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Abstract

The usual estimator for the expectation of a function under the innovation
distribution of a nonlinear autoregressive model is the empirical estimator based
on estimated innovations. It can be improved by exploiting that the innovation
distribution has mean zero. We show that the resulting estimator is efficient if the
innovations are estimated with an efficient estimator for the autoregression param-
eter. Efficiency of this estimator is necessary except when the expectation of the
function can be estimated adaptively. Analogous results hold for heteroscedastic
models.
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1 Introduction

Let X1−p, . . . , Xn be observations from a stationary and ergodic (homoscedastic) non-

linear autoregressive model of order p,

Xj = r(ϑ,Xj−1) + εj, j ≥ 1,(1.1)

where Xj−1 = (Xj−p, . . . , Xj−1), and the innovations εj are independent and identically

distributed with mean 0 and finite second moment. Suppose we want to estimate the
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expectation E[h(ε1)] of some square-integrable function h under the innovation distribu-

tion. The usual estimator is the empirical estimator 1
n

∑n
j=1 h(ε̂j) based on the estimated

innovations ε̂j = Xj − r(ϑ̂n,Xj−1), where ϑ̂n is some estimator of ϑ.

If ϑ is known, we can improve the empirical estimator 1
n

∑n
j=1 h(Xj − r(ϑ,Xj−1))

using the constraint E[ε1] = 0. If ϑ is unknown, it suggests itself to replace ϑ by an

estimator. In Theorem 1 of Section 2 we give conditions for asymptotic linearity of the

resulting estimator for E[h(ε1)]. In Theorem 4 of Section 3 we characterize efficiency

of this estimator. Section 4 states corresponding results for heteroscedastic nonlinear

regression models. Section 5 contains examples. The proofs of Theorems 1 and 3 are in

Section 6.

The results may be viewed as instances of the following general principle, proved

for the i.i.d. case by Klaassen and Putter (1999). Suppose a model is parametrized by

(ϑ, F ). Let Fnϑ be efficient for F if ϑ is known, and let ϑ̂n be efficient for ϑ. Then Fnϑ̂n
is efficient for F .

2 Asymptotically linear estimators

To begin we recall results on constrained models for independent and identically dis-

tributed observations. Let ε1, . . . , εn be i.i.d. with distribution function F fulfilling the

constraint E[ψ(ε1)] = 0 for some vector-valued F -square-integrable function ψ such

that E[ψ(ε1)ψ>(ε1)] =
∫
ψψ> dF is invertible. Let h be an F -square-integrable func-

tion. Because of the constraint, we can write the expectation E[h(ε1)] for each vector a

as H(a, F ) = E[h(ε1)−a>ψ(ε1)]. The obvious estimator for F is the empirical estimator

Fn(x) = 1
n

∑n
j=1 1(εj ≤ x). We obtain unbiased estimators of E[h(ε1)] by replacing F

in H(a, F ) by the empirical estimator,

H(a, Fn) =
1

n

n∑
j=1

(h(εj)− a>ψ(εj)).(2.1)

It is easy to check that the smallest asymptotic variance in this class of estimators is

achieved by a = ah(F ) with

ah(F ) = (E[ψ(ε1)ψ(ε1)>])−1E[ψ(ε1)h(ε1)].(2.2)

Under our assumptions, ah(Fn) is consistent for ah(F ). Hence H(ah(Fn), Fn) has the

same asymptotic variance as the best unbiased “estimator” H(ah(F ), Fn) in the class

(2.1). The estimator H(ah(Fn), Fn) is efficient by Levit (1975).
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Consider now the (homoscedastic) nonlinear autoregressive model of order p. By

this model we mean a strictly stationary and ergodic time series Xj, j ≥ 1 − p, which

satisfies the structural relation (1.1). Here εj, j ≥ 1, are i.i.d. with unknown distribution

function F and independent of the initial observations X0. Let G denote the stationary

distribution of X0. We assume that F has mean 0 and finite second moment. The

parameter ϑ is unknown and belongs to some open subset Θ of Rk.

Suppose first that the parameter ϑ is known. Write the innovations εj as functions of

the observations, εj(ϑ) = Xj−r(ϑ,Xj−1). The constraint on the innovation distribution

is E[ε1] = 0. For each real a we obtain an unbiased estimator for E[h(ε1)],

H(a, Fnϑ) =
1

n

n∑
j=1

(h(εj(ϑ))− aεj(ϑ)),

where Fnϑ(x) = 1
n

∑n
j=1 1(εj(ϑ) ≤ x). The constraint on F can be written E[ψ(ε1)] = 0

for ψ(x) = x. By the above results on constrained models, the asymptotic variance of

H(a, Fnϑ) is minimized by a = ah(F ) = E[ε1h(ε1)]/E[ε2
1], and Hn(ϑ) = H(ah(Fnϑ), Fnϑ)

is efficient, with asymptotic variance

σ2
0 = E[h(ε1)2]− (E[h(ε1)])2 − (E[ε1h(ε1)])2

/
E[ε2

1].(2.3)

We are interested in the model with ϑ unknown. Assuming that ϑ̂n is asymptotically

linear, we show in Theorem 1 that Hn(ϑ̂n) is asymptotically linear, and calculate its

influence function. Call an estimator κ̂n of an m-dimensional functional κ(ϑ, F ) asymp-

totically linear at (ϑ, F ) with influence function χ (or χ(X0, X1)) if χ : Rp+1 → Rm

with E[χ(X0, X1)|X0] = 0 and E[‖χ(X0, X1)‖2] <∞, and if

n1/2(κ̂n − κ(ϑ, F )) = n−1/2

n∑
j=1

χ(Xj−1, Xj) + oPn(1).(2.4)

By the martingale central limit theorem, an estimator with influence function χ is asymp-

totically normal with covariance matrix

Vχ = E[χ(X0, X1)χ(X0, X1)>].(2.5)

For ϑ known, the estimator Hn(ϑ) is asymptotically linear with influence function

h(ε1)− ah(F )ε1 − E[h(ε1)].(2.6)
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Now replace ϑ by an asymptotically linear estimator ϑ̂n. The influence function of

Hn(ϑ̂n) is given in Theorem 1. We use the following assumptions. They say that r(ϑ, x)

is differentiable in ϑ in an appropriate sense and that the function h has a smooth

derivative.

Assumption 1. There is a G-square-integrable function ṙ such that, for each constant

C,

sup
‖∆‖≤Cn−1/2

n∑
j=1

(
r(ϑ+ ∆,Xj−1)− r(ϑ,Xj−1)−∆>ṙ(Xj−1)

)2

= oPn(1).(2.7)

Assumption 2. The function h is absolutely continuous and F -square-integrable, and

its (almost everywhere) derivative h′ is F -square-integrable and satisfies∫
sup
|a|≤η

(h′(x− a)− h′(x))2dF (x)→ 0 as η → 0.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let ϑ̂n be asymptotically linear for ϑ,

with influence function χ(X0, X1). Then Hn(ϑ̂n) is asymptotically linear for E[h(ε1)],

with influence function

h(ε1)− ah(F )ε1 − E[h(ε1)]− (E[h′(ε1)]− ah(F ))E[ṙ(X0)>]χ(X0, X1).

If E[h′(ε1)] = ah(F ) or E[ṙ(X0)] = 0, the influence function reduces to the influ-

ence function (2.6) of Hn(ϑ). In general, none of these two conditions holds, and the

asymptotic variance of Hn(ϑ̂n) depends on ϑ̂n through its influence function χ(X0, X1).

We have assumed that h is differentiable. This excludes the interesting case h(x) =

1[x ≤ t], for which E[h(ε1)] = F (t). To treat this case, one can rely on expansions of

Fnϑ̂n available in the literature; see Koul (1996) for general nonlinear models, and Boldin

(1982), Koul (1992, Chapter 7) and Koul and Leventhal (1989) for linear autoregressive

models. General empirical processes involving “pseudo-observations” ε̂j = f̂(Xj) are

studied in Ghoudi and Rémillard (1998). For completeness we describe such an expan-

sion. For this we strengthen Assumption 1 and require smoothness of F . More precisely,

we require the following.

(a1) There is a G-square-integrable function ṙ such that, for each constant C,

max
1≤j≤n

sup
‖∆‖≤Cn−1/2

∣∣∣r(ϑ+ ∆,Xj−1)− r(ϑ,Xj−1)−∆>ṙ(Xj−1)
∣∣∣ = oPn(n−1/2).
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(a2) The distribution function F has a positive and uniformly continuous density f .

(a3) The estimator ϑ̂n is n1/2-consistent for ϑ.

Under these assumptions we have the expansion

sup
t∈R

∣∣∣Fnϑ̂n(t)− Fnϑ(t)− f(t)E[ṙ(X0)>](ϑ̂n − ϑ)
∣∣∣ = oPn(n−1/2).

This is essentially Corollary 1.6 in Koul (1996), except that we have replaced his con-

dition (h1) by the weaker condition (a1). Inspection of his proof shows that our (a1)

is sufficient to guarantee the critical requirements (3.8) and (3.11) needed in his proof.

Koul (1996) also constructs n1/2-consistent estimators for ϑ.

For h(x) = 1[x ≤ t] we have ah(F ) = E[ε11(ε1 ≤ t)]/E[ε2
1] = at(F ), say. The empiri-

cal estimator at(Fnϑ̂n) =
∑n

j=1 ε̂j1(ε̂j ≤ t)
/∑n

j=1 ε̂
2
j is consistent for at(F ) uniformly in

t in the sense that supt∈R |at(Fnϑ̂n)−at(F )| = oPn(1). Thus we obtain that the improved

empirical distribution function F ∗
nϑ̂n

= Fnϑ̂n − at(Fnϑ̂n) 1
n

∑n
j=1 ε̂j admits the expansion

sup
t∈R

∣∣∣F ∗
nϑ̂n

(t)− Fnϑ(t)− (f(t)− at(F ))E[ṙ(X0)>](ϑ̂n − ϑ)
∣∣∣ = oPn(n−1/2).(2.8)

For asymptotically linear ϑ̂n this gives the desired result corresponding to Theorem 1.

3 Efficient and adaptive estimators

In this section we characterize efficient and adaptive estimators among those of the form

Hn(ϑ̂n). This requires the nonlinear autoregressive model (1.1) to be locally asymptot-

ically normal. We need an additional assumption, finiteness of the Fisher information

for location. As in Section 2, fix a distribution function F with mean 0 and finite second

moment.

Assumption 3. The distribution function F has positive and absolutely continuous

density f with finite Fisher information for location: E[`2
1(ε1)] =

∫
`2

1 dF < ∞, with

`1(x) = −f ′(x)/f(x).

Remark 1. Under Assumptions 2 and 3 we have E[h′(ε1)] = E[`1(ε1)h(ε1)].

Local asymptotic normality requires local perturbations of the model around the

true parameter (ϑ, F ). The perturbed parameters must still be in the parameter space.

5



Introduce local parameters w = (u, v), with u ∈ Rk and v in the space V of F -square-

integrable functions fulfilling∫
E[ξ(ε1)v(ε1)] = 0, with ξ(x) = (1, x)>.

Set ϑnu = ϑ+ n−1/2u, and let Fnv be the distribution function with density

fnv(x) = f(x)(1 + n−1/2vn(x)).

Here vn is defined as follows: With an = n1/8 and ϕ the standard normal density, let

ξn(x) = (1, (−an)∨ x∧ an)> be a trimmed version of ξ(x), let ṽn(x) = (−an)∨ v(x)∧ an
be a trimmed version of v(x), let v̄n(x) =

∫
ṽn(x − a−1

n y)ϕ(y)dy be a smoothed and

trimmed version of v(x), and then define

vn(x) = v̄n(x)− E[v̄n(ε1)ξ(ε1)>](E[ξn(ε1)ξ(ε1)>])−1ξn(x).

The following properties are easy to check. The function vn is absolutely continuous,

|vn| ≤ Cn1/8 and |v′n| ≤ Cn1/4 for some finite constant C, and
∫
vnξ

>dF = 0 and∫
(vn − v)2dF → 0. In particular, Fnv fulfills Assumption 3, has zero mean and finite

variance. Moreover,

n1/2

∫
h(x)(fnv(x)− f(x))dx = E[h(ε1)vn(ε1)]→ E[h(ε1)v(ε1)].

Since F has a density, the stationary distribution G of Xj has a density, say g = gϑ,F .

Write gnw for the density gϑnu,Fnv . Write Pnw for the joint law of X1−p, . . . , Xn if ϑnu

and Fnv are the underlying parameters. Consider the local log-likelihood ratio

log
dPnw
dPn

= log
gnw(X0)

g(X0)
+

n∑
j=1

log
fnv(εj(ϑnu))

f(εj(ϑ))
.

Here the random variables εj(ϑ) = Xj − r(ϑ,Xj−1) are the innovations, written as

functions of the observations. We have local asymptotic normality as follows. For the

proof see Koul and Schick (1997). They also give conditions for smoothness (3.1) of the

stationary density.

Theorem 2. Let w = (u, v) ∈ Rk × V. Suppose Assumptions 1 and 3 hold and the

stationary density depends smoothly on the parameter,∫
|gnw(x)− g(x)|dx→ 0.(3.1)

6



Then

log
dPnw
dPn

= n−1/2

n∑
j=1

Sw(Xj−1, εj)−
1

2
Rw + oPn(1),(3.2)

n−1/2

n∑
j=1

Sw(Xj−1, εj)⇒ N(0, Rw) under Pn,(3.3)

where N(0, Rw) is normal with mean 0 and variance Rw, and where

Sw(X0, ε1) = v(ε1) + u>ṙ(X0)`1(ε1),

Rw = E[Sw(X0, ε1)2].

From now on we view Sw(X0, ε1) as an element of the Hilbert space L2(G×F ), and

V as a subset of the Hilbert space L2(F ). The tangent space

T = {Sw(X0, ε1) : w = (u, v) ∈ Rk × V}

is a closed linear subspace of L2(G× F ).

Consider now the problem of estimating an m-dimensional functional κ(ϑ, F ). We

say that κ is differentiable at (ϑ, F ) with gradient κ̇ if E[‖κ̇(X0, X1)‖2] <∞ and for all

w = (u, v) ∈ Rk × V ,

n1/2(κ(ϑnu, Fnv)− κ(ϑ, F ))→ E[κ̇(X0, X1)Sw(X0, ε1)].(3.4)

The function κ̇ is not uniquely determined, but its projection κ̇0 onto Tm is. We call

κ̇0 the canonical gradient, and assume that Vκ̇0 = E[κ̇0(X0, X1)κ̇0(X0, X1)>] is positive

definite.

Now let κ̂n be an estimator of κ. We say that κ̂n is regular at (ϑ, F ) with limit L if

n1/2(κ̂n − κ(ϑ, F ))⇒ L under Pnw for all w = (u, v) ∈ Rk × V .

The convolution theorem of Hájek (1970) in the version of Bickel et al. (1998, Section

2.3) implies the following three results:

1. The distribution of L is a convolution,

L = N(0, Vκ̇0) +K in distribution,

with K independent of N(0, Vκ̇0).
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2. A regular estimator κ̂n has limit L = N(0, Vκ̇0) if and only if κ̂n is asymptotically

linear (2.4) with influence function χ equal to the canonical gradient κ̇0.

3. An asymptotically linear estimator is regular if and only if its influence function

is a gradient.

An estimator with limit L = N(0, Vκ̇0) is least dispersed among all regular estimators.

We call such an estimator efficient. It follows from 1. to 3. that an estimator is regular

and efficient if and only if it is asymptotically linear with influence function equal to the

canonical gradient,

n1/2(κ̂n − κ(ϑ, F )) = n−1/2

n∑
j=1

κ̇0(Xj−1, Xj) + oPn(1).(3.5)

We apply the characterization (3.5) to estimators of ϑ and of E[h(ε1)]. To calcu-

late the corresponding canonical gradients, it is convenient to decompose the elements

Sw(X0, ε1) in the tangent space T into orthogonal components,

Sw(X0, ε1) = v(ε1) + u>E[ṙ(X0)](`1(ε1)− a`1(F )ε1) + u>S(X0, ε1)(3.6)

with

S(X0, ε1) = (ṙ(X0)− E[ṙ(X0)])`1(ε1) + E[ṙ(X0)]a`1(F )ε1(3.7)

and a`1(F ) = E[ε1`1(ε1)]/E[ε2
1]. From Remark 1 we obtain

a`1(F ) = (E[ε2
1])−1.(3.8)

By construction, `1(ε1)− a`1(F )ε1 is in V , and S(X0, ε1) is orthogonal to V ,

E[S(X0, ε1)v(ε1)] = 0 for v ∈ V .(3.9)

We assume from now on that the dispersion matrix Λ = E[S(X0, ε1)S(X0, ε1)>] is

positive definite.

Consider first the problem of estimating the parameter ϑ. We view the parameter

as a functional κ(ϑ, F ) = ϑ. We have

n1/2(κ(ϑnu, Fnv)− κ(ϑ, F )) = u,(3.10)

and by decomposition (3.6) and orthogonality (3.9),

Λ−1E[S(X0, ε1)Sw(X0, ε1)] = Λ−1E[S(X0, ε1)S(X0, ε1)>]u = u.(3.11)
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Hence Λ−1S(X0, ε1) is a gradient of κ(ϑ, F ) = ϑ. The gradient is canonical since

a>S(X0, ε1) = Sw(X0, ε1) for w =
(
a, −a>E[ṙ(X0)](`1(ε1)− a`1(F )ε1)

)
.

By characterization (3.5), an estimator ϑ̂n is regular and efficient if and only if it has

influence function Λ−1S(X0, ε1),

n1/2(ϑ̂n − ϑ) = Λ−1n−1/2

n∑
j=1

S(Xj−1, εj) + oPn(1).(3.12)

The asymptotic covariance matrix is then Λ−1.

Efficient estimators for ϑ are constructed in Kreiss (1987a), (1987b) for AR(p) and

ARMA(p, q) models, and in Drost, Klaassen and Werker (1997) and Koul and Schick

(1997) for nonlinear autoregressive models.

Consider now the problem of estimating the functional κ(ϑ, F ) = E[h(ε1)]. The

canonical gradient is given in the following theorem.

Theorem 3. Suppose Assumptions 1 and 3 hold. Then the functional E[h(ε1)] is

differentiable at (ϑ, F ) with canonical gradient

κ̇0(X0, X1) = h(ε1)− ah(F )ε1 − E[h(ε1)]

−E
[(
h(ε1)− ah(F )ε1

)
`1(ε1)

]
E[ṙ(X0)>]Λ−1S(X0, ε1).(3.13)

For ϑ known we have local asymptotic normality (3.2), (3.3) with u = 0, and the

functional E[h(ε1)] has canonical gradient h(ε1) − ah(F )ε1 − E[h(ε1)]. This canonical

gradient equals the canonical gradient for unknown ϑ if and only if h(ε1)− ah(F )ε1 and

`1(ε1) are uncorrelated or E[ṙ(X0)>] = 0. In these cases, E[h(ε1)] can be estimated

as well not knowing ϑ as knowing ϑ. One says then that E[h(ε1)] can be estimated

adaptively with respect to ϑ.

By Remark 1, applied with our h and then with h(x) = ax,

E[h′(ε1)]− a = E
[(
h(ε1)− aε1

)
`1(ε1)

]
.(3.14)

Hence the influence function of Hn(ϑ̂n) in Theorem 1 can be written

h(ε1)− ah(F )ε1 − E[h(ε1)]− E
[(
h(ε1)− ah(F )ε1

)
`1(ε1)

]
E[ṙ(X0)>]χ(X0, X1).
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In particular, if E[h(ε1)] can be estimated adaptively, then Hn(ϑ̂n) is efficient for any

asymptotically linear ϑ̂n. A look at the proof of Theorem 1 shows that n1/2-consistency

of ϑ̂n would suffice.

In general, E[h(ε1)] cannot be estimated adaptively. Let ϑ̂n have influence function

χ. Assume also that ϑ̂n is regular. By the characterization of regular estimators, χ must

be a gradient of κ(ϑ, F ) = ϑ. Since h(ε1) − ah(F )ε1 − E[h(ε1)] is in V , it follows from

relation (3.10) and definition (3.4) that h(ε1)−ah(F )ε1 and χ(X0, X1) are uncorrelated.

Hence the asymptotic variance of Hn(ϑ̂n) is

σ2 = σ2
0 +

(
E
[(
h(ε1)− ah(F )ε1

)
`1(ε1)

])2

E[ṙ(X0)>]VχE[ṙ(X0)],

where σ2
0 is the asymptotic variance (2.3) of Hn(ϑ), and Vχ is the asymptotic covariance

matrix (2.5) of ϑ̂n. The minimal Vχ is Λ−1. We arrive at the following result.

Theorem 4. Suppose Assumptions 1 to 3 hold.

1. The functional E[h(ε1)] can be estimated adaptively with respect to ϑ if and only

if E
[(
h(ε1)− ah(F )ε1

)
`1(ε1)

]
= 0 or E[ṙ(X0)] = 0. Then the estimator

Hn(ϑ̂n) =
1

n

n∑
j=1

(
h(ε̂j)−

∑n
j=1 ε̂jh(ε̂j)∑n

j=1 ε̂
2
j

ε̂j

)
is efficient whenever ϑ̂n is n1/2-consistent.

2. Suppose E[h(ε1)] cannot be estimated adaptively. Let ϑ̂n be regular and asymptot-

ically linear for ϑ, with influence function χ. Then Hn(ϑ̂n) is efficient if and only if the

i-th component ϑ̂ni of ϑ̂n is efficient whenever E[ṙi(X0)] 6= 0.

We have mentioned at the end of Section 2 that a version of Theorem 1, namely rela-

tion (2.8), holds for h(x) = 1[x ≤ t] under appropriately modified assumptions. For this

function we have E[h(ε1)] = F (t). The improved empirical distribution function F ∗
nϑ̂n

(t)

introduced there is efficient for F (t) provided ϑ̂ni is also efficient whenever E[ṙi(X0)] 6= 0.

This follows immediately from the observation that f(t) = −E[`1(ε1)1(ε1 ≤ t)]. Effi-

ciency holds even in the functional sense discussed in Bickel et al. (1998, Section 5.2; see

also Schick and Susarla, 1990).

4 Heteroscedastic nonlinear autoregression

The results of Sections 2 and 3 generalize to heteroscedastic nonlinear autoregression. By

a heteroscedastic nonlinear autoregressive model of order p we mean a strictly stationary
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and ergodic time series Xj, j ≥ 1− p, which satisfies the structural relation

Xj = r(ϑ,Xj−1) + s(ϑ,Xj−1)εj, j ≥ 1.(4.1)

Again, εj are i.i.d. with unknown distribution function F , and independent of the initial

observations X0. We write again G for the stationary distribution of X0. We now

assume that F has mean 0 and variance 1. We also need that F has finite fourth

moment. Assumptions 1 and 2 are replaced by the following two assumptions.

Assumption 4. The functions r(ϑ,X0) and s(ϑ,X0) are differentiable in the sense of

Assumption 1, with derivatives ṙ(X0) and ṡ(X0), respectively. Furthermore, s(ϑ,x) is

bounded away from 0 over x ∈ Rp and ϑ in compact subsets of Θ.

Assumption 5. The function h is absolutely continuous and F -square-integrable, and

its (almost everywhere) derivative h′ satisfies∫
(1 + x2)h′(x)2dF (x) <∞,(4.2) ∫

(1 + x2) supa2+b2≤η(h
′(x− a− bx)− h′(x))2dF (x)→ 0 as η → 0.(4.3)

Suppose first that ϑ is known. Write the innovations εj as functions of the observa-

tions,

εj(ϑ) =
Xj − r(ϑ,Xj−1)

s(ϑ,Xj−1)
.

The constraint on F can be written E[ψ(ε1)] = 0 for ψ(x) = (x, x2 − 1)>. For each

vector a we obtain an unbiased estimator for E[h(ε1)],

H(a, Fnϑ) =
1

n

n∑
j=1

(h(εj(ϑ))− a>ψ(εj(ϑ))),

where Fnϑ(x) = 1
n

∑n
j=1 1(εj(ϑ) ≤ x). By the results on constrained models in Section

2, an efficient estimator for E[h(ε1)] is Hn(ϑ) = H(ah(Fnϑ), Fnϑ) with

ah(F ) =

(
1 E[ε3

1]
E[ε3

1] E[ε4
1]− 1

)−1(
E[ε1h(ε1)]

E[(ε2
1 − 1)h(ε1)]

)
(4.4)

=
1

E[ε4
1]− 1− (E[ε3

1])2

(
(E[ε4

1]− 1)E[ε1h(ε1)]− E[ε3
1]E[(ε2

1 − 1)h(ε1)]
E[(ε2

1 − 1)h(ε1)]− E[ε3
1]E[ε1h(ε1)]

)
.

Suppose now that ϑ is unknown. Replace ϑ in Hn(ϑ) by an asymptotically linear

estimator ϑ̂n. The influence function of Hn(ϑ̂n) is given in Theorem 5.
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Theorem 5. Suppose Assumptions 4 and 5 hold. Let ϑ̂n be asymptotically linear for ϑ,

with influence function χ(X0, X1). Then Hn(ϑ̂n) is asymptotically linear for E[h(ε1)],

with influence function

h(ε1)− ah(F )>ψ(ε1)− E[h(ε1)]

−E
[(
h′(ε1)− ah(F )>ψ′(ε1)

)
(1, ε1)

]
E[M(X0)>]χ(X0, X1),

where M(X0) is the k × 2 matrix

M(X0) =
1

s(ϑ,X0)
(ṙ(X0), ṡ(X0)).

To discuss efficiency of Hn(ϑ̂n), we need local asymptotic normality of the model,

and the following heteroscedastic generalization of Assumption 3.

Assumption 6. The distribution function F has positive and absolutely continuous

density f satisfying ∫
(1 + x2)

(f ′(x)

f(x)

)2

dF (x) <∞.

Assumption 6 implies that the Fisher informations for location and scale are finite:∫
`2

1dF <∞ and
∫
`2

2dF <∞, with `2(x) = −1 + x`1(x). We set ` = (`1, `2)>.

A version of Remark 1 holds for `2.

Remark 2. Under Assumptions 5 and 6 we have E[ε1h
′(ε1)] = E[`2(ε1)h(ε1)].

Local perturbations (ϑnu, Fnv) around the true parameter (ϑ, F ) are introduced as in

Section 3. Write again V for the local parameter space, which now consists of F -square-

integrable functions v fulfilling

E[ξ(ε1)v(ε1)] = 0, with ξ(x) = (1, x, x2 − 1)>.

The local log-likelihood ratio

log
dPnw
dPn

= log
gnw(X0)

g(X0)
+

n∑
j=1

log
fnv(εj(ϑnu))/s(ϑnu,Xj−1)

f(εj(ϑ))/s(ϑ,Xj−1)

is asymptotically normal as follows.
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Theorem 6. Let w = (u, v) ∈ Rk × V. Suppose Assumptions 4 and 6 hold and the

stationary density gnw fulfills (3.1). Then local asymptotic normality (3.2), (3.3) holds

with Sw(X0, ε1) = v(ε1) + u>M(X0)`(ε1).

The proof is similar to the proof of Theorem 2. For fixed nuisance parameter F ,

i.e., for v = 0, the theorem is proved in Jeganathan (1995) and in Drost, Klaassen and

Werker (1997).

We decompose Sw(X0, ε1) into orthogonal components,

Sw(X0, ε1) = v(ε1) + u>E[M(X0)](`(ε1)− a`(F )>ψ(ε1)) + u>S(X0, ε1)

with

S(X0, ε1) = (M(X0)− E[M(X0)])`(ε1) + E[M(X0)]a`(F )>ψ(ε1)(4.5)

and a`(F ) a 2× 2 matrix with columns defined as in (4.4) for h = `1 and h = `2. From

Remarks 1 and 2 we obtain

a`(F ) = (E[ψ(ε1)ψ(ε1)>])−1E[ψ(ε1)`(ε1)]

=

(
1 E[ε3

1]
E[ε3

1] E[ε4
1]− 1

)−1(
1 0
0 2

)
=

1

E[ε4
1]− 1− (E[ε3

1])2

(
E[ε4

1]− 1 −2E[ε3
1]

−E[ε3
1] 2

)
.(4.6)

By construction, the components of `(ε1) − a`(F )>ψ(ε1) are in V , and S(X0, ε1) is

orthogonal to V . We assume that the dispersion matrix Λ = E[S(X0, ε1)S(X0, ε1)>] is

positive definite. As in Section 3, the influence function for efficient estimators of ϑ is

Λ−1S(X0, ε1). The influence function for efficient estimators of E[h(ε1)] is given in the

following theorem.

Theorem 7. Suppose Assumptions 4 to 6 hold. Then the functional E[h(ε1)] is differ-

entiable at (ϑ, F ) with canonical gradient

κ̇0(X0, X1) = h(ε1)− ah(F )>ψ(ε1)− E[h(ε1)]−D>Λ−1S(X0, ε1)

with D = E[M(X0)]E
[(
h(ε1)− ah(F )>ψ(ε1)

)
`(ε1)

]
.

By Remarks 1 and 2,

E
[(
h′(ε1)− a>ψ′(ε1)

)
(1, ε1)>

]
= E

[(
h(ε1)− a>ψ(ε1)

)
`(ε1)

]
.(4.7)
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Hence, by Theorem 5, the influence function of Hn(ϑ̂n) can be written

h(ε1)− ah(F )>ψ(ε1)− E[h(ε1)]−D>χ(X0, X1).

We arrive at the following result.

Theorem 8. Suppose Assumptions 4 to 6 hold.

1. The functional E[h(ε1)] can be estimated adaptively with respect to ϑ if and only

if D = 0. Then the estimator Hn(ϑ̂n) = 1
n

∑n
j=1

(
h(ε̂j)− d̂−1

n

(
ĉn1ε̂j + ĉn2(ε̂2

j −1)
))

, with

d̂n =
1

n

n∑
j=1

ε̂4
j − 1−

( 1

n

n∑
j=1

ε̂3
j

)2

,

ĉn1 =
( 1

n

n∑
j=1

ε̂4
j − 1

) 1

n

n∑
j=1

ε̂jh(ε̂j)−
1

n

n∑
j=1

ε̂3
j

1

n

n∑
j=1

(ε̂2
j − 1)h(ε̂j),

ĉn2 =
1

n

n∑
j=1

(ε̂2
j − 1)h(ε̂j)−

1

n

n∑
j=1

ε̂3
j

1

n

n∑
j=1

ε̂jh(ε̂j),

is efficient whenever ϑ̂n is n1/2-consistent.

2. Suppose E[h(ε1)] cannot be estimated adaptively. Let ϑ̂n be regular and asymp-

totically linear for ϑ, with influence function χ. Then Hn(ϑ̂n) is efficient if and only if

D>(Vχ−Λ−1)D = 0. This condition holds in particular if ϑ̂n is efficient, i.e., Vχ = Λ−1.

In the non-adaptive case, a sufficient condition for efficiency of Hn(ϑ̂n) is that ϑ̂ni

is efficient whenever E[ṙi(X0)/s(ϑ,X0)] 6= 0 or E[ṡi(X0)/s(ϑ,X0)] 6= 0. This is also

necessary if none of the two components of E
[(
h(ε1) − ah(F )>ψ(ε1)

)
`(ε1)

]
vanishes,

which will be the case for most parameters (ϑ, F ).

Efficient estimators of ϑ can be constructed along the lines of Drost, Klaassen and

Werker (1997).

5 Examples

Example 1. The simplest example is linear autoregression of order p,

Xj = ϑ>Xj−1 + εj,

where εj are i.i.d. with mean 0. The structural relation (1.1) is satisfied with r(ϑ,X0) =

ϑ>X0. We have ṙ(X0) = X0 and E[ṙ(X0)] = 0. Hence the model is adaptive. Let ϑ̂n
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be n1/2-consistent and ε̂j = Xj − ϑ̂>nXj−1. Then the estimator Hn(ϑ̂n) in Theorem 4 is

efficient. For p = 1 this was shown in Wefelmeyer (1994). An analogous result holds for

linear regression; see Klaassen and Putter (1999, Example 5.3).

Example 2. A non-adaptive generalization of Example 1 is

Xj − µ = ρ>(Xj−1 − µ1) + εj,

where εj are i.i.d. with mean 0, and 1 = (1, . . . , 1)>. Here ϑ = (ρ>, µ)> and r(X0, ϑ) =

µ + ρ>(X0 − µ1). Assumption 1 holds with ṙ(X0) = (X0 − µ1, 1 − ρ>1)>. We have

E[ṙ(X0)] = (0, 1 − ρ>1)>. Hence, by Theorem 4, an efficient estimator for E[h(ε1)]

requires an efficient estimator for µ, but not for ρ.

Write g = (g>ρ , gµ)> for the canonical gradient of ϑ = (ρ>, µ)>. To calculate the

canonical gradient gµ of µ, note first that by (3.7) and (3.8),

S(X0, ε1) =

(
(X0 − µ1)`1(ε1)

(1− ρ>1)(E[ε2
1])−1ε1

)
.

The covariance matrix Λ of S(X0, ε1) is diagonal, with (1−ρ>1)2(E[ε2
1])−1 as lower right

entry. Hence gµ = (1− ρ>1)−1ε1. It is easy to check that this is the influence function

of the empirical estimator Xn = 1
n

∑n
j=1 Xj, which is therefore efficient. Now estimate

ρ = (ρ1, . . . , ρp)
> by the empirical autocorrelation coefficients

ρ̂ni =

∑n
j=1(Xj −Xn)(Xj−i −Xn)∑n

j=1(Xj −Xn)2
.

Estimate the innovations εj by ε̂j = Xj −Xn − ρ̂>n (Xj−1 −Xn1). Set ϑ̂n = (ρ̂>n , Xn)>.

Then the estimator Hn(ϑ̂n) in Theorem 4 is efficient for E[h(ε1)].

Example 3. A heteroscedastic and non-adaptive example is the SETAR(1,2) process,

defined by

Xj = (α1 + β1Xj−1 + σ1εj)1[Xj−1 < 0] + (α2 + β2Xj−1 + σ2εj)1[Xj−1 ≥ 0], j ≥ 1,

where the εj are i.i.d. with mean 0 and variance 1. The structural relation (4.1) holds

for ϑ = (α1, β1, σ1, α2, β2, σ2)> and

r(ϑ, x) = (α1 + β1x)1[x < 0] + (α2 + β2x)1[x ≥ 0],

s(ϑ, x) = σ11[x < 0] + σ21[x ≥ 0].
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In this model, Assumption 4 holds with

ṙ(x) = (1[x < 0], x1[x < 0], 0, 1[x ≥ 0], x1[x > 0], 0)>,

ṡ(x) = (0, 0, 1[x < 0], 0, 0, 1[x ≥ 0])>,

and the vector D is given by

−
(pI0

σ1

,
µ1I0

σ1

,
I1

σ1

,
(1− p)I0

σ2

,
µ2I0

σ2

,
I1

σ2

)>
,

where Ik = E[εk1(h′(ε) − ah(F )>ψ′(ε))], p = P (X0 < 0), µ1 = E[X01[X0 < 0]], µ2 =

E[X01[X0 > 0]]. Hence the estimator Hn(ϑ̂n) of Theorem 8 is, in general, efficient only if

all components of ϑ̂n are efficient. Such estimators for ϑ can be constructed as one-step

improvements of n1/2-consistent estimators, using the approach of Drost, Klaassen and

Werker (1997).

An initial estimator for (α1, β1) is the minimizer (α̂1, β̂1) of
n∑
j=1

(Xj − α1 − β1Xj−1)21[Xj−1 < 0];

and σ1 can be estimated by the square root σ̂1 of

σ̂2
1 =

∑n
j=1(Xj − α̂1 − β̂1Xj−1)21[Xj−1 < 0]∑n

j=1 1[Xj−1 < 0]
.

For α2, β2 and σ2 we have corresponding estimators.

Example 4. Another heteroscedastic and non-adaptive example is

Xj = αXj−1 +
√
β + γX2

j−1 εj, j ≥ 1,

where the εj are i.i.d. with mean 0 and variance 1. The structural relation (4.1) holds

for ϑ = (α, β, γ)> and r(ϑ, x) = αx, s(ϑ, x) =
√
β + γx2. The time series is ergodic if β

and γ are positive and α2 + γ < 1. Assumption 4 holds with

ṙ(x) = (x, 0, 0)>, ṡ(x) =
1

2
√
β + γx2

(0, 1, x2)>.

We obtain

M>(x) =

[ x√
β+γx2

0 0

0 1
2(β+γx2)

x2

2(β+γx2)

]
.

Hence the estimator Hn(ϑ̂n) of Theorem 8 is, in general, efficient only if all components

of ϑ̂n are efficient. Such estimators for ϑ can be constructed as one-step improvements

of n1/2-consistent estimators, using the approach of Drost, Klaassen and Werker (1997).

Here one should be able to avoid sample splitting using ideas of Koul and Schick (1997).
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6 Proofs

Lemma 1. Suppose Assumption 1 holds and ϑ̂n is n1/2-consistent. Then

n∑
j=1

(
r(ϑ̂n,Xj−1)− r(ϑ,Xj−1)− ṙ(Xj−1)>(ϑ̂n − ϑ)

)2

= oPn(1),(6.1)

n∑
j=1

(
r(ϑ̂n,Xj−1)− r(ϑ,Xj−1)

)2

= OPn(1),(6.2)

max
1≤j≤n

|r(ϑ̂n,Xj−1)− r(ϑ,Xj−1)| = oPn(1).(6.3)

Proof. Relation (6.1) follows immediately from Assumption 1 and n1/2-consistency of

ϑ̂n. For notational convenience, write rnj = r(ϑ̂n,Xj−1) − r(ϑ,Xj−1). Relation (6.1)

implies max1≤j≤n |rnj − ṙ(Xj−1)>(ϑ̂n − ϑ)| = oPn(1). Hence (6.2) follows if we show
1
n

∑n
j=1 ‖ṙ(Xj−1)‖2 = OPn(1), and (6.3) follows if we show n−1/2 max1≤j≤n ‖ṙ(Xj−1)‖ =

oPn(1). Both statements follow from stationarity and square-integrability of ṙ.

Lemma 2. Suppose Assumptions 1 and 2 hold, and ϑ̂n is n1/2-consistent. Then

n−1/2

n∑
j=1

h(ε̂j) = n−1/2

n∑
j=1

h(εj)− E[h′(ε1)]E[ṙ(X0)>]n1/2(ϑ̂n − ϑ) + oPn(1).

Proof. By Taylor expansion,

h(ε̂j) = h(εj) + (ε̂j − εj)h′(εj) + (ε̂j − εj)
∫ 1

0

(
h′(εj + t(ε̂j − εj))− h′(εj)

)
dt.

We have

ε̂j − εj = −(r(ϑ̂n,Xj−1)− r(ϑ,Xj−1)).(6.4)

Assumption 2 implies 1
n

∑n
j=1(h′(εj))

2 = OPn(1). Hence relation (6.1), the Cauchy–

Schwarz inequality and the ergodic theorem give

n−1/2

n∑
j=1

(ε̂j − εj)h′(εj) = −n−1/2

n∑
j=1

h′(εj)ṙ(Xj−1)>(ϑ̂n − ϑ) + oPn(1)

= −E[h′(ε1)]E[ṙ(X0)>]n1/2(ϑ̂n − ϑ) + oPn(1).
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It remains to show

n−1/2

n∑
j=1

(ε̂j − εj)
∫ 1

0

(
h′(εj + t(ε̂j − εj))− h′(εj)

)
dt = oPn(1).(6.5)

Relations (6.4) and (6.2) imply
∑n

j=1(ε̂j−εj)2 = OPn(1). Hence, by the Cauchy–Schwarz

inequality, relation (6.5) holds if

1

n

n∑
j=1

∫ 1

0

(
h′(εj + t(ε̂j − εj))− h′(εj)

)2

dt = oPn(1).

This, in turn, follows from Assumption 2, since by relation (6.3) and (6.4) we have

max1≤j≤n |ε̂j − εj| = oPn(1).

Proof of Theorem 1. It is easy to check that ah(Fnϑ̂n) is a consistent estimate of

ah(F ). It follows from Lemma 2 that 1
n

∑n
j=1 h(ε̂j) has influence function

h(ε1)− E[h(ε1)]− E[h′(ε1)]E[ṙ(X0)>]χ(X0, X1).

Since the choice h(x) = x fulfills Assumption 2, we obtain as special case that 1
n

∑n
j=1 ε̂j

has influence function ε1 − E[ṙ(X0)>]χ(X0, X1). Combining the above shows that

Hn(ϑ̂n) = 1
n

∑n
j=1 h(ε̂j)− ah(Fnϑ̂n) 1

n

∑n
j=1 ε̂j has the desired influence function.

Proof of Remark 1. Consider the location model generated by the density f . The

function
∫
h(x)f(x − a)dx =

∫
h(x + a)f(x)dx is differentiable at a = 0; its derivative

can be written in two ways. By Assumption 2 and dominated convergence,∫
h(x+ a)f(x)dx−

∫
h(x)f(x)dx = a

∫
h′(x)f(x)dx+ o(a).

By Assumption 3 and Lemma 7.2 in Ibragimov and Has’minskii (1981),∫
h(x)f(x− a)dx−

∫
h(x)f(x)dx = a

∫
h(x)`1(x)f(x)dx+ o(a).

Hence
∫
h′(x)f(x)dx =

∫
h(x)`1(x)f(x)dx.

Proof of Theorem 3. Note first that h(ε1) − ah(F )ε1 − E[h(ε1)] is in V . Hence the

function κ̇0(X0, X1) defined in (3.13) is in the tangent space T . By definition of vn,

n1/2(κ(ϑnu, Fnv)− κ(ϑ, F )) = n1/2
(∫

hdFnv −
∫
hdF

)
→ E[h(ε1)v(ε1)]
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for all (u, v) ∈ Rk × V . To prove that κ̇0(X0, X1) is a gradient, we must show that

E[κ̇0(X0, X1)Sw(X0, ε1)] = E[h(ε1)v(ε1)] for all w = (u, v) ∈ Rk × V .

But this follows from straightforward calculations using the representation (3.6), the

orthogonality condition (3.9), the facts that h(ε1) − ah(F )ε1 − E[h(ε1)] and `1(ε1) −
a`1(F )ε1 belong to V and the identities

E
[(
h(ε1)− ah(F )ε1 − E[h(ε1)]

)
v(ε1)

]
= E[h(ε1)v(ε1)], v ∈ V ,

E
[(
h(ε1)− ah(F )− E[h(ε1)]

)
(`1(ε1)− a`1(F )ε1))

]
= E

[(
h(ε1)− ah(F )ε1

)
`1(ε1)

]
.

This proves that κ̇0(X0, X1) is a gradient. Since it is in the tangent space T , it is

canonical.

References

Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and

Adaptive Estimation for Semiparametric Models. Springer, New York.

Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregression scheme.

Theory Probab. Appl. 27, 866–871.

Drost, F. C., Klaassen, C. A. J. and Werker, B. J. M. (1997). Adaptive estimation in

time-series models. Ann. Statist. 25, 786–817.

Ghoudi, K. and Rémillard, B. (1998). Empirical processes based on pseudo-observations.

In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), 171-197,

North-Holland, Amsterdam.
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