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Abstract

The expectation of a function can be estimated by the em-
pirical estimator based on the output of a Markov chain
Monte Carlo method. We review results on the asymp-
totic variance of the empirical estimator, and on improv-
ing the estimator by exploiting knowledge of the under-
lying distribution or of the transition distribution of the
Markov chain.
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1 Introduction

A Markov chain Monte Carlo (MCMC) method gener-
ates a Markov chain X°, ..., X™ with given invariant dis-
tribution 7. It can be used to estimate the expectation
wf of a function f under 7@ by the empirical estimator
Ly f(X7). A given MCMC method may be judged
by the speed at which the chain converges to stationarity,
and by the variance of the empirical estimator.

Here we consider asymptotic variances of empirical
estimators, and ways of improving them by exploiting
knowledge of m or the MCMC method used. Other results
on asymptotic variances of empirical estimators are found
in the following references. Peskun (1973) introduces an
inequality between transition distributions which entails
a corresponding inequality between between asymptotic
variances of empirical estimators; see also Liu (1996).
Frigessi, Hwang and Younes (1992) identify the transition
distributions which minimize the maximum of the asymp-
totic variance over functions f which have unit variance
under m. Green and Han study asymptotic variances for
the samplers introduced by Barone and Frigessi (1989).
Fishman (1996) considers variances of sample means for
Gibbs samplers with different sweeps.

Our results require that the empirical estimator is

asymptotically normal, with variance
w(f—nf)?+2> w((f - 7))Q"(f — 7f)),
r=1

where )" is the r-step transition distribution of the un-
derlying Markov chain. This central limit theorem holds
for f2 < V if the chain is positive Harris recurrent and
V-uniformly ergodic (Meyn and Tweedie, 1993, Theorem
17.0.1), and for m-square integrable f if the chain is also
reversible (Roberts and Rosenthal, 1997, Corollary 2.1).

Section 2 describes a result of McKeague and We-
felmeyer (1996): If the chain X% ... X" is reversible
with transition distribution Q(z, dy), then the estimator
%ZL] Q(X", f) has smaller variance than the empirical
estimator. To apply the result, we must be able to com-
pute the conditional expectation.

Sections 3 and 4 contain some results of Greenwood,
McKeague and Wefelmeyer (1997). Here 7 is a distribu-
tion on a product space. In Section 3 we calculate the
asymptotic variances of empirical estimators for Gibbs
samplers with random and deterministic sweep. At least
if the components of 7 are not too strongly dependent,
the asymptotic variance is about twice as large for ran-
dom sweep. In Section 4 we present minimal asymptotic
variances for regular estimators of 7f for both types of
sweep. They are equal if 7 is continuous in an appropri-
ate sense. The empirical estimator is close to efficient for
deterministic sweep, at least if the components of 7 are
not too strongly dependent.

Section 5 presents a special case of the result of Green-
wood, McKeague and Wefelmeyer (1996b). Let 7 be a
random field on a product space E°, where S is a finite
square lattice with, say, K sites. Suppose that the field
has local interactions, and that we have configurations
(X9, . X%), .. (XP,...,X%) from a Gibbs sampler
with deterministic sweep. We may then combine certain
components with different time indices into new config-
urations (Xil, cely szf‘) and obtain a new estimator for
7 f by averaging terms of the form f'(Xi1 ey X}é‘) The



method is reminiscent of generalized von Mises statistics
for iid. (X9,..., X%), ..., (XP,...

over all such terms.

, X% ), which average

Section 6 describes a special case of a result in Green-
wood, McKeague and Wefelmeyer (1996a). Let 7 be a
random field as in Section 5, now with periodic bound-
ary. This means that the lattice is wrapped around a
torus. If 7 is invariant under a translation 7' of the lat-
tice, we obtain an additional empirical estimator for 7 f.
Its asymptotic variance is, in general, different from that
of the original empirical estimator because the distribu-
tion of the Markov chain does not inherit an appropriate
invariance property from 7. Section 6 shows how best to
combine “empirical” estimators from certain Gibbs sam-
plers if the field has nearest neighbor interactions.

Much of the recent literature on MCMC methods can
be obtained from http://www.stats.bris.ac.uk/MCMC/.
Preprints of our papers can also be obtained from
http://www.math.uni-siegen.de/
statistik /wefelmeyer.html.

2 Rao—Blackwellization for
reversible chains

Let X°,..., X" be realizations of a Markov chain with
transition distribution @ (z, dy) and invariant distribution
n(dz). The empirical estimator for the expectation « f of
a function f under 7 is

LS ),
i=1

Assume that the central limit theorem described in the
Introduction holds for the empirical estimator.

In the MCMC literature, one considers Rao-Black-
wellized empirical estimators of the form

3B,

where h is a suitable function. See Schmeiser and Chen
(1991, 1996) for the hit-and-run algorithm proposed by
Belisle, Romeijn and Smith (1993); Pearl (1987), Gelfand
and Smith (1990, 1991) and Liu, Wong and Kong (1994)
for the data augmentation scheme, or substitution sam-
pler; and Casella and Robert (1996) for the Metropo-
lis-Hastings algorithm. Geyer (1995) shows that such a
Rao—Blackwellization usually does not decrease the vari-
ance simultaneously for all functions f. McKeague and
Wefelmeyer (1996) suggest a different form of Rao—-Black-

wellization,

LSRR X,
i=1

Repeating this Rao—Blackwellization k& times, we obtain
Ly e = Ly ot )
" i=1 " i=1 ,

Assume that the chain is reversible,

m(dz)Q(x, dy) = n(dy)Q(y, dx).

McKeague and Wefelmeyer (1996) prove the following:

The asymptotic variance of the k times Rao—Black-
wellized empirical estimator is

[ee]

T(F=mH)Q™ (F-mf)+2 > #((f—7f)Q (F—7F)).

r=2k+1

The asymptotic variance tends to zero as k goes to infin-
ity. The asymptotic variance reduction over the empirical
estimator is

el
|
-

(1 +Q)QI(f — 7)),

<.
1l
=)

where I(x, dy) = e, (dy).

In particular, our Rao—Blackwellization reduces the
asymptotic variance of the empirical estimator for all f.

The primary application will be to MCMC methods,
where the transition distribution @ is, at least in princi-
ple, known, and hence the conditional expectations can
be calculated. Of course, the cost of calculating condi-
tional expectations should be small compared to the cost
of running the sampler.

3 Empirical estimators for
Gibbs samplers

In this and the next section we assume that the distribu-
tion 7 lives on a product space F1 X - X Ej with product
o-field. Writing z € F as @ = (z<j, 25, 25;) = (2, 2_;),
we can factor 7 into the marginal distribution of 2_; and
the conditional distribution of z; given z_;,

m(de) =m_;(dz_;)p;(z_;, dz;).

Gibbs samplers successively use the transition distribu-
tions

Qj(z,dy) = pj(z—j, dy;)es_; (dy-;)
which change only the j-th component of z. The condi-
tional expectation Q; f can be written

13 0)@) = [ 13ty dz)f2)



We will also use the notation

/mJ (daj) f

Both functions depend only on z_j.

The Gibbs sampler with random sweep (with equal
probabilities picks an index j according to the uniform
distribution on 1,...;k. It has transition distribution

The Gibbs sampler with deterministic (and cyclic)
sweep applies (); cyclically according to the numbering
of the coordinates of F. Tt has transition distributions
Qla"';Qk;Qla"“

Let X% ..., X" be realizations from a Gibbs sam-
pler, and assume that the central limit theorem described
in the Introduction is valid for the empirical estimator
% S, f(X7). The following results are proved in Green-
wood et al. (1997).

(m; f) (=

For random sweep, the empirical estimator has asymp-
totic variance

&) k
k 1
249 2
Tt k—1;k(k—1)*—1 , Z_l Tireis
- R
with o? = w(f — nf)? and
of, g, =7 = 7wy opi (= 7)),

For deterministic sweep, the empirical estimator has
asymptotic variance

7423 T3

s=1 = j=1
with
2 1
a-j,cycl s = ﬂ-((f - ﬂ-f)p;yc s(.f - ﬂ-f))
and pCyCl * = pjpj+1 - prp1p2 - - with s terms.

The s-order terms in both infinite series are averages
over s-order autocovariances. At first sight, it looks as
if the asymptotic variance for random sweep is at most
= times that for deterministic sweep, a small factor for
large k. Greenwood et al. (1997) show, however, that
it is about twice as large, at least if the components of
m are not too strongly dependent. The explanation is
that a typical s-order autocovariance O'JZI’M’jS is larger

J cyel s+ This follows, by
a continuity argument, from the case Where 7w has in-
dependent components mq, ..., my. Then o? is the

j,cycl s
1
variance under 7 of mCyc s(f — nf), which vanishes for

s > k, while U]l,---,js

than an s-order autocovariance o

vanlshes only if all £ components are

present among j1 ..., js. Also, if some of the j, are equal,

fewer than s components are integrated out, and o?
tends to be larger than m;yd (f=mf).

By Gibbs sampler with deterministic sweep one often

1)+ ]s

means the subchain of full sweeps, taking only every k-

Q-

pk, the empirical estimator based on the subchain has

th step, with transition distribution @, - - For n =

asymptotic variance

k0'2 + QkZUicyd sk

s=1

Simulations in Greenwood et al. (1996a, 1997) show that
the empirical estimator based on the subchain can be con-
siderably worse than that based on the full chain. Sub-
sampling of the subchain further increases the asymptotic
variance, as observed by Geyer (1992, Theorem 3.3) and
McEachern and Berliner (1994).

4 Information bounds for
Gibbs samplers
As in the previous section we assume that the distribu-

x Fy, and con-
sider Gibbs samplers for random and deterministic sweep.

tion 7 lives on a product space Ey X - -

How much information about 7 f is contained in the sam-
ple X% ..., X"? In particular: What fraction of the in-
formation is exploited by the empirical estimator? Is it
worthwhile to construct improved estimators?

To answer these questions, we view 7 as an infinite-
dimensional parameter of the transition distribution driv-
ing the sampler, and determine the minimal asymptotic
variance, or information bound, of regular estimators of
mf in the sense of an infinite-dimensional version of the
convolution theorem of Hajek (1970). The following re-
sults are proved in Greenwood et al. (1997).

For deterministic sweep, the information bound 1s

[eS) k
=Y >
1 k.(k, ) J1y0ds
s=1 J1y-eds =1
Jr#irg

The information bound for random sweep is compli-
cated if the conditional distributions p;(z_;,dz;) have
atoms; see Greenwood et al. (1997, Theorem 2). How-
ever:

The information bound for random sweep is equal to
that for deterministic sweep if the conditional distribu-
tions pj(xz_;,dx;) have no atoms.



One sees that the information bound for deterministic
sweep 1s about half the asymptotic variance of the empir-
ical estimator for random sweep if the leading term o?
is small compared to the infinite series, which is usually
the case. On the other hand, as mentioned in the pre-
vious section, the asymptotic variance of the empirical
estimator for deterministic sweep is also about half that
for random sweep, at least if the components of 7 are not
too strongly dependent. This means that the empirical
estimator for deterministic sweep is close to efficient.

The information bound for deterministic sweep does
not depend on the order of the sweep, so changing the
sweep has a limited effect on the performance of the em-
pirical estimator.

If  has only two components, then the empirical es-
timator is fully efficient under deterministic sweep.

The problem considered in this section belongs to a
class of problems on which some progress has been made
recently: Given a semiparametric Markov chain model,
how well can one estimate the expectation 7 f of a func-
tion under the invariant law? Greenwood and Wefelmeyer
(1998) consider models described by restrictions on the
invariant law of the chain, in particular reversible chains.
Schick and Wefelmeyer (1998) study models given by re-
strictions on the transition distribution of the chain and
outline how to construct efficient estimators for quasi-
likelihood models and nonlinear heteroscedastic autore-
gression models. Kessler, Schick and Wefelmeyer (1998)
treat the situation in which we have a parametric model
for m but do not know the transition distribution. The
answer depends very much on the type of model.

5 Improved estimators for
local interaction random fields

In this and the next section we assume that the distribu-
tion 7 is a random field on a finite square lattice, 1.e., a dis-
tribution on a product space £ with S = {0,...,k—1}2
and product o-field. It will be convenient to take k even.
Similarly as in Section 3, for each site s we can factor 7
into the marginal distribution of z_; and the conditional
distribution of z; given z_j,
m(dz) = m_s(dz_5)ps(x_s, dzs).

In this section we assume that the field has nearest

neighbor interactions with free boundary,

Ps (l'—s; dl’s) = Ps (1'35; dws);

with 0s = {(s1 £ 1, s2), (1,52 £ 1)}.
Consider the Gibbs sampler with deterministic sweep.
Write X0, ..., X" for the output, and 7° = X% 7! =

sz, ..., ZP = X", with n = pk?, for the subchain of full
sweeps considered at the end of Section 3.

We choose a checkerboard sweep, updating first the
sites s with, say, even parity s; 4+ s2 and then those with
odd parity. Note that the sites in ds have opposite par-
ity to s. Therefore, all even, or all odd, sites can be up-
dated simultaneously, and we can write the k2-step Gibbs
sampler as a two-step Gibbs sampler. More explicitly,
E =F. x E, and ¢ = (¥e, ¥o), where y. and y, are the
subconfigurations on the even and odd sites, respectively.
The conditional distributions of y, and y, are

pe(vedy) =[] (was, dzy),
Po(Yo, dye) = H (255, dxs).
s odd
Let X° = (Y V') be the initial configuration. The con-

ditional distributions pe, po, pe, - . . generate subconfigura-
tions Y2, Y3 Y4 .. and the subchain of full sweeps is
79 = (Y, Y2 ¢=0,...,p

We combine components of subconfigurations Y with
different time indices into new configurations

X1 = (v, s,

where 7 : S — {0,1,...,2¢+ 1} is a graph with I(s) even
for s even, and odd otherwise. Call a graph admaissible if
its values at any two neighboring sites differ by 1. Green-
wood et al. (1996b) show that fields with nearest neighbor
interactions have the following property:

If the graph T is admissible, then XT XT+2 .
tributed as a Gibbs sampler for .

15 dis-
The empirical estimator is
n k2
1 ; 1
- X)) = —

1 < )
1_72 Z%ﬁ’ZgS )

The graph of the configuration (735, 7;5 ) for even s is

2q, t < s, teven,
I(t) =X 2¢—2, t>s,teven,
2¢—1, todd,
and for odd s,
2¢+1, t<s,todd,
Ity=4¢ 2¢—1, t>s,todd,
2q, t even.

We obtain new estimators by averaging f(X') over
other sets of admissible graphs. Simulations in Green-
wood et al. (1996b) show that the variance reduction over



the empirical estimator can be noticeable if the compo-
nents of 7 are not too strongly dependent.

The approach works particularly well for determinis-
tic sweeps following the checkerboard pattern, for nearest
neighbor models and for free boundary. It can be adapted
to other deterministic sweeps and also to random sweeps,
and to more general local interactions, but in all these
cases there are fewer admissible graphs and hence less
variance reduction. The approach works also for other
MCMC methods, as long as they update a single or only a
few sites at a time and condition only on values at nearby
sites. Examples are the Metropolis algorithm and many
other Glauber dynamics for Ising models, see Neves and

Schonmann (1992).

6 Symmetrized estimators for
homogeneous random fields

As in the previous section we assume that 7 is a random
field on E° with S = {0,...,k—1}? and k even. We also
assume that the field has nearest neighbor interactions,
now with periodic boundary. This means that addition
on S, and in particular in 0s = {(s1 £ 1, s2), (s1,s2 £ 1)},
is modulo k. We consider again the Gibbs sampler with
(deterministic) checkerboard sweep.

Le k be a multiple of v and v, say k = au = vb. Let
T be a horizontal translation by u sites and U a vertical
translation by v sites,

(TX)S = X(.sl—u,sg)a (UX)S = X(sl,.52—v)~

Suppose that 7 is invariant under 7" and U. Then it is also
invariant under combinations 7*U? of these translations,

defined by

(TQUﬁX)s = X(sl—au,sz—ﬁv);
a=0,...,a—1, =0,...,

As in the previous section, let X%, ... X™ be the out-
put of the Gibbs sampler, and write 70 = X% 7! =
Xk2, ..., 4P = X" for the subchain of full sweeps, and
79 = (Y24, y2t!) with V¢ and Y29t the subconfig-
urations on the even and odd sites, respectively. The

b—1.

empirical estimator based on the corresponding two-step
Gibbs sampler is

P
= o E FY2m1 ) 4 p(y2e y2ar))
2 |

Greenwood et al. (1996a, Section 5) prove the following
result:

The estimators Gnf o T*UP, a = 0,..., 8=
0,...,b—1, have equal asymptotic variances, and the best
linear combination is the average.

a—1,

We have taken the lattice two-dimensional, but this
is not essential. However, the proof makes essential use
of the fact that the sampler can be written as a two-step
Gibbs sampler. In particular, it does not work for random
fields with local interactions more extended than nearest
neighbor. The result is a special case of the following
situation.

Consider a distribution 7 on a product space Eq X E5.
Call a transformation 7" on Ey x Es parallel if it maps
E; into Ey and Ej into Eg, say T(z1,22) = (T121, Toza),
and transverse if it maps Ey into Fy and F5 into Fy, say
T(z1,22) = (To122, Tiaz1). Let X°, ..., X™ be output of
the Gibbs sampler with deterministic sweep.

If m 1s wmvariant under two commuting transforma-
tions 1" and U, each of which is either parallel or trans-
verse, and if T'* = T° and U® = U", then the estimators

[ :
> HTUPXY,
ni:l .
a=0,...,a=1, 8=0,...,b—1,

have equal asymptotic variances, and the best linear com-
bination is the average.

The proof is based on the observation that the parallel
transformation 7' leaves the stationary law of the Gibbs
sampler invariant, while the transverse transformation U
reverses time. Then one checks that the asymptotic co-
variance matrix of the estimators is a circulant block ma-
trix with circulant blocks.
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