monograph of Bickel, Klaassen,
Ritov and Wellner (1998, Section 3.2, Example 3).

In Section 2 we extend the results from the i.i.d. case to Markov chains X0, . . . , Xn

with transition distribution Q and invariant distribution π. We consider constraints π⊗
Qv =

∫∫
π(dx)Q(x, dy)v(x, y) = 0 for vector-valued functions v, now of two arguments.

Our estimators can be further improved if the chain is known to be reversible. In Section
3 we illustrate our results with a simple example, estimating the variance of the invariant
distribution when the mean is known to be zero. The efficient estimator simplifies for
the linear autoregressive model. In Remarks 1 and 2 we show how reversibility and
symmetry can be described by linear constraints π ⊗ Qv = 0 with infinite-dimensional
v. We also construct efficient estimators for these models.

2 Results

Let X0, . . . , Xn be observations from a positive Harris recurrent and V 2-uniformly er-
godic Markov chain on an arbitrary state space S with countably generated σ-field,
with transition distribution Q and invariant distribution π. See e.g. Meyn and Tweedie
(1993) for these concepts. We use the notation π ⊗ Q(dx, dy) = π(dx)Q(x, dy) and
Qxw =

∫
Q(x, dy)w(x, y).

Let v be a k-dimensional measurable function defined on S2 such that the constraint
π⊗Qv = 0 holds for all transition distributions Q in the model. Fix the true transition
distribution Q, and let W be the set of all real-valued measurable functions w on S2

such that Qx|w|/V (x) is bounded in x. Assume that v is in W . We refer to Schick and
Wefelmeyer (2000a) for a discussion of this assumption. Set

H = {h ∈ L2(π ⊗Q) : Qh = 0}.

Then h(Xi−1, Xi) is a martingale increment.
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1. Let t(Q) be a real-valued functional of the transition distribution. Following the
approach outlined in the Introduction for the i.i.d. case, call an estimator t̂ asymptotically
linear with influence function b if b ∈ H and t̂ admits the martingale approximation

n1/2(t̂− t(Q)) = n−1/2

n∑
i=1

b(Xi−1, Xi) + oP (1).

By a martingale central limit theorem, see Meyn and Tweedie (1993, Theorem 17.4.4),
t̂ is asymptotically normal with variance π ⊗ Qb2. From the constraint π ⊗ Qv = 0 we
obtain new estimators

t̂(c) = t̂− c>
1

n

n∑
i=1

v(Xi−1, Xi). (2.1)

By the martingale approximation of Gordin (1969), see Meyn and Tweedie (1993, Section
17.4), we have

n−1/2

n∑
i=1

(
v(Xi−1, Xi)− Av(Xi−1, Xi)

)
= oP (1) (2.2)

with

Av(x, y) = v(x, y)−Qxv +
∞∑

j=1

(Qj
y −Qj+1

x )v.

From (2.1) and (2.2),

n1/2(t̂(c)− t(Q)) = n−1/2

n∑
i=1

(
b(Xi−1, Xi)− c>Av(Xi−1, Xi)

)
+ oP (1).

By construction, Av(Xi−1, Xi) is a martingale increment. Hence t̂(c) is asymptotically
linear with influence function b− c>Av. Again by the martingale central limit theorem,
t̂(c) is asymptotically normal with variance σ2 = π ⊗ Q[(b − c>Av)2]. Assume that
π ⊗Q[Av · Av>] is invertible. By the Schwarz inequality, the variance is minimized for
c = cb with

cb = (π ⊗Q[Av · Av>])−1π ⊗Q[Av · b].

The minimal asymptotic variance is

σ2
b = π ⊗Qb2 − π ⊗Q[bAv>](π ⊗Q[Av · Av>])−1π ⊗Q[Av · b].

The optimal vector cb depends on the unknown transition distribution and must be
replaced by a consistent estimator ĉb. The estimator t̂(ĉb) has the same asymptotic
variance as t̂(cb). We arrive at the following result.
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Theorem 1. If ĉb is consistent for cb, then the estimator t̂(ĉb) is asymptotically linear
for t(Q) with influence function b− c>b Av and asymptotic variance σ2

b .

2. We show now that if t̂ is asymptotically linear and regular, then t̂(ĉb) is regular
and efficient in the sense of Hájek’s convolution theorem. The set H introduced above
consists of the functions h on S2 for which one can construct Hellinger differentiable
perturbations of Q of the form

Qnh(x, dy)
.
= Q(x, dy)(1 + n−1/2h(x, y))

that are again transition distributions. This means that H is the tangent space of the full
nonparametric model. By Kartashov (1985), see also Kartashov (1996) and Greenwood
and Wefelmeyer (1999), we have the perturbation expansion

n1/2(πnh ⊗Qnhv − π ⊗Qv) → π ⊗Q[hAv]. (2.3)

The constraints π ⊗Qv = 0 and πnh ⊗Qnhv = 0 now lead to a constraint on h, namely
π ⊗ Q[hAv] = 0. Hence the tangent space of the constrained model consists of all
functions h orthogonal to Av,

H∗ = {h ∈ H : π ⊗Q[hAv] = 0}.

The functional t(Q) is called differentiable at Q with gradient g if g ∈ H and

n1/2(t(Qnh)− t(Q)) → π ⊗Q[hg] for h ∈ H∗. (2.4)

The canonical gradient is the projection g∗ of g onto H∗. The estimator t̂ is called regular
at Q with limit L if

n1/2(t̂− t(Qnh)) ⇒ L under Pnh for h ∈ H∗.

Here Pnh is the law of X0, . . . , Xn when Qnh is the true transition distribution.
We recall two characterizations from the theory of efficient estimation; for appropriate

versions see e.g. Wefelmeyer (1999, Sections 3 and 5). (1) An asymptotically linear
estimator is regular if and only if its influence function is a gradient. (2) A regular
estimator is efficient if and only if it is asymptotically linear with influence function
equal to the canonical gradient.

By definition, H has the orthogonal decomposition H = H∗⊕ [Av], where [Av] is the
linear span of Av. Hence the canonical gradient, the projection g∗ of g onto H∗, can be
written g∗ = g − gv, where gv is the projection of g onto [Av], i.e. gv = c>∗ Av with

c∗ = (π ⊗Q[Av · Av>])−1π ⊗Q[Av · g].

Now let t̂ be a regular and asymptotically linear estimator for t(Q). By characterization
(1), its influence function is a gradient, say g. By Theorem 1, the estimator t̂(ĉ∗) has
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influence function g − c>∗ Av = g∗. From characterization (2) we obtain the following
result.

Theorem 2. If t̂ is a regular and asymptotically linear estimator for t(Q), and ĉ∗ is
consistent for c∗, then t̂(ĉ∗) is regular and efficient for t(Q) in the model constrained by
π ⊗Qv = 0.

Note that for the improvement t̂(c) we needed the constraint π ⊗ Qv = 0 only for
the true Q, while for efficiency of t̂(ĉ∗) we needed the constraint also for perturbations
Qnh, at least in the direction of the canonical gradient.

3. Suppose we know, in addition to π ⊗ Qv = 0, that the Markov chain is reversible,
π(dx)Q(x, dy) = π(dy)Q(y, dx). By Greenwood and Wefelmeyer (1999), this puts the
following additional constraint on the tangent space:

Hrev
∗ = {h ∈ H∗ : Bh symmetric}.

Here B is the adjoint of A in the sense that for h ∈ H and w ∈ W ,

π ⊗Q[hAw] = π ⊗Q[Bh · w].

Let t(Q) be differentiable at Q with gradient g ∈ H in this doubly constrained model in
the sense that (2.4) holds for h ∈ Hrev

∗ . As in the proof of Theorem 2 of Greenwood and
Wefelmeyer (1999), the projection grev

∗ of g onto Hrev
∗ is obtained by symmetrizing g∗,

grev
∗ (x, y) =

1

2

(
g(x, y) + g(y, x)

)
− crev

∗
1

2

(
v(x, y) + v(y, x)

)
,

crev
∗ = (E[Av(X0, X1) · Av(X0, X1)

>])−1

1

2
E

[
Av(X0, X1)

(
g(X0, X1) + g(X1, X0)

)]
.

Here and in the following, expectations are taken with respect to the stationary law of
the chain. Note that if t̂ has influence function g ∈ H, then the symmetrized estimator

1

2

(
t̂(X0, . . . , Xn) + t̂(Xn, . . . , X0)

)
has influence function 1

2

(
g(x, y) + g(y, x)

)
. We arrive at the following result.

Theorem 3. If t̂ is a regular and asymptotically linear estimator for t(Q), and ĉrev
∗ is

consistent for crev
∗ , then

1

2

(
t̂(X0, . . . , Xn) + t̂(Xn, . . . , X0)

)
− ĉrev

∗
1

2n

n∑
i=1

(
v(Xi−1, Xi) + v(Xi, Xi−1)

)
is regular and efficient for t(Q) in the model constrained by π⊗Qv = 0 and reversibility.
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4. In this subsection we treat the problem of estimating c∗ for linear functionals
t(Q) = π⊗Qf with f in W , and constraint π⊗Qv = Ev(X0, X1) = 0. In the i.i.d. case,
c∗ was easy to estimate. For Markov chains, c∗ involves the operator A, and estimation
is less straightforward. By the martingale approximation (2.2), the empirical estimator

t̂ =
1

n

n∑
i=1

f(Xi−1, Xi)

is asymptotically linear with influence function b = Af in H. By the perturbation
expansion (2.3), Af is a gradient of π⊗Qf . Hence the empirical estimator is regular by
characterization (1). If nothing is known about Q, the empirical estimator is efficient:
see Penev (1991) and Bickel (1993) for functions f of one argument, and Greenwood
and Wefelmeyer (1995) for functions f of two arguments; or simply note that H is the
tangent space of the full nonparametric model, and hence Af is the canonical gradient
of π ⊗Qf .

For t(Q) = π ⊗Qf we have

c∗ = cf = (π ⊗Q[Av · Av>])−1 π ⊗Q[Av · Af ] = Σ−1F,

say. One checks that for vectors w and z with components in W ,

π ⊗Q[Aw · Az>] = E
[(

w(X0, X1)− Ew(X0, X1)
)
z(X0, X1)

>]
+

∞∑
j=1

(
E

[(
w(X0, X1)− Ew(X0, X1)

)
z(Xj, Xj+1)

>]
+E

[(
w(Xj, Xj+1)− Ew(X0, X1)

)
z(X0, X1)

>])
.

For functions of one argument compare Meyn and Tweedie (1993, Section 17.4.3). Now
we use the constraint Ev(X0, X1) = 0 to estimate Σ = π ⊗Q[Av · Av>] by

Σ̂ =
1

n

n∑
i=1

v(Xi−1, Xi)v(Xi−1, Xi)
> +

m(n)∑
j=1

2

n− j

n−j∑
i=1

v(Xi−1, Xi)v(Xi+j−1, Xi+j)
>

and F = π ⊗Q[Av · Af ] by

F̂ =
1

n

n∑
i=1

v(Xi−1, Xi)f(Xi−1, Xi)

+

m(n)∑
j=1

1

n− j

n−j∑
i=1

(
v(Xi−1, Xi)f(Xi+j−1, Xi+j) + v(Xi+j−1, Xi+j)f(Xi−1, Xi)

)
.

Since the chain is assumed V 2-uniformly ergodic, it is V 2-uniformly mixing by Meyn and
Tweedie (1993, Theorem 16.1.5). To prove consistency of F̂ , set vK = −K ∨ v ∧K and
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write F̂K for the corresponding estimator with truncated v. Since
∑∞

j=1 Qjf converges
in L2(π), we obtain from the Cauchy–Schwarz inequality that for each ε > 0 there is a
K such that

E|F̂K − F̂ | ≤ ε, |π ⊗Q[AvK · Af ]− π ⊗Q[Av · Af ]| ≤ ε.

Furthermore, by straightforward calculation, for m(n) tending to infinity more slowly
than n,

E[F̂K − π ⊗Q[AvK · Af ]]2 → 0.

Hence F̂ is consistent. In practice m(n) will be taken small. Consistency of Σ̂ is proved
similarly. We arrive at the following result.

Theorem 4. If m(n) tends to infinity more slowly than n, then ĉf = Σ̂−1F̂ is consistent
for cf .

3 Applications

Example 1. If the function v is constant in one argument, say v(x, y) = v1(y), then
the constraint is π ⊗ Qv = πv1 = 0. In particular, for real state space S = R and
constraint πv = 0 with v(x, y) = y, the chain has mean zero. A natural estimator for
the variance t(Q) = E(X−EX)2 of the invariant distribution is the empirical estimator
1
n

∑n
i=1 X2

i − ( 1
n

∑n
i=1 Xi)

2. Since EX = 0, we have E(X − EX)2 = EX2, and an
asymptotically equivalent estimator is the empirical second moment 1

n

∑n
i=1 X2

i . By
Theorem 2, a better estimator is

t̂(ĉf ) =
1

n

n∑
i=1

X2
i − ĉf

1

n

n∑
i=1

Xi,

with ĉf a consistent estimator of (π ⊗ Q[(Av)2])−1π ⊗ Q[Av · Af ] for v(x, y) = y and
f(x, y) = y2.

Example 2. Consider the linear autoregressive model of order one, Xi = ρXi−1 + εi,
where the innovations εi are i.i.d. with mean zero, finite variance σ2, finite fourth moment
and |ρ| < 1. Then the invariant distribution π has mean zero. This is a submodel of
Example 1. For this submodel, the operator A and the estimator for cf simplify. Let us
again consider the problem of estimating the variance t(Q) = E(X − EX)2 = EX2 of
the invariant distribution. For w ∈ L2(π),

Qj
yw = Ew

( j−1∑
k=0

ρkεi−k + ρjy
)
.
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In particular, for v(x, y) = y and f(x, y) = y2,

Av(x, y) =
1

1− ρ
(y − ρx), Af(x, y) =

1

1− ρ2
(y2 − ρ2x2 − σ2).

Hence

π ⊗Q[(Av)2] =
σ2

(1− ρ)2
, π ⊗Q[Av · Af ] =

α3

(1− ρ)(1− ρ2)
,

where α3 = Eε3 is the third moment of the innovation distribution.
Estimate the autoregression coefficient ρ by the least squares estimator

ρ̂ =
n∑

i=1

Xi−1Xi

/ n∑
i=1

X2
i−1,

the innovations εi by ε̂i = Xi − ρ̂Xi−1, and σ2 and α3 by the empirical moments based
on the estimated innovations,

σ̂2 =
1

n

n∑
i=1

ε̂2
i , α̂3 =

1

n

n∑
i=1

ε̂3
i .

We obtain

t̂(ĉf ) =
1

n

n∑
i=1

X2
i −

α̂3

(1 + ρ̂)σ̂2

1

n

n∑
i=1

Xi.

We note that for ρ = 0 the observations are Xi = εi and i.i.d., and the estimator t̂(ĉf )
is asymptotically equivalent to the estimator obtained in the i.i.d. case.

To estimate cf , we have used the information that the Markov chain is an AR(1)
model. This information simplifies ĉf but does not improve the estimator t̂(ĉf ) asymp-
totically. We refer to Schick and Wefelmeyer (2000b, Section 6) for better estimators
of EX2, and to Schick and Wefelmeyer (2000c) for efficient estimators of general linear
functionals of invariant laws of linear time series.

Remark 1. Constraints π⊗Qv = 0 for functions v(x, y) = u(x)w(y)−u(y)w(x) describe
symmetries of the joint law of two successive observations with respect to time reversal.
If such constraints hold for a sufficiently large class of functions, e.g., — in the case of real
state space — for all indicators u(x) = 1(−∞,a](x) and w(y) = 1(−∞,b](y) with a, b ∈ R,
then the chain is reversible. Let t(Q) be differentiable, and let t̂ = t̂(X0, . . . , Xn) be an
asymptotically linear estimator for t(Q). By the arguments in Subsection 3 of Section
2, the symmetrized estimator

1

2

(
t̂(X0, . . . , Xn) + t̂(Xn, . . . , X0)

)
is efficient for t(Q) if the chain is known to be reversible.
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Remark 2. For real state space, constraints π ⊗ Qv = 0 for functions v(x, y) =
z(x, y)− z(−x,−y) describe symmetries of the joint law of two successive observations
with respect to reflection at zero. If such constraints hold for a sufficiently large class of
functions, e.g. for all functions z(x, y) = 1(−∞,a](x)1(−∞,b](y) with a, b ∈ R, then

π(dx)Q(x, dy) = π(−dx)Q(−x,−dy)

and therefore π(dx) = π(−dx) and Q(x, dy) = Q(−x,−dy). In this case, we do not need
the results of Section 2. Note also that the condition Q(x, dy) = Q(−x,−dy) implies∫

π(−dx)Q(x, dy) =

∫
π(−dx)Q(−x,−dy) = π(−dy),

and hence π(dx) = π(−dx) holds automatically. The tangent space of the model con-
strained by symmetry of the transition distribution, Q(x, dy) = Q(−x,−dy), is

H∗ = {h ∈ H : h(x, y) = h(−x,−y)}.

Write f−(x, y) = f(−x,−y). It is straightforward to check that Af− = (Af)−. For
h ∈ H∗ we have h = h− and

π ⊗Q[hAf ] = π ⊗Q[h−(Af)−] =
1

2
π ⊗Q[h(Af + (Af)−)] =

1

2
π ⊗Q[hA(f + f−)].

Hence the projection of Af onto H∗ is 1
2
A(f + f−). By the martingale approximation

(2.2), this is the influence function of the symmetrized empirical estimator

t̂∗ =
1

2n

n∑
i=1

(
f(Xi−1, Xi) + f(−Xi−1,−Xi)

)
,

which is therefore efficient for π ⊗Qf under the constraint Q(x, dy) = Q(−x,−dy).
Similarly as in Remark 1, the result generalizes to arbitrary differentiable functionals

t(Q) with gradient g ∈ H. Let t̂ be an asymptotically linear estimator for t(Q) with
influence function g. Then the symmetrized estimator

t̂∗ =
1

2

(
t̂(X0, . . . , Xn) + t̂(−X0, . . . ,−Xn)

)
is efficient for t(Q) if the chain is known to be symmetric.
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