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Abstract. Suppose we observe a stationary Markov chain with unknown tran-
sition distribution. The empirical estimator for the expectation of a function
of two successive observations is known to be efficient. For reversible Markov
chains, an appropriate symmetrization is efficient. For functions of more than
two arguments, these estimators cease to be efficient. We determine the in-
fluence function of efficient estimators of expectations of functions of several
observations, both for completely unknown and for reversible Markov chains.
We construct simple efficient estimators in both cases.
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1. Introduction

To begin let Xy,..., X,, be observations from a stationary time series. We want to
estimate the expectation E[f(Xy,..., X,,)] of a function f of m arguments. The usual

estimator is the empirical estimator

1 n
Enf=m Z f(Xjmms1, .-+, Xj).

j=m-—1

This estimator is efficient if nothing is known about the distribution of the time series,
or if the observations come from a Markov chain of order m — 1 or higher with unknown
transition distribution. This follows by a straightforward extension of Greenwood and
Wefelmeyer (1995), who consider first-order Markov chains and show that E,, f is efficient
for functions f of two arguments. (For functions of one argument, different efficiency
proofs for E, f are in Penev, 1991, and Bickel, 1993.)
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The empirical estimator F,, f may cease to be efficient if more is known abot the time
series. For example, if the time series is known to be reversible, we can improve E,, f by
symmetrization, using

1 n
Bl = 2= m) > I Xemts - Xg),

j=m—1

where f*Y™ is obtained by symmetrizing with respect to time reversal,

fsym(xl’-” 7$m) = %[f(xla 7$m) +f(xm7 7'T1)]‘

For first-order Markov chains and functions of two arguments, Greenwood and Wefelmeyer
(1999) show that the symmetrized empirical estimator is efficient. (In particular, reversibil-
ity carries no information on the expectation of a function of one argument.)

If f is a function of m arguments and the order of the chain is known to be less than
m—1, the empirical estimator is not efficient. For discrete state space, it is easy to improve
E, f. Suppose, for simplicity, that the chain is of order one, with transition probabilities
Q(z,y) and stationary probabilities 7(z). Then

E[f(Xl,,Xm)] = Z 7T(£131) (HQ(mz_l,xl)> f($1,... ,ﬂ?m),

L1yeer 3T,

and an efficient estimator is obtained by replacing 7(x) and Q(z, y) by empirical estimators
E,(z) and E,(z,y)/E,(x) with
Eun) = ——#{j: X; =7}, Fale,y)= #{i: X; 1 =2, X; =y}
n+1 n
The resulting estimator for E[f(Xy,..., X,,)] is efficient because E,(z) and E,(z,y) are
by the result of Greenwood and Wefelmeyer (1995) mentioned above. If the chain is known
to be reversible, an efficient estimator is obtained by symmetrizing E, (z,y).

We mention in passing that such constructions do not carry over to random fields.
However, Greenwood, McKeague and Wefelmeyer (1999) construct estimators which ex-
ploit knowledge of the range of interactions and are better than empirical estimators but
not efficient.

We also recall that the empirical estimator E, f is inefficient for functions of more
than one argument if the observations are known to be independent. Then the joint law of
X1, ..., Xy, is the product of the marginal laws, and E[f(X1,...,Xm)] can be estimated
by the von Mises statistic

1 n
mr Z F(Xiyy e Xa).
21, ,Zmzl



In the nonparametric model, i.e., when the law of X; is unknown, the von Mises statistic
is efficient; see Levit (1974) and Koshevnik and Levit (1976).

Suppose now that Xg,..., X, come from a first-order Markov chain with arbitrary
state space. We want to find an efficient estimator for an expectation E[f(X7,..., Xpn)]
with m > 2. The above construction for discrete state space does not carry over to contin-
uous state space. For arbitrary state space, we base the construction on a characterization
of efficient estimators which is based on Hajek’s (1970) convolution theorem. We show in
Section 3 that for the full nonparametric model, with nothing known about the transi-
tion distribution of the Markov chain, the characterization reads as follows: An estimator
T, is regular and efficient for E[f(X},...,X,,)] if (and only if) it admits a stochastic
approximation of the form

(1.1) n'?(T, — E[f(X1,..., Xm)])) =02 Tf(X;1,X;) +op, (1),

j=1
where Tf = Afl +f2 +-- +fm with fl(x) = E(f(X17 7Xm)|X1 = "I:)a
fl(x7y) = E(f(Xla .. '7Xm)|Xi—1 = ani = y) - E(f<X17 - '7Xm)‘Xi—1 = .7)'),

for i = 2,...,m, and where A is the operator which maps a function ¢ on the state space
into the function A¢ defined by

Ag(z,y) = Y [E($(Xk)| Xo = y) — E(¢(Xp41)|Xo = z)].
k=0

The operator A appears in the well-known martingale approximation

n

n-1/2 Z(¢(XJ) — E[p(X1)]) = n~1/2 ZAgb(Xj_hXj) +op, (1),

Jj=1

which goes back to Gordin (1969).
For a reversible Markov chain we have

Elf(Xy,..., Xm)| = E[f*¥™(X1, ..., Xm)].

This is used in Section 4 to show that an estimator T;, is efficient in the submodel of all
reversible chains if the stochastic approximation (1.1) holds with f replaced by f*¥™. In
Section 5 we discuss the construction of efficient estimators for E[f(Xq, ..., X,,)] in the full
nonparametric Markov chain model with m > 3. Relying on the sample splitting technique
of Schick (1998) we show that efficient estimators can be constructed if we have appropriate
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estimators of the functions E[f(X1,...,Xm) | Xic1 = 2,X; = y], i = 2,...,m, and
E[f(Xy,...,Xm) | Xiz1 = x|, i = 3,...,m out of which the functions fi,..., f,, above
are made up. Of special interest are functions of the form f(Xi,...,X;) = u1(X1) - ...-
Um (Xm). They are treated in detail in Section 6. Efficient estimators in the model of all
reversible chains are obtained by replacing f by f*¥™. The proofs of the main results are
in Sections 7 and 8.

2. Notation

In this section we collect notation that is used throughout the paper. Let S be a state
space with countably generated o-field S. By a signed kernel we mean a linear combination
of Markov kernels. Let v be a signed measure on S and K be a signed kernel on § x S.
Let ¢ be a measurable function on S. Then v(¢) denotes the integral [v(dz)¢(z), and
K ¢ denotes the function on S defined by

K() = / K(z,dy)d(y), €85,

provided the integrals make sense. Further, vK denotes the signed measure on S defined
by
VK (A) = /y(dw)/K(w,A), Aes.

If K; and K> are signed kernels, then K1 K5 denotes the signed kernel defined by
KiKa(o,4) = [ Kalo,dp)Ka(y. 4), A€S.

We define K7 iteratively by K™ = K"K, starting with K! = K.

We will assume the Markov chain to be V-uniformly ergodic; see Meyn and Tweedie
(1993, Chapter 16). In connection with this concept, we need the following notation. Let V
be a measurable function from S to [1,00). Then we let Ly denote the set of all measurable
functions ! from S to R for which

iy = sup M < o,

€S V(‘T)
and let My denote the set of all signed measures 1 on S such that

lullv = sup, u()] = sup{|u()] : L € Ly, ll[y <1} < o0
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The spaces Ly and My are Banach spaces for the norms |- |y and || - ||y, respectively.
Moreover,

lly = sup |u(l)|:=sup{|p(l)]: p € My, [lullv <1}, 1€ Ly.
lullv<1
In particular, if V' = 1, then Ly is the set of all bounded measurable functions endowed
with the sup-norm, and My is the set of all signed measures with finite total variation
norm. For the signed kernel K we set

K K(z,dy)l
Kl = sup [K1ly = sup sup EHD_ gy g LGB,

[|<v €S |I|<KV V(z) €S |I|<KV V(z)
It is easy to check that

IKllv = sup |lnK]lv.
lullv <1

Thus, if ||K|||y < oo, then the map I — K defines a bounded linear operator on Ly, and
the map p — pK defines a bounded linear operator on My .

3. Characterization of efficient estimators

In this section we describe a characterization of efficient estimators for differentiable
functionals in Markov chain models. Let Xy,..., X,, be observations from a stationary
Markov chain on § with transition distribution ) and stationary distribution 7. We write
7 ® Q for the joint distribution of (Xo, X;) and 7 ® Q®7 for the joint distribution of
(Xo,...,Xj), 7 > 2. Let V be a measurable function from S to [1,00). Throughout we
impose the following assumptions on the chain.

Assumption 1. The function V is w-square integrable:
(3.1) m(V?) < 0.

The kernel () satisfies

QV?(z)
3.2 2 = - <
(3:2) Qv SUD T3y <
and is V-uniformly ergodic:
(3.3) lim (|Q7 — ]|y = o.
j—o00
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We also need the following assumption on the function f of m arguments whose
expectation we want to estimate.

Assumption 2. There are a finite constant Cy and nonnegative numbers o, ..., 0y,
satisfying a1 + - - - + au, = 1 such that

f(z1,.. . 2m)| S CV(21)-...- VO (2,), @1,...,Zm € S.

The following remarks give sufficient conditions for, and consequences of, these as-

sumptions.

Remark 1. A sufficient condition for Assumption 1 is the V2-uniform ergodicity of Q,

i.e.,
(3.4) tim [[Q7 — 17[ly> = .
j—00

It follows from Meyn and Tweedie (1993, Section 16) that for an aperiodic chain, V-uniform
ergodicity is implied by the following drift condition: For some small set I' and positive
constants A < 1 and b < oo,

/ Q(z,dy)V(y) < AV (z) +blp(z), =z€S.

An event I" in § is called small if there exist a measure v on § with v(I') > 0 and a
positive integer j such that Q’(x, B) > v(B) for all z € T and B € S. In particular,
if ) is aperiodic and satisfies the above drift condition with V? instead of V, then Q is
V2.uniformly ergodic and thus satisfies Assumption 1.

Remark 2. It follows from the (conditional) moment inequality and (3.2) that
QV*F< MV

for all @ € [0,2] and some finite constant M. In view of this, Assumptions 1 and 2
guarantee the square-integrability of f(Xy,..., X,,). Indeed, one calculates

E[f(X1,..., Xm)}] = 1@ Q%™ (f?) < CIM™ n(V?).

Remark 3. We need the following stability results for the stationary distribution. We
have ||Q7 —II||y = |[|(Q—IT)?|||y. Hence V-uniform ergodicity (3.3) of Q implies geometric
V -uniform ergodicity of Q: For positive constants D and p < 1,

(3.5) Q7 = Mjy < Dy for all ;.
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Since
I|Q — Iy = sup (@ — )]lv,

HEMy ,|lpllv <1

|l - [l is an operator norm of the type considered by Kartashov (1985, 1996). It follows
from (3.5) that the operator

U=1+> (@ ~1)=3 (Q~ 1)

Jj=0

is well defined on Ly and bounded, and the inverse of I — @Q + II. Thus @) is uniformly
ergodic in the norm ||| - |||y (Kartashov, 1985, Theorem 1) and hence strongly stable in this
norm (Kartashov, 1985, Theorem 4): Each Markov kernel ), in some neighborhood of @
has a unique invariant measure 7, and |7« — 7|y — 0 as [|Q« — Q||v — 0.

One can even show the following perturbation expansion of 7, in terms of Q,

(3.6) Ty — T = WZ((Q* —Q)U)

if @ is close enough to Q. Indeed, since (v — p)II = 0 for any two probability measures
v and p, we find that m, — 7 = 7. (Qs« — Q) + (7« — m)(Q — II). Tterating this we arrive at

e — T = i (Qu —Q)-l—Z?T*(Q* —Q)QT —1II) + (my —m)(Q"T = II), n=1,2,....
j=1

In view of (3.5), we see that the right hand side converges in the |||-||y-norm to 7. (Q.—Q)U.
This shows that

T — T = T (Qx — Q)U.
Iterating this yields

me—m =73 ((Qu— QU) +m((Qu— QU)" .
j=1
Thus, if [|(Q« —Q)U||v < 1, we get the desired (3.6). A version of the representation (3.6)

for a different norm was already given by Greenwood and Wefelmeyer (1997).

The characterization of regular and efficient estimators is based on a nonparametric
version of Hajek’s (1970) convolution theorem. We recall that the nonparametric Markov
chain model is locally asymptotically normal. As in Greenwood and Wefelmeyer (1999)
we take as local parameter space the set

H={heL(m®Q): Qh = 0}.
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For a function k(x,y) of two arguments, we introduce the conditional centering

(3.7) Ak(z,y) = k(z, y) — / Qs d2)k(s, 2).

If k € Ly(m® Q) then Ak € H. For each local parameter h € H, we let (Qy, ;) denote the
sequence of transition probabilities defined by

Qun(z, dy) = Q(z, dy) (1 +n"h,(z,y)),

where

ho(@,y) = Ahy (2, y) = hn(z,y) — /Q(ar,dZ)f_ln(w,Z), z,y €8S,

with h, = hlgpi<n1/sy- Since |hn| < 2n'/8 and Qh,, = 0, the kernel Qn,n is indeed a
probability kernel, and

(3-8) 1@n.n = Qlllv < 2[IQlv n=3/%.

It follows from this inequality and the results of Kartashov (1985) that for large n, each
Qn,n has an invariant measure 7, 5, and that

(3.9) Sup ||Tnn — m — m(Qnp — Q)U|ly = O(n=3/%).
heH

Moreover, it is easy to check that
n2(L+n"2h,) Y% — 1) = Ih in Ly(n ® Q).

The following nonparametric version of local asymptotic normality can now be derived
along the lines of Roussas (1965, 1972). For minimal assumptions see Hopfner (1993).

Theorem 1. Let P, =7®Q%" and P, = Tpp ® fo}l denote the joint distribution of
Xo, ..., Xy under (Q and QQy, 1, respectively. Then

APy 1
P,

log X0y, Xp) =072 " h(X; 1, X;) — 57 @ Q(h*) + op, (1)
j=1

and

72> WX, X;) | P) = N(0,7® Q(h?)),
7=1

with N (a,b) the normal distribution with mean a and variance b.
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Consider now a submodel of the full nonparametric Markov chain model. The local
parameter space Hy of the submodel is a subset of H. We assume that Hj is linear.
Suppose we want to estimate the value #(Q) of a functional ¢ at ). Assume that the
functional is differentiable in the submodel with gradient g at @, i.e., g € Lo(7m ® Q) and

nl/2 (t(Qn,h) - t(Q)) — 1®Q(hg) for all h € Hy.

Of course, g is not uniquely determined, but its projection gy onto Hy is. The projection
go is called the canonical gradient.

Now consider an estimator (sequence) (T},) of £(Q). The estimator (T,,) is said to have
an influence function ¥ at Q if ¢ € H and

n'?(T, — Q) =n~ ") (X;-1, X;) + op, (1).
j=1

The estimator (T,,) is said to be regular at @) in the submodel if there exists a distribution
L such that
L(nY* (T, —t(Qup)) | Pup) = L for all h € H,.

The convolution theorem implies that the limiting distribution L is a convolution
L=N(0,7®Q(g3)) * K,

that a regular estimator has least dispersed limiting distribution V' (0, 7 ® Q(g3)) only if it
has an influence function which equals the canonical gradient, and that an estimator with
influence function g¢ is regular. In view of this, we call the estimator (T},) efficient if it
has influence function gg:

(3.10) nA(T, — @) =072y golXj1, X) + on, (1),

Now let f be a function of m arguments fulfilling Assumption 2. We are interested in
the functional ¢ = t; defined by

t1(Q) = E[f(X1,..., Xm)] = 7 ® Q¥™=D(f).

Note that m depends on (). Our first goal is to show that that this functional is differ-
entiable, and to calculate its canonical gradient in the full nonparametric Markov chain
model. We first treat the case of a function f = ¢ of one argument, m = 1. For this we

need the following additional notation. For a function ¢ € Ly, let A¢ denote the map on
S? defined by

Ad(z,y) = Ud(y) — QU(x) = Ud(y) — / Q(z,d2)U(z), .y € 5.
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Lemma 1. For ¢ € Ly, the functional t4(Q) = n(¢) is differentiable in the full non-
parametric model, with canonical gradient Ag¢.

PROOF: From (3.9) we obtain

B2t (Qnn) — 14(Q)) — / / 7(d2)Q(z, dy)hu(, y) Ub(y) — 0.

Since h, — h in Ly(m® Q) and U¢ € La(m @ @), we have

[ [ wane@ (e vow - [[ ~dn)Q.anhi.nvsw.

Since Qh = 0, we can replace U¢(y) on the right side by Ud(y) — QUo(x) = Ap(z,y). O

The efficient influence function will involve conditional expectations of functions of
more than one argument, going both forward and backward in time. This requires new
notation. Write Q for the transition distribution of the reversed chain, i.e., the unique
kernel Q such that

7(dz)Q(z, dy) = 7 (dy)Q(y, dz).

The operator @ will always act forward in time; the operator Q will always act backward
in time. Conditional expectations of functions of several arguments will always be taken
on the rightmost argument under @, and on the leftmost argument under Q). In particular,
for the function f of m arguments,

Q®(m_i)f(X17"'7Xi) :E[f(X177Xm) |X1""’Xi]7 ’i:l,...,m,
QOE=DQem=) — E[f(Xy,...,Xm) | Xi—1, Xi], i=2,...,m.

We use ® rather than ® as an additional reminder that for Q the time order is reversed.

Theorem 2. The functional t;(Q) = 7 ® Q®™~Y(f) is differentiable in the full non-
parametric model, with canonical gradient

(3.11) go=Tf = AQ®™Vf 4 ZAQe(i—:z)Q@(m_i)f_
=2

The operator T is a bounded linear operator from La(m @ Q®(™~1) to Ly(m ® Q).
The proof is in Section 7.

Remark 4. For a function f = ¢ of one argument, we recover the result of Penev (1991)
that the empirical estimator E, ¢ is efficient for E[¢(X1)]. In this case go = A¢. It follows
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from the martingale representation of Gordin (1969; see also Meyn and Tweedie, 1993,
Section 17.4) that

(3.12) —Eqs(X = m(¢) + — ZA¢ i1, Xj) — (U¢( n) — Ud(Xo)).

Hence

qu — E[¢(X1)] —n—1/2ZA¢ i1, X;) +op, (1).

Thus this average has influence function g and is therefore efficient, and so is the empirical

estimator .

Remark 5. For m = 2 we recover the result of Greenwood and Wefelmeyer (1995)
that the empirical estimator E,, f is efficient. Assume first that m > 2 and consider the

empirical estimator

1
E.f = —a m ,...,X .
/ n—m+2 Z F(Xjma )

j=m—1

The martingale representation (3.12) extends immediately to functions of more than one

argument,

n1/2(E’nf - E[f(Xla s 7Xm)]) = n_1/2 Z Amf(Xj—m+17 . aX]) + OPn(]-)a

Jj=m-—1

where
Anf(z1,. ... yxm) = AQ®(m_1)f(3:m_1, Ton)

+ Z[Q(g)(m_i)f(xm—i—l-la e axm) - Q®(m_i+1)f(xm—i+la ey -Tm—l)]

for z1,..., 2, € S. Consequently,

L2 (Euf —15(@Q)) | Pa) = N(0,7® Q%" V((Anf)?))-
It is easy to verify that the canonical gradient is the conditional expectation
(3.13) 90(Xm-1,Xm) = E[Anf(X1,.. ., X)) | Xm—1, Xm]-
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Thus, for m = 2, we have A,,f = go, and the empirical estimator is efficient in the full
model in this case. For m > 3, the asymptotic variance of the empirical estimator exceeds
the information bound 7 ® Q®(™~1(g2) by the amount

E[(Amf(Xla RN Xm) - gO(Xm—h Xm))2]'

Remark 6. The empirical estimator is regular in the full model. To see this, note first
that (3.13) implies

ElAnf( X1, ..., Xm)h(Xp—1,Xm)] = 7 ® Q(goh), h € H.
With the aid of Le Cam’s Third Lemma, one can now show that
e (Enf = t7(Qun) | Pan) = N0, 7@ Q™ V((Anf)?), heH.

Hence the empirical estimator is regular in the full model.

4. Reversible Markov chains

Let us now treat the case when the Markov chain is known to be reversible, Q = Q. Tt
follows from Theorem 2.1 of Roberts and Rosenthal (1997) and the V-uniform ergodicity
of @ that @ is La(m)-geometrically ergodic:

1Q™ — IT|| = sup{n((Q"¢ — 11¢)*) : ¢ € La(m),(¢") <1} < Dp"

for some finite D and some p < 1. This allows us to extend the operators U and A from
Ly to La(m). For m = 2 the operator A,, is

Ask(z,y) = AQk(z,y) + k(z,y) — Qk(z), z,y€ S,

with Qk(z) = [ Q(z,dz)k(x, z). Our A corresponds to the operator A used by Greenwood
and Wefelmeyer (1999). Note that Axk = A¢ if k(z,y) = é(z) or k(z,y) = ¢(y) or
Ez.y) = 3(6(2) + 6(0).

Let B denote the adjoint of Ay, and let H"®Y be the subset of all h € H for which
Bh is symmetric, i.e., Bh(x,y) = Bh(y,x). As was shown by Greenwood and Wefelmeyer
(1999) in their proof of Lemma 3, for every h € H"® there exist transition distributions
Qn.» with invariant measures my, 5, such that the corresponding Markov chain is reversible,

i.e., Qn,n = Qn,n, or equivalently,
Wn,h(dx)Qn,h(xa dy) = ﬂ-n,h(dy)Q‘n,h(y7 dl‘),
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and such that @y, 5 has local parameter h, i.e.,
Qun(x, dy) = Q(x, dy) (1 +n~?hn(z,y))
with |h,| < Cn'/® for some finite constant C and
n2(1+n"Y2h,)Y2 1) = b in Ly(r ® Q).

Hence H™®" is the local parameter space in the model of all reversible chains. To calculate
the canonical gradient of ¢;(Q) = 7 ® Q®™~1(f) in this model, we note first that the
canonical gradient go of t¢(Q) in the full nonparametric model, given in (3.11), can be
written as g = Aqk with

(41) k= Q@(m—Q)f + i AQ@(i—Z)Q@(m—i)‘f'

1=3

This follows from Ak € H for k € La(r ® Q) and Ash = h for h € H, and from
ApQ®m=2) f = AQ®M=1) f + AQ®(™~2) f. The canonical gradient g5’ of the functional
t7(Q) in the model of all reversible chains is the projection of gy onto H"®’. As in the
proof of Theorem 2 of Greenwood and Wefelmeyer (1999) we obtain the projection by

symmetrizing k£ with respect to time reversal,
96‘61) — Ag Lsym

with
kY™ (z,y) = L(k(z, ) + k(y, 2)).

Easy calculations show that

AokSY™ — %(AQ‘X’(m_l)f + AQ@(m—l)f) + Z A[QG(i—2)Q®(m—i)f]sym_
i=2
Alternatively, we can write
gge'u — Tfsym-
Recall from the Introduction that
™M@, ) = 3 f (@1, Tm) + (@ -, 2]

Note that T f*¥™ is the canonical gradient of the functional £ fsym (Q) = T@Q®M=1)(f5v™)
in the full nonparametric model. This functional coincides with ¢#(Q) on the set of re-
versible Markov kernels.
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Remark 7. For a function f = ¢ of one argument we recover the result of Greenwood
and Wefelmeyer (1999) that reversibility does not help estimating F[¢(X1)]. By (4.1) the
canonical gradient of ¢4(Q) = E[¢(X1)] in the full nonparametric model can be written
go = Ak with k(z,y) = ¢(y). Hence ¢g{’ = Az¢*¥™ with

¢V (@, y) = §(d(y) + ().

But A¢*¥™ = A¢. Hence the empirical estimator F, ¢ is efficient for E[¢(X)] in the
model of all reversible Markov chains.

Remark 8. For m = 2 we recover the result of Greenwood and Wefelmeyer (1999)
that the symmetrized empirical estimator is efficient in the model of all reversible chains.
Assume first that m > 2 and consider the symmetrized empirical estimator

1 n
—— SYM(X ey X))
(n_m+2) Z f ( J—m+1; ’ ])

j=m-—1

By fvm =
As in (3.12), we obtain that

2 (Epf*™ — El(X)]) =02 Y Anf™(Xj-m+1, X;) + op, (1).

j=m-—1

As t4sym coincides with ¢4 on the set of reversible kernels, we see that
S (En ™ = 11(Q)) | P) = N (0,7 Q%™ V((An fU™)?)).
It is easy to verify that
930° (Xm—1,Xm) = E[An " (X1, .., Xm) | Xm—1, Xm]-

Thus for m = 2 we have A f*¥™ = ¢3¢’, and the symmetrized empirical estimator is
efficient in this case. For m > 3, the asymptotic variance of the empirical estimator
exceeds the information bound 7 ® Q®(™~1)((g5°)?) by the amount

E[(Amf™™ (X1, -, Xm) = 95°° (Xm—1, Xm))?]-

5. Construction of efficient estimators

We have already seen that the empirical estimator for E[f(Xq,..., X,,)] is efficient in
the full nonparametric model if m < 2, but is typically not efficient if m > 2. Let us now
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study how to construct an efficient estimator in this case. Assume throughout this section
that m > 2.
First consider the “estimator”

Tn = —Z (Q®<m DI +ZAQ®(’ 2QEM I f(Xj, ))

= 1 O(i=2) )®(m—1) S @(z 2) H®(m—i+1)
nZ 30 QOEDQR (x,,, X,) — 3 Q06 F(Xj1)
=3

=2

which still depends on the unknown transition distribution. By our assumptions we have
Q®m=1f ¢ Ly. Thus it follows from the martingale representation (3.12) that

”1/2(%ZQ®<W—1><XJ-_1> —w(@®<m—1>f>>

i=1

—n—1/2ZAQ®<m Vf (X1, X;) +op, (1).

As (Q® 1 f) = 7 ® Q¥ =V (f) = t;(Q), we obtain that 7, has influence function gp.
This suggests a plug-in estimator that replaces the unknown Markov kernels Q and Q in
the “estimator” 7,, by estimators, say @, and Q,.

To avoid technical difficulties we adopt the sample splitting technique of Schick (1998).
For simplicity we use his two-split. For this let (/V,,) be a sequence of positive integers
such that oON n— IN.
" 51, n—2N, 200 and ——= —0.

n vn

Let Qn,1 and Qn,l be the estimators of (Q and @Q based on the first N,, + 1 observations
Xo, ..., Xn, only, and let @, 2 and ng be the same estimators based on the last N,, + 1

observations X,,_n_,..., X . Let now

N, n
R 1 = 1
(51) Tn = % (—N E fn,Q(Xj—la X]) + —N E fn,l(Xj—la Xj)),
n 4

" j=n—Np+1

where, for j = 1,2,
Fag(@y) =D QeS QR flay) = 3 QRITIQET TV f@), wyes.
=2 1=3

In the next theorem we state conditions on the estimators Q,, and Q,, under which
7, 1s efficient.
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Theorem 3. In addition to m > 3, assume that

(5.2) Qv + 1Qnllv + |Qnllv = Op, (1),
(5.3) D re QLTSI f — QOUTAQOM f|) = op, (1),
1=2
(5.4) D w(|QREDQEMm—HY p _ QO Qem=itD) f)) = op (1),
=3
(5:5) D QLI - Q) 0r® (Qu— Q) ®QE™I(f) = op, (n2).
=3

Then the estimator sequence (7,) defined in (5.1) is asymptotically equivalent to the

“estimator” sequence (T,),
(5.6) n'/?(#, = 1) = op, (1),

Thus (7,,) has influence function gy and hence is regular and efficient for E[f(X1,..., Xu)]
in the full model.

The proof is in Section 8.

Remark 9. Suppose the state space S is finite. Take @, and Q,, to be the empirical
estimators defined by

i X =2, X;=y]

Qn(z, {y}) = S 1[X; 1 = a]
. Y =T, Aj—1=1Y
Qn(z,{y}) = S 1X; =q]

for z,y € S. Then

n?|Qu (2, {y}) — Q(z, {y}| + n'/?|Qu (2, {y}) — Az, {y})| = Op, (1)
for all z and y in S. From this it is easy to see that (5.2)—(5.5) hold. In this simple case,
one does not have to split the sample. One can show directly that

m

—Z (ZQQ“ DRI (X, X) = ) QRE” 2>Q§<m—i+l>f(xj_1))

1=3
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has influence function go. Of course, for discrete state space we do not need this construc-
tion. A simple efficient estimator for E[f(X4,...,X,,)] in this case is described in the
Introduction.

Remark 10. Let

Vna=0Qn—Q)+(1—-a)Q and ipe=0a(Qn—Q)+(1—0a)Q, a=0,1

Then we have, for j =1,...,m,
QY =@n-Q+ Q¥ = (o +m)¥ = Y Vna @ Qg

ai,...,a;=0,1

and

~0j ~0i _ _ _
QnJ_Q ) = E Vn,a1®"'®yn,aj-
ai,...,aj=0,l:a1+---+a; >1

Using these relations we can conclude that the left-hand side of (5.5) equals

m—2
(5.7) Z Z Una, @ OlUna OTQVpg; s @ QVnay_s (f) =op, (n—1/2)’

where A; = {(a1,...,am-1) € {0,1}™ a1 +---+a; > 1,041 = 1}.

Remark 11. Covariances and correlations of time series involve expectations of functions
of the form

fxy, ... zm) =u(zr) W(Ty), Z1,...,Z, € 8.

For such f,

QRUIQR™ TV (2,y) = @ u(x) Qn w(y), @,y €S,

and
QPU=AQEM™ f(z,y) = Q" %u(z) Q™ w(y), z,y € S.

Thus the left-hand sides of (5.3) and (5.4) simplify to

> [ wanae. dy) @i u@@z-tu) - ¢ u)@™u()

and

> [ () @ uln) Qi) - P u(@ @ (o).

17



Hence (5.3) and (5.4) are implied by
1(|Qnu = Qul”* + |Quw — Qw[*) = op, (1), i=1,...,m~2.

Furthermore, one can check that the left-hand side of (5.5) simplifies to
m—2 .
T((Qnu — Qu)(Qn — Q)Q7 " 'w).
=1

Thus a sufficient condition for (5.6) is that

m—2

n Y- m(1Quu = Q'ul’) m(|(@n — QQT ™ wf*) = or, (1).

1=1
Remark 12. Suppose m = 3. Then the left-hand side of (5.3) becomes

J[ @tz \ [ @ut.2) - Q. 421620,

+ //W(dy)Q(y,dZ)

while the left-hand side of (5.4) becomes

I

/(Qn(ya d.’l?) - Q(ya d.’]?))f(il?, Y, Z)

[~ \ [[(@uty) - Q. )@, d2) - Qs (01,2) |

The latter is also a bound for the left-hand side of (5.5) which equals the above without
the absolute values. These expressions simplify further if f(z,y,2) = u(z, y)w(y, z). In
this case they reduce to

(e[ Wi | + wi|Up|) and  7(|UWo))

with . (y) = [ Q(y,dz)|u(z,y)| and w.(y) = [ Q(y,dz)|w(y, z)|, and with

Un(y) = / Gy, dzyulz, y) — / Qly, do)u(z,y).

W (y) = / Quly, d)uly, 2) — / QUy, d2)w(y, 2).

Sufficient conditions for (5.3)—(5.5) are then
(5-8) n(Un) + m(Wy) = op, (1)

18



and

(59) B (U R(W?) = op, (1)
These conditions in turn follow if for some a € (0,1),

(5.10) nem(U2) + n'~ 7 (W?2) = op, (1).

If f(z1,22,23) = ui(z1)uz(z2)us(zs), then we can take

1/2

u(z,y) = ur (@) ua(y)|?  and  w(y, z) = sign(ua(y))lua(y)[V?us(2),

and (5.10) becomes

(5.11) T ((Quui — Quy)?|ug|) + n'n((Qnus — Qus)?|uz|) = op, (1).

6. A special case

Assume that the state space is a compact interval S = [a, b] endowed with its Borel
o-field S, that both Q and @ are V-uniformly ergodic for V = 1, and that 7 ® Q has
a density g which is bounded away from zero on [a,b] X [a,b] and satisfies the Lipschitz
condition

(6.1) l9(t,y) —g(s,9)|+ lg(z,t) — g(z,5)[ < LIt — 5], 5,8, 2,y € [a,0],

for some finite constant L. These assumptions on g imply that the stationary distribution
7 has a density which is Lipschitz continuous, bounded and bounded away from zero on
S. We take f to be of the form

flxy, ..o zm) =ur(z1) oo o U (), Z1ye.o, Ty €S,
for bounded measurable functions us,...,u, on S. Thus estimating E[f(X1,..., Xmn)]
includes as special cases estimating E[X1X,,] and E[I[X; < s1] ... I[X,, < sp]] for

S1yev.ySm in S.

We shall use kernel estimators of Q and ). For this let & be a Lipschitz continuous
symmetric density with support [—1,1], and a, a bandwidth such that cn='3 < a, <
Cn~1/3 for constants 0 < ¢ < C < oo. Set ky(z) = k(z/a,)/a,. We estimate Q by the
random kernel (),, defined by

Y i1 bn(r — X;-1)I[X; € A
Z?=1 k(2 — X;j-1) ’

19
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This estimator has the property that

(6.2) Sug 1Qnu(z) — Qu(z)| = op, (n"/3logn)

HAS
for every bounded measurable function u on [a, b]. Indeed, it follows from the V-uniform
ergodicity with V' = 1 that the chain is ¢-mixing with geometrically decaying coefficients.
Thus we obtain the desired result from Remark 3.3.5 or Theorem 3.4.9 in Gyorfi et al.
(1989). (There is a misprint in their condition (H.14): Convergence should be to 0.) We
estimate Q by the random kernel ,, defined by

. > it bz — X;)I[X;-1 € Al
Gl == Xy

x € la,b],A€S.

This estimator also satisfies

(6.3) sug |Qnu(z) — Qu(z)| = op, (n_l/3 logn)

HAS
for every bounded measurable function u on [a, b]. It is obvious that (5.2) holds. With the
aid of (6.2) and (6.3) it is now easy to check that (5.3)—(5.5) hold for our choice of f. For
(5.5) use also the representation (5.7).

Thus the construction (5.1) for our present f yields an estimator which has influence
function T'f and is hence efficient for estimating Flui(X1) - ... - up(X;,)]- Denote this
estimator by 7, (f, Qn, @,) to stress its dependence on f and the choice of estimators Q,,
and Q,, of Q and Q,,. If the chain is known to be reversible, we can replace Q,, and Q,, by
QY™ = 2(Qn + Qy) and use the estimator 7Y™ = 7, (f5¥™, Q¥™, Q:¥™). This estimator
has influence function T'f*¥™ and hence is an efficient estimator of ¢;(Q) in the model of
all reversible Markov chains.

7. Proof of Theorem 2

1. We show first that t£(Q) = 7 ® Q®™~1(f) has gradient

g = AQ@(m—l)f + Z Q@(i—2)Q®(m—i)f.

=2

In part 2 of the proof, the canonical gradient g¢ is obtained by projecting g onto H.
Fix h € H. We need to show that for each f satisfying Assumption 2 we have

w2 (1 @ QI V() = 7@ QO (f)) - 7 @ Qlgh).
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Here we interpret 7, p ® Q® b S T and T ® Q®° as . We shall prove this by induction
on m. By Lemma 1, the result is true for the case m = 1. Now assume the result holds
for m — 1. The induction hypothesis, with f replaced by Qf, yields

n (i © Q2P (@1) - 7 © QO I (@) = 7@ Qg — WG )

for all h € H. Since we can write

T ® QT V(f) = Tp ® Q2T @ (Qun — Q)(F) + T @ QET2(QF),

we need to show that
(7.1) 012 (100 ® QET Y @ (Qua = Q)f)) = 7@ QO™ ).
With
kn(Z1, .o Tpme1) = /Q(azm_l,dy)hn(xm_l,y)f(xl, e Tme1,Y)s Tl Tmo1 €S,
we can express the left-hand side of (7.1) as
7 ® Q(hn Q2™ D f) + 1 ® QST (k) — m ® Q™D (k).

We have used the fact that 7 ® Q(h, QO™ =2 f) = 7 ® Q®™=2)(k,,). Since QO™=2f ¢
Ly(m ® Q) and h, — h in Ly(m ® @), we obtain that

™® Q(ha QO f) = 7 ® Q(hQO™ ).
It follows from (3.9), Assumption 2 and |h,,| < 2n'/® that
Tn,h @ Q®(m ) (kn) - T Q®(m_2) (kn) — 0.

Combining these results, we obtain the desired (7.1).

2. It remains to project g onto H. The function AQ®™~1 f is in H. The projections
of QO(=2)Q®(m—1) f onto H are obtained by subtracting the conditional expectations. The
projections can be written with the operator A introduced in (3.7), i.e., as

AQOEDQEM D f(z,y) = QOUTIQEM I f(a, y) — QOO f(x).
Hence the canonical gradient of ¢;(Q) = 7 ® Q®™~1(f) in the full nonparametric model
is

go="Tf =AQ®mVf+ Y AQOU=2Q®m=iy,

=2
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8. Proof of Theorem 3

We have already seen that 7,, has influence function go. Thus it is enough to verify
(5.6). We shall use the results of Schick (1998) to do so. Set

hay) = 3 @OEDQOM f(r,g) — 3 QOEDQO - (a

=2 1=3

and .
h ZQ@(Z 2)Q®(m z)f .’13 y Z O®— 2)Q§(m_i+1)f(.’1?).

=2 1=3

Note that 7, = n~! Z?zl h(X;-1,X;). By the properties of Q, Q, Q, and Qp,

sup QLD QR™ f(z,y) — QOU=DQOm—i) f(z, y)|
z,yes Va1+-..+ai—1(x)Vai+...+am (y)

ZOPn(l), i:2,...,m,

and

qup |8 TIQRTT I () — QOUTHQE Y f ()|
z€S V(',I;)

Thus, by Theorem 3.7 in Schick (1998), the desired (5.6) follows from

(8.1) 7 ® Q(hy — h) = op, (n~1/?)
and
(8.2) 7™ ® Q(|hn — h[) = op, (1).

The second condition is a consequence of (5.3) and (5.4). To obtain (8.1), verify that
T Q@ Q(hy, — h) = Ap(f), where

m

Ap=m@QeQ%™ ™ — 1@ Q%™ -Y"Q2 ) o1 (Qn - Q) ®Qe™™

i=3
Now use Q&™) _Q8&(m—2) — POy Q®(i_3)®(Qn—Q)®Q%§(m_i) and Q9O = TRQ%?

fora =1,...,m, to obtain

A, =) (Q°0D Q-0 1 (Q, - Q) Qem.

I

-
Il
w

It is now easy to see that (5.5) is equivalent to (8.1).
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