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Abstract

We characterize efficient estimators for the expectation of a function under the
invariant distribution of a Markov chain and outline ways of constructing such
estimators. We consider two models. The first is described by a parametric family
of constraints on the transition distribution; the second is the heteroscedastic
nonlinear autoregressive model. The efficient estimator for the first model adds
a correction term to the empirical estimator. In the second model, the suggested
efficient estimator is a one-step improvement of an initial estimator which might
be obtained by a version of Markov chain Monte Carlo.
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1 Introduction

Let X0, . . . , Xn be observations from a homogeneous and geometrically ergodic Markov
chain with transition distribution Q(x, dy) and invariant distribution π(dx). We want
to estimate the expectation π(f) =

∫
π(dx)f(x) of a function f under π. The usual es-

timator is the empirical estimator 1
n

∑n
i=1 f(Xi). It is efficient if nothing is known about

the transition distribution; see Penev [25], Bickel [2] and Greenwood and Wefelmeyer [9].
We expect that the empirical estimator can be improved if we have partial knowledge
about Q.

Two types of models are considered in the literature. For one type, information
about Q is given indirectly through restrictions on the invariant distribution of the
chain. Examples of this type include parametric or semiparametric modeling of π as
well as reversibility of the chain, π(dx)Q(x, dy) = π(dy)Q(y, dx). Efficient estimation in
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this type of model is considered in Greenwood and Wefelmeyer [10] and Kessler, Schick
and Wefelmeyer [18].

For the second type, information is given directly about the transition distribution
Q. An example is Xi = ϑXi−1 + εi, where the εi are martingale increments. The
corresponding restriction on Q is∫

Q(x, dy)y = ϑx. (1.1)

Efficient estimators of ϑ in this and related models are constructed in Wefelmeyer [32].
A submodel of (1.1) is the AR(1) model, with εi i.i.d. innovations with mean zero

density p, in which case

Q(x, dy) = p(y − ϑx)dy. (1.2)

Efficient estimators of ϑ are constructed in Kreiss [20], [21], and of expectations under
the innovation distribution in Wefelmeyer [30].

For models of the type (1.1) and (1.2), efficient estimation of π(f) has not yet been
treated. In this paper we outline ways of characterizing and constructing efficient esti-
mators of π(f) for such models.

The paper is organized as follows. In Section 2 we recall, for general Markov chain
models, the characterization of estimators which are efficient in the sense of being least
dispersed and regular. This characterization says that an estimator is efficient if and
only if it is asymptotically linear with influence function equal to the canonical gradient.
The canonical gradient is the projection of an arbitrary gradient into the tangent space
of the model. In Sections 3 and 4 we compute the canonical gradient of the functional
π(f) for various models and thus obtain the characterization of efficient estimators in
these models.

In Section 3 we consider a family of models which generalize (1.1). They are given
by a parametric family of restrictions on the transition distribution,∫

Q(x, dy)aϑ(x, y) = 0, (1.3)

where aϑ may be vector-valued. Besides (1.1), this model includes nonlinear AR(1)
models Xi = mϑ(Xi−1) + εi with martingale increment innovations εi, for which (1.3)
reduces to ∫

Q(x, dy)y = mϑ(x). (1.4)

Model (1.3) also includes the ARCH(1) model Xi = σ(1 + αX2
i−1)

1/2εi with martingale
increment innovations εi. In this case, (1.3) reduces to
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∫
Q(x, dy)y = 0,∫
Q(x, dy)y2 = σ2(1 + αx2).

(1.5)

The above models (1.1), (1.4), (1.5) are special cases of quasi-likelihood Markov chain
models, ∫

Q(x, dy)y = mϑ(x),∫
Q(x, dy)(y −mϑ(x))2 = vϑ(x).

(1.6)

While we consider efficient estimation of π(f), efficient estimation of ϑ in these models
has been treated in Wefelmeyer [31], where additional references to literature on these
models may be found.

The heteroscedastic nonlinear autoregression model

Xi = mϑ(Xi−1) + sϑ(Xi−1)εi

with independent innovations is a submodel of the quasi-likelihood model with vϑ(x) =
sϑ(x)2. The transition distribution has the form

Q(x, dy) = sϑ(x)
−1p

(
sϑ(x)

−1(y −mϑ(x))
)
dy,

where p is the common density of the innovations. The model includes the ARCH(1)
model Xi = σ(1 + αX2

i−1)
1/2εi with independent innovations εi. In this case, mϑ(x) = 0

and sϑ(x)2 = σ2(1 + αx2). We treat efficient estimation of π(f) in Section 4. The
construction of an efficient estimator is outlined only for the case of a known innovation
density p. Efficient estimation of ϑ is treated in Linton [23], Hwang and Basawa [15],
Drost, Klaassen and Werker [4], [5], Jeganathan [12], Koul and Schick [19].

The model with independent innovations turns out to be considerably less tractable
than the model with martingale innovations, which is close to nonparametric. The two
models differ in several aspects. We comment on the differences in Section 5.

In this paper we focus on the main ideas and suppress the necessary regularity
conditions, geometric ergodicity of the Markov chain and appropriate differentiability
properties of mϑ(x) and sϑ(x) as functions of ϑ.

2 Characterization of efficient estimators

Consider a family Q of transition distributions on some measurable state space. Fix
Q ∈ Q such that the corresponding Markov chain is ergodic with invariant distribution
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π. A local model at Q is obtained by perturbing Q as

Qnh(x, dy)
.
= Q(x, dy)(1 + n−1/2h(x, y))

in such a way that Qnh lies within Q. In regular cases the local parameter h will run
through a linear subspace H0 of

H = {h ∈ L2(π ⊗Q) :

∫
Q(x, dy)h(x, y) = 0}.

The space H0 is called the tangent space. Suppose we observe X0, . . . , Xn driven by
Q, with fixed initial distribution µ(dx). Write Pn and Pnh for the joint distribution
of X0, . . . , Xn if Q and Qnh, respectively, are the transition distributions. Then the
log-likelihood admits a stochastic expansion

log
dPnh

dPn

(X0, . . . , Xn) = n−1/2

n∑
i=1

log
dQnh

dQ
(Xi−1, Xi)

= n−1/2

n∑
i=1

h(Xi−1, Xi)−
1

2
π ⊗Q(h2) + oP (1),

and by a martingale central limit theorem,

n−1/2

n∑
i=1

h(Xi−1, Xi) ⇒ (π ⊗Q(h2))1/2N under Pn,

with N standard normal. This is local asymptotic normality in the sense of LeCam [22].
Proofs for Markov chains under increasingly weaker conditions are given by Roussas [27],
Penev [25] and Höpfner [13], [14].

Consider a real-valued functional t on Q. It is called differentiable at Q with gradient
g ∈ H if

n1/2(t(Qnh)− t(Q)) → π ⊗Q(hg) for h ∈ H0.

The canonical gradient is the projection g0 of g onto H0.
By the convolution theorem in the version of Pfanzagl and Wefelmeyer [26], Theorem

9.3.1, an estimator Tn of t(Q) is efficient if and only if it is asymptotically linear with
influence function equal to the canonical gradient,

n1/2(Tn − t(Q)) = n−1/2

n∑
i=1

g0(Xi−1, Xi) + oP (1). (2.1)

We are interested in estimating the expectation π(f) of a function f under the
invariant distribution. The usual estimator is the empirical estimator 1

n

∑n
i=1 f(Xi).

This estimator is asymptotically linear,

n1/2
( 1

n

n∑
i=1

f(Xi)− π(f)
)

= n−1/2

n∑
i=1

Af(Xi−1, Xi) + oP (1), (2.2)
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with influence function

Af(x, y) =
∞∑

j=0

( ∫
Qj(y, dz)f(z)−

∫
Qj+1(x, dz)f(z)

)
.

This follows from the martingale approximation of Gordin [7]; see also Gordin and Lif̌sic
[8] and Meyn and Tweedie [24], Section 17.4.

By Kartashov [16], [17], the transition distribution Qnh has an invariant distribution,
say πnh, and the functional t(Q) = π(f) is differentiable at Q with gradient Af ,

n1/2(πnh(f)− π(f)) → π ⊗Q(hAf) for h ∈ H0.

The canonical gradient g0 is the projection of Af onto H0. The empirical estimator
is thus efficient if and only if Af is in H0. If nothing is known about the transition
distribution, then H0 equals H, and the empirical estimator is efficient.

Both the martingale approximation (2.2) and differentiability of π(f) require that
the chain is geometrically ergodic. Sufficient conditions for model (1.1) are in Schick
[29], and sufficient conditions for nonlinear autoregression models are in Guegan and
Diebolt [11], Bhattacharya and Lee [3] and An and Huang [1].

3 Constrained transition distributions

In this section we consider a Markov chain model which is given by the following para-
metric family of restrictions on the transition distribution Q(x, dy):∫

Q(x, dy)aϑ(x, y) = 0. (3.1)

For simplicity, we first restrict attention to one-dimensional ϑ and real -valued aϑ. Exten-
sions to higher dimensions are indicated in Remark 1. The tangent space is obtained by
perturbing Q as, say, Qnh(x, dy)

.
= Q(x, dy)(1 + n−1/2h(x, y)) subject to the restriction

(3.1) with a perturbed ϑ, say ϑnu = ϑ+ n−1/2u:∫
Qnh(x, dy)aϑnu(x, y) = o(n−1/2).

This implies the following restriction on the local parameter h:∫
Q(x, dy)aϑ(x, y)h(x, y) = uc(x) (3.2)

with

c(x) = −
∫
Q(x, dy)a′ϑ(x, y), (3.3)
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where the prime denotes a derivative with respect to the parameter ϑ. Here and in the
following, we suppress the dependence on ϑ whenever the function is not just a function
of ϑ but depends also on the unknown transition distribution Q. Let H1 denote the set
of all h ∈ H satisfying (3.2) with u = 1. Then the tangent space H0 is the linear span
of H1,

H0 = [H1] = {uh : h ∈ H1, u ∈ R}.

Since the difference of any two solutions solves the corresponding homogeneous equation,
H0 can be decomposed as

H0 = [h] +K, (3.4)

where h is any solution of (3.2) with u 6= 0, and K is the set of all solutions of the
corresponding homogeneous equation,

K = {h ∈ H :

∫
Q(x, dy)aϑ(x, y)h(x, y) = 0}.

Let
ψ(x, y) = v(x)−1/2aϑ(x, y),

where v is the conditional variance of aϑ,

v(x) =

∫
Q(x, dy)aϑ(x, y)2.

Note that in the definition of K the function aϑ(x, y) can be replaced by ψ(x, y) or
e(x)ψ(x, y). Hence the orthogonal complement K⊥ of K in H is the set of all functions
h ∈ H of the form h(x, y) = e(x)ψ(x, y) with e ∈ L2(π) arbitrary. There is only one
solution of (3.2) with u = 1 in K⊥, namely h = ϕ with

ϕ(x, y) = v(x)−1/2c(x)ψ(x, y). (3.5)

Thus we can decompose H0 and H as sums of orthogonal subspaces,

H0 = [ϕ]⊕K, H = H0 ⊕ L (3.6)

with L = {h ∈ K⊥ : h⊥ϕ}. The elements h of L are of the form

h(x, y) = e(x)ψ(x, y) with π(v−1/2ce) = 0.

Consider now the problem of estimating the expectation π(f) of a function f under
the invariant distribution π. According to Section 2, the canonical gradient g0 is the
projection of Af onto H0. It is of the form u0ϕ+ k0, where u0ϕ is the projection of Af
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onto [ϕ], and k0 the projection of Af onto K. By the definition of K⊥, the projection
of Af onto K⊥ is e0(x)ψ(x, y) with

e0(x) =

∫
Q(x, dy)ψ(x, y)Af(x, y).

Hence the projection of Af onto K is

k0(x, y) = Af(x, y)− e0(x)ψ(x, y).

Furthermore,

u0 =
π ⊗Q(ϕAf)

π ⊗Q(ϕ2)
=
π(v−1/2ce0)

π(v−1c2)
.

In conclusion, the canonical gradient is

g0(x, y) = Af(x, y)−
(
e0(x)− u0v(x)

−1/2c(x)
)
ψ(x, y).

Alternatively, we can write

g0(x, y) = Af(x, y)− w(x)aϑ(x, y) (3.7)

with
w(x) = v(x)−1(d0(x)− u0c(x))

and

d0(x) = v(x)1/2e0(x) =

∫
Q(x, dy)aϑ(x, y)Af(x, y).

Hence, by (2.1), an efficient estimator Tn of π(f) is characterized by

n1/2(Tn − π(f)) = n−1/2

n∑
i=1

(
Af(Xi−1, Xi)− w(Xi−1)aϑ(Xi−1, Xi)

)
+ oP (1). (3.8)

Its asymptotic variance is

π ⊗Q(Af)2 − π(vw2). (3.9)

This shows that in this model the variance bound is reduced by

π(vw2) = π(v−1d2
0)−

(π(v−1cd0))
2

π(v−1c2)
.

By the Schwarz inequality, this is strictly positive unless d0 is proportional to c.
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In view of the characterization (3.8) and the martingale approximation (2.2) of the
empirical estimator, we obtain an efficient estimator

Tn =
1

n

n∑
i=1

f(Xi)−Wn

if we can construct Wn such that

n1/2Wn = n−1/2

n∑
i=1

w(Xi−1)aϑ(Xi−1, Xi) + oP (1). (3.10)

Let us now sketch a possible construction of Wn. Write

n−1/2

n∑
i=1

wn(Xi−1)aϑn(Xi−1, Xi)

= n−1/2

n∑
i=1

wn(Xi−1)
(
aϑn(Xi−1, Xi)−

∫
Q(Xi−1, dy)aϑn(Xi−1, y)

)
+ n−1/2

n∑
i=1

wn(Xi−1)

∫
Q(Xi−1, dy)aϑn(Xi−1, y).

If wn and ϑn are deterministic sequences, the first right-hand term is a martingale. It
approximates the right side of (3.10) if∫∫

π(dx)Q(x, dy)
(
wn(x)aϑn(x, y)− w(x)aϑ(x, y)

)2 → 0.

If n1/2(ϑn − ϑ) is bounded, the second term is approximately

n1/2(ϑn − ϑ)
1

n

n∑
i=1

wn(Xi−1)c(Xi−1).

The average converges to π(wc) = 0 if π(|(wn − w)c|) → 0.

These arguments remain valid for estimators ŵ and ϑ̂ in place of wn and ϑn if ŵ is
based on independent copies of our sample and ϑ̂ is a discretized n1/2-consistent esti-
mator. Since independent samples are not available to us, we use the sample splitting
technique of Schick [29]. We pick three subsamples so that we can use separate sub-
samples for estimating certain terms. This amounts to using two independent copies
Y0, . . . , Yn and Z0, . . . , Zn of the observations X0, . . . , Xn.

To estimate w, we must estimate v, d0 and c. Note that Af(x, y) = Uf(y) −∫
Q(x, dy)Uf(y) with

Uf(y) =
∞∑

j=0

∫
Qj(y, dz)(f(z)− π(f)).
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Hence d0(x) can be approximated by∫
Q(x, dy)aϑ(x, y)

m∑
j=0

∫
Qj(y, dz)f(z),

where m tends to infinity sufficiently slowly. Here we have replaced the infinite series by
a finite sum and omitted the centering. We estimate

∫
Qj(x, dy)f(y) by a j-step kernel

estimator,

Q̂jf(x) =

∑n−m
k=1 f(Zk+j)Kn(Zk − x)∑n−m

k=1 Kn(Zk − x)
,

where Kn(x) = h−1
n K(h−1

n x) for some density K and bandwidth hn tending to zero.
Hence an estimator for d0(x) is

d̂0(x) =

∑n
i=1 aϑ̂(Yi−1, Yi)Kn(Yi−1 − x)∑n

i=1Kn(Yi−1 − x)

m∑
j=0

Q̂jf(Yi).

Similarly, estimate v(x), c(x), u0 by

v̂(x) =

∑n
i=1 aϑ̂(Yi−1, Yi)

2Kn(Yi−1 − x)∑n
i=1Kn(Yi−1 − x)

,

ĉ(x) = −
∑n

i=1 a
′
ϑ̂
(Yi−1, Yi)Kn(Yi−1 − x)∑n
i=1Kn(Yi−1 − x)

,

û0 =

∑n
i=1 v̂(Xi)

−1ĉ(Xi)d̂0(Xi)∑n
i=1 v̂(Xi)−1ĉ(Xi)2

.

In û0 we have used the original observations since the sample splitting techniques of
Schick [29] allow multiplicative constants to be estimated by the full data. Then w(x)
is estimated by

ŵ(x) = v̂(x)−1(d̂0(x)− û0ĉ(x)),

and our outline of the construction of Wn is finished.
For technical reasons it may be necessary to set the estimators d̂0(x), v̂(x) and ĉ(x)

equal to zero when |x| is large or the denominators are relatively small; see Schick [29].

Remark 1. If aϑ is r-dimensional and ϑ is s-dimensional, then a′ϑ and c are r × s-
matrices, v is the conditional r × r-dispersion matrix of aϑ, d0 is an r-vector, and u0 is
an s-vector solving π(c>v−1c)u0 = π(c>v−1d0). Hence the gradient is

g0(x, y) = Af(x, y)− (d0(x)− c(x)u0)
>v(x)−1aϑ(x, y).

Example 1. Consider the nonlinear AR(1) model Xi = mϑ(Xi−1) + εi with martin-
gale increment innovations εi and ϑ s-dimensional. Here r = 1, and (3.1) holds with
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aϑ(x, y) = y −mϑ(x), so that
∫
Q(x, dy)y = mϑ(x). We have

c = m′
ϑ,

v(x) =

∫
Q(x, dy)(y −mϑ(x))2,

d0(x) =

∫
Q(x, dy)(y −mϑ(x))Af(x, y),

u0 =
(
π(v−1m

′>
ϑ m

′
ϑ)

)−1
π(v−1d0m

′>
ϑ ).

Hence the canonical gradient for π(f) is

g0(x, y) = Af(x, y)− (d0(x)−m′
ϑ(x)u0)v(x)

−1(y −mϑ(x)).

For the linear AR(1) model we have mϑ(x) = ϑx, so that m′
ϑ(x) = x. For the SETAR

model we have mϑ(x) = ϑ1x1(x<0) + ϑ2x1(x>0), so that m′
ϑ(x) = (x1(x<0), x1(x>0)).

4 Heteroscedastic nonlinear autoregression

In this section we consider the heteroscedastic nonlinear autoregression model of order
one,

Xi = mϑ(Xi−1) + sϑ(Xi−1)εi,

with independent innovations εi which have mean 0, variance 1, finite fourth moment and
unknown positive density p with finite Fisher information for location and scale. The
transition distribution has the form Q(x, dy) = sϑ(x)−1p(εϑ(x, y))dy with εϑ(x, y) =
sϑ(x)−1(y−mϑ(x)). The tangent space is obtained by perturbing p as pnk(x)

.
= p(x)(1+

n−1/2k(x)) and ϑ as ϑnu = ϑ+n−1/2u. Because the innovations have mean 0 and variance
1, we must have∫

p(x)dx k(x) = 0,

∫
p(x)dx xk(x) = 0,

∫
p(x)dx x2k(x) = 1.

Let K denote the set of all such k. Let `1, `2 denote the score functions for location and
scale, `1(x) = −p′(x)/p(x), `2(x) = x`1(x)− 1. The perturbed Q is

Qnuk(x, dy) = sϑnu(x)−1pnk(εϑnu(x, y))dy
.
= Q(x, dy)

(
1 + n−1/2

(
L(x, y)u+ k(εϑ(x, y))

))
with

L(x, y) = sϑ(x)−1
(
`1(εϑ(x, y))m′

ϑ(x) + `2(εϑ(x, y))s′ϑ(x)
)
.

Here m′
ϑ(x) and s′ϑ(x) are row vectors of the same dimension as ϑ. Thus the tangent

space is
H0 = {Lu+ k(εϑ) : u ∈ R, k ∈ K}.

With L∗ denoting the projection of L onto K(εϑ) = {k(εϑ) : k ∈ K} and L0 = L− L∗,
we can write H0 as the orthogonal sum H0 = [L0] ⊕ K(εϑ). Note that K(εϑ) is the
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orthogonal complement of [1, εϑ, ε
2
ϑ] in the set of all functions of εϑ. Hence the projection

of a function h ∈ H onto K(εϑ) is obtained by first taking the conditional expectation
E (h|εϑ) given εϑ and then subtracting from E (h|εϑ) its projection onto [1, εϑ, ε

2
ϑ]. An

orthogonal basis of this space is [1, εϑ, ε
2
ϑ−1−µ3εϑ], where µk denotes the k-th moment

of p. Since E (h|εϑ) has expectation 0, the projection of h onto K(εϑ) is

Bh(εϑ) = E (h|εϑ)− εϑπ ⊗Q(hεϑ)− (ε2
ϑ − 1− µ3εϑ)

π ⊗Q(h · (ε2
ϑ − 1− µ3εϑ))

µ4 − 1− µ2
3

.

To calculate L∗, we recall that

π ⊗Q(`(εϑ)(εϑ, ε
2
ϑ − 1)) =

(
1 0
0 2

)
,

where ` = (`1, `2)
>. See, e.g., Schick [28], Remark 3.10. Hence

L∗ =
(
`1(εϑ)− εϑ + (ε2

ϑ − 1− µ3εϑ)
µ3

µ4 − 1− µ2
3

)
π(s−1

ϑ m′
ϑ)

+
(
`2(εϑ)− (ε2

ϑ − 1− µ3εϑ)
2

µ4 − 1− µ2
3

)
π(s−1

ϑ s′ϑ),

and L0(x, y) = Λ(x, εϑ(x, y)) with

Λ(x, ε) = `1(ε)
(
sϑ(x)−1m′

ϑ(x)− π(s−1
ϑ m′

ϑ)
)

+ `2(ε)
(
sϑ(x)−1s′ϑ(x)− π(s−1

ϑ s′ϑ)
)

+επ(s−1
ϑ m′

ϑ) +
ε2 − 1− µ3ε

µ4 − 1− µ2
3

(
2π(s−1

ϑ s′ϑ)− µ3π(s−1
ϑ m′

ϑ)
)
.

Consider now the problem of estimating the expectation π(f) of a function f under
the invariant distribution π. According to Section 2, the canonical gradient g0 is the
projection of Af onto H0 = [L0]⊕K(εϑ). It is of the form g0 = L0u0 +BAf(εϑ), where
u0 = π ⊗Q(L>0 L0)

−1π ⊗Q(L>0 Af). Hence by (2.1), an efficient estimator Tn of π(f) is
characterized by

n1/2(Tn − π(f)) = n−1/2

n∑
i=1

(
Λ(Xi−1, εi)u0 +BAf(εi)

)
+ oP (1)

with εi = sϑ(Xi−1)
−1

(
Xi −mϑ(Xi−1)

)
. Its asymptotic variance is

π ⊗Q(Af · L0)
(
π ⊗Q(L>0 L0)

)−1
π ⊗Q(L>0 Af) +

∫
p(x)dx (BAf(x))2.

The construction of an efficient estimator for π(f) in this model is considerably more
involved than the construction for the model in the previous section. For this reason,
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we will not treat it here in generality. Instead, we outline the construction in the special
case of a known innovation density p, location function mϑ(x) = ϑx, and scale function
sϑ(x) = 1. This model is parametric, and we write πϑ and Qϑ for π and Q. It is easy to
check that in this case the tangent space H0 is the linear span of h(x, y) = x`1(y − ϑx),
and the canonical gradient is

g0 =
πϑ ⊗Qϑ(hAf)

πϑ ⊗Qϑ(h2)
h.

Note that πϑ⊗Qϑ(h2) = (1−ϑ2)−1J1 with J1 the Fisher information for location. Note
also that here dϑ = πϑ ⊗Qϑ(hAf) is the derivative of πϑ(f) with respect to ϑ.

Let ϑ̂ be an efficient estimator of ϑ. Then its influence function is (1−ϑ2)J−1
1 h. Thus

πϑ̂(f) has influence function g0 and is efficient. Now the problem is that we usually do
not know πϑ explicitly. However, we can approximate πϑ̂(f) by the empirical estimator
1
m

∑m
j=1 f(Yj) based on realizations Y0, . . . , Ym from the Markov chain with transition

distribution Qϑ̂. This is a version of a Markov chain Monte Carlo method. For an
introduction to such methods see Gilks, Richardson and Spiegelhalter [6]. To guarantee
that the error in the approximation is negligible compared to that of the estimator πϑ̂(f),
the simulation sample size must be considerably larger than n.

Another efficient estimator of πϑ(f) is

πϑ̂(f) + d̂(1− ϑ̂2)
1

nJ1

n∑
i=1

Xi−1`1(Xi − ϑ̂Xi−1),

where ϑ̂ is a discretized version of a n1/2-consistent estimator such as the least squares
estimator, and d̂ is a consistent estimator of dϑ such as 1

2
n1/2(πϑ̂+n−1/2(f)−πϑ̂−n−1/2(f)).

To see that this works, note that

n1/2(πϑ̂(f)− πϑ(f)) = n1/2(ϑ̂− ϑ)dϑ + oP (1)

and

n−1/2

n∑
i=1

Xi−1

(
`1(Xi − ϑ̂Xi−1)− `1(Xi − ϑXi−1)

)
= −(1− ϑ2)−1J1n

1/2(ϑ̂− ϑ) + oP (1).

The last expansion follows from Koul and Schick [19], (2.11). The expectations, in turn,
can be estimated using Markov chain Monte Carlo as before.

The last approach to constructing efficient estimators extends to the case of general
mϑ and sϑ in an obvious way. The case of unknown p requires estimating the gradient
g0 by methods similar to those in Section 3.

Remark 2. How much information can be gained from knowing that the innovations εi

are i.i.d. rather than martingale increments? Suppose that the true model is the AR(1)
model Xi = ρXi−1 +ηi with independent innovations ηi which have mean 0, variance σ2,
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finite fourth moment µ4 and unknown positive density p. This is the model of Section
4, with mϑ(x) = ρx and sϑ(x) = σ. Suppose we want to estimate the second moment of
the invariant distribution, π(f) for f(x) = x2. It is easy to check that

Af(x, y) =
y2 − ρ2x2 − σ2

1− ρ2
.

Hence the asymptotic variance of the empirical estimator 1
n

∑n
i=1X

2
i for π(f) is

µ4 − σ4 + 4σ4ρ2(1− ρ2)−1

(1− ρ2)2
.

To calculate the optimal variance for estimators of π(f), we determine the tangent
space for the AR(1) model with independent innovations. We do this directly rather
than by specializing Section 4. Let `(x) = −p′(x)/p(x) denote the score function for
location. The tangent space consists of functions ax`(y − ρx) + ϕ(y − ρx) with a ∈ R
and ϕ ∈ L2(p) with

∫
p(x)dxϕ(x) =

∫
p(x)dx xϕ(x) = 0. Note that Af is orthogonal to

x`(y − ρx). The projection of Af onto the tangent space is therefore

(y − ρx)2 − µ3σ
−2(y − ρx)− σ2

1− ρ2
.

Hence the optimal variance for estimators of π(f) in the AR(1) model with independent
innovations is

µ4 − σ4 − µ2
3σ

−2

(1− ρ2)2
.

The variance reduction over the empirical estimator is

µ2
3

σ2(1− ρ2)2
+

4σ4ρ2

(1− ρ2)3
.

Consider now the larger AR(1) model in which the innovations are arbitrary mar-
tingale increments. The optimal variance for estimators of π(f) is then obtained from
(3.9) as

µ4 − σ4 + 4σ4ρ2(1− ρ2)−1

(1− ρ2)2
− µ2

3

σ2(1− ρ2)2
,

since now v(x) = σ2 and w(x) = µ3σ
−2(1 − ρ2)−1. The variance reduction over the

empirical estimator is
µ2

3

σ2(1− ρ2)2
.

Hence if we know that the innovations are independent, we can reduce the variance by

4σ4ρ2

(1− ρ2)3
.
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5 Conclusion

The main example of the Markov chain model of Section 3 is the heteroscedastic non-
linear autoregressive model of order one,

Xi = mϑ(Xi−1) + sϑ(Xi−1)εi,

with martingale increment innovations εi. Section 4 treats the submodel with indepen-
dent innovations. At first sight, these two autoregression models are quite similar. One
purpose of our paper is to point out that both the characterization and the construction
of efficient estimators are, in fact, rather different for the two models. Quite generally,
efficient estimators are the more complicated the further the model is from the two
extreme ends of the spectrum: parametric and fully nonparametric.

The autoregressive model with martingale increment innovations is close to the non-
parametric end. By (3.6), the orthogonal complement L of the tangent space H0 consists
of functions of the form e(x)ψ(x, y) with known ψ(x, y). This space L, although infinite-
dimensional, has a very explicit description. Hence the canonical gradient g0 of π(f),
the projection of Af onto H0, is most easily obtained via the projection m0 of Af onto
the orthogonal complement of H0, leading to g0 = Af −m0 with m0 defined implicitly
through (3.7). Since Af is the influence function of the empirical estimator, the form
of the gradient suggests constructing an efficient estimator by correcting the empirical
estimator as

Tn =
1

n

n∑
i=1

f(Xi)−Wn

with n1/2Wn = n−1/2
∑n

i=1w(Xi−1, Xi) + oP (1) as in (3.10).
The autoregressive model with independent innovations is far from both the paramet-

ric and the nonparametric end. We do not have an explicit description of the orthogonal
complement of the tangent space H0 and calculate the canonical gradient of π(f) by
projecting Af directly onto H0 = [L0]⊕K(εϑ). The efficient estimator is not obtained
by modifying the empirical estimator. Instead we suggest a one-step improvement which
requires a better initial estimator than the empirical estimator, namely πϑ̂(f).

As mentioned in the introduction, efficient estimators for ϑ rather than π(f) in non-
linear autoregression models have been constructed by Wefelmeyer [31], [32] for martin-
gale increment innovations and, most recently, by Drost et al. [5] and Koul and Schick
[19] for independent innovations. We note that again the efficient estimators are quite
different in the two models. With martingale increment innovations, a simple weighted
least squares estimator with random weights is efficient. With independent innovations,
an efficient estimator is obtained by a one-step improvement of an initial estimator.
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