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Abstract

If we have a parametric model for the invariant distribution of a Markov chain
but cannot or do not want to use any information about the transition distribution
(except, perhaps, that the chain is reversible) — what, then, is the best use we can
make of the observations? We determine a lower bound for the asymptotic variance
of regular estimators and show constructively that the bound is attainable. The
results apply to discretely observed diffusions.
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1 Introduction

LetX0, . . . , Xn be observations from a stationary Markov chain. Suppose we have a para-
metric model πϑ(dx), ϑ ∈ Θ, for the distribution of Xi, but no convincing or tractable
model for the transition distribution, say Q(x, dy), of Xi given Xi−1 = x. We want to
estimate ϑ.

It is clear that it is not optimal to proceed as if the observations were independent.
The possible transition distributions are constrained by the condition that their invariant
distribution must be in the parametric family πϑ, ϑ ∈ Θ. Hence additional information
about ϑ is likely to be obtainable through an estimator of Q. We pose the following
questions. How much information about ϑ is contained in the observations? How can
one exploit this information for estimating ϑ? The answers are surprisingly involved.
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The paper is organized as follows. In Theorem 1, Section 3, we describe the infor-
mation about ϑ by determining a lower bound for the asymptotic variance of regular
estimators. In Theorem 2, Section 4, we show that reversibility of the chain carries no
additional information about ϑ. In Theorem 3, Section 5, we describe how to construct
an efficient estimator if a n1/2-consistent estimator of ϑ and an appropriate estimator of
the efficient influence function are available. The construction utilizes the sample split-
ting techniques of Schick (1998). Theorem 4, Section 6, gives an explicit construction
of an estimator of the efficient influence function with the desired properties. Section 7
compares our results with known results for parametric Markov chain models.

The results apply when we have a parametric model for a stationary continuous-time
stochastic process and observe the process at n + 1 equidistant time points. Then the
marginal distribution of the observations usually follows a tractable parametric model,
while the transition distribution is often intractable. In Section 8 we compare our
estimator with certain estimators based on parametric diffusion models which have been
suggested in the literature. Our estimator has the advantage of being robust against
misspecification of the underlying continuous-time process.

2 Characterization of efficient estimators

In this section we introduce some notation and recall a characterization of least dispersed
regular (i.e. efficient) estimators for real-valued functionals of Markov chain models. Let
X0, . . . , Xn be observations from a stationary Markov chain on an arbitrary state space
S with countably generated σ-field S, with transition distribution Q(x, dy) and invariant
distribution π(dx).

We will use the following notation. The joint law of two successive observations is

π ⊗Q (dx, dy) = π(dx)Q(x, dy).

For a suitably integrable function f(x) write

(Qf)(x) =

∫
Q(x, dy)f(y), πf =

∫
π(dx)f(x).

For a function k(x, y) of two arguments we write

(Qk)(x) =

∫
Q(x, dy)k(x, y). (2.1)

For j ≥ 2, let Qjk = Qj−1Qk so that (Qjk)(X0) = E[k(Xj−1, Xj)|X0]. This differs from
the application of the j-step transition measure Qj to k in the sense of (2.1), which
would give E[k(X0, Xj)|X0].

It will later be convenient to write functions f(x) of one argument as functions of
two arguments,

(Lf)(x, y) = f(x), (Rf)(x, y) = f(y).
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Here L and R stand for ‘left’ and ‘right’.
For a measure ν, let L2(ν) be the space of ν-square integrable functions, and L2,0(ν)

the subspace of functions with ν-integral 0. Let ‖f‖ = (πf 2)1/2 denote the norm of a
function f in L2(π), and ‖K‖ = sup{‖Kf‖ : ‖f‖ = 1} the corresponding operator norm
of a kernel K(x, dy). Write J(x, dy) = εx(dy) for the identity kernel, and Π(x, dy) =
π(dy) for the stationary projection. We have

ΠQ = QΠ = Π. (2.2)

The following assumption will be in force throughout.

Assumption 1. The chain fulfills ‖Q− Π‖ < 1.

We introduce a local model around Q by perturbing Q as follows. As local parameter
space we take

H = {h ∈ L2(π ⊗Q ) : Qh = 0}. (2.3)

For h ∈ H we set

Qnh(x, dy) = Q(x, dy)[1 + n−1/2hn(x, y)] (2.4)

with

hn = hn − LQhn and hn = h1(2|h|≤n1/8). (2.5)

We have used the truncated and centered version hn of h because Qnh(x, dy) must be a
probability measure.

Write Pn and Pnh for the joint distribution of (X0, . . . , Xn) under the transition
distribution Q and Qnh, respectively. Under Assumption 1, we have a nonparametric
version of local asymptotic normality,

log
dPnh

dPn

(X0, . . . , Xn) = log
dπnh

dπ
(X0) +

n∑
i=1

log[1 + n−1/2hn(Xi−1, Xi)]

= n−1/2

n∑
i=1

h(Xi−1, Xi)−
1

2
π ⊗Qh2 + oPn(1) (2.6)

and

n−1/2

n∑
i=1

h(Xi−1, Xi) ⇒ (π ⊗Qh2)1/2 ·N, (2.7)

where N is standard normal. A parametric version of local asymptotic normality for
Markov chains was first given in Roussas (1965); a nonparametric version in Penev
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(1991). Local asymptotic normality for Markov step processes and Hellinger differen-
tiable Qnh in the sense of Höpfner, Jacod and Ladelli (1990), and hence for Qnh as
in (2.4), is proved in Höpfner (1993a, 1993b). He starts the chain in a fixed value
X0 = x0, so that log dπnh/dπ(X0) vanishes. We consider a stationary chain, for which
log dπnh/dπ(X0) is negligible because the invariant distribution π depends continuously
on the transition distribution; see Kartashov (1996).

So far we have looked at the full nonparametric model of all (sufficiently regular)
transition distributions. Consider now a submodel, described by a family Q of transition
distributions on S. Suppose Q contains the transition distribution Q fixed above. The
local model is now obtained by perturbing Q within the family Q. In regular cases, the
local parameter space will then run through a linear subspace H0 of H. For Qnh to lie
exactly in Q, the construction (2.4) and (2.5) will have to be modified slightly. For the
models considered below, we will omit the (tedious) details.

Consider a real-valued functional t on Q. It is called differentiable at Q with gradient
g if g ∈ H and

n1/2[t(Qnh)− t(Q)] → π ⊗Q (hg) for h ∈ H0. (2.8)

The canonical gradient is the projection g0 of g onto H0.
Let Tn be an estimator of t(Q). We call Tn asymptotically linear at t(Q) with

influence function h if h ∈ H and

n1/2[Tn − t(Q)] = n−1/2

n∑
i=1

h(Xi−1, Xi) + oPn(1).

We call Tn regular at Q with limit L if

n1/2[Tn − t(Qnh)] ⇒ L under Pnh for h ∈ H0.

The convolution theorem of Hájek (1970) in the version of Pfanzagl and Wefelmeyer
(1982, Theorem 9.3.1), see now Bickel, Klaassen, Ritov and Wellner (1993, p.63, Theo-
rem 2), says that if Tn is regular, then{

n−1/2
∑n

i=1 g0(Xi−1, Xi), n
1/2[Tn − t(Q)]− n−1/2

∑n
i=1 g0(Xi−1, Xi)

}
⇒
{
(π ⊗Qg2

0)
1/2 ·N,M

}
under Pn,

with N standard normal and M independent of N . In particular,

L = (π ⊗Qg2
0)

1/2 ·N +M in distribution.

The estimator Tn is (asymptotically) least dispersed if

L = (π ⊗Qg2
0)

1/2 ·N in distribution. (2.9)
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By the convolution theorem, Tn is least dispersed among all regular estimators for t(Q)
if and only if it is asymptotically linear with influence function equal to the canonical
gradient,

n1/2[Tn − t(Q)] = n−1/2

n∑
i=1

g0(Xi−1, Xi) + oPn(1). (2.10)

3 The information in the marginal law

As in Section 2, let X0, . . . , Xn be observations from a stationary Markov chain on
an arbitrary state space S with countably generated σ-field S. Suppose we have a
parametric model {πτ : τ ∈ Θ} for the invariant distribution, and that the transition
distribution is unspecified otherwise.

We consider two submodels of the full nonparametric model. The first, Q∗, consists
of all transition distributions with invariant distribution in the family {πτ : τ ∈ Θ}.
The second, Qrev

∗ , consists of all transition distributions which fulfill the additional re-
striction that the chain is reversible. The models are semiparametric, or rather non-
parametric with a parametric family of restrictions. (In Section 7 we will also discuss
models described by a parametric family of transition distributions.) We are interested
in estimating τ .

For simplicity we take Θ one-dimensional and open. We fix a parameter ϑ. In the
following, we will often suppress this parameter in the notation. In particular, we will
write π for πϑ. In this and the next section, the following additional assumption will
be in force. We need it to determine a lower bound for the asymptotic variance of
estimators of ϑ. It is the usual condition in the i.i.d. case.

Assumption 2. For τ ∈ Θ, the invariant distribution πτ has a positive µ-density pτ ,
and the map τ 7→ pτ is Hellinger differentiable at ϑ: There is a function ` ∈ L2,0(π), the
Hellinger derivative, such that

µ

[
p1/2

τ − p
1/2
ϑ − 1

2
(τ − ϑ)`p

1/2
ϑ

]2

= o[(τ − ϑ)2]. (3.1)

Also, π`2 > 0.

Fix a transition distribution Q with invariant distribution π = πϑ. The local model
around Q is obtained by perturbing Q as in (2.4), subject to the restriction that the
invariant distributions are in the family {πτ : τ ∈ Θ}. The restriction entails a restriction
on the local parameter h of the perturbed transition distribution Qnh. To determine the
restriction, we consider the invariant distribution of Qnh. By Kartashov (1985a, 1985b,
1996), the transition distribution Qnh has a unique invariant distribution πnh which
admits the following perturbation expansion: For h ∈ H and f ∈ L2(π),

n1/2(πnhf − πf) → π ⊗Q (h ·RUf), (3.2)
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where U is the kernel

U =
∞∑

j=0

(Qj − Π) on L2(π). (3.3)

Since Qh = 0, we may center RUf ,

π ⊗Q (h ·RUf) = π ⊗Q (h · Af), (3.4)

where

A = RU − LQU =
∞∑

j=0

(RQj − LQj+1) on L2(π). (3.5)

The operator A maps L2(π) into H,

(Af)(x, y) =
∞∑

j=0

[(Qjf)(y)− (Qj+1f)(x)].

We will need the adjoint of A in the inner product (3.4). It is expressed in terms of
the reversed chain, with transition distribution Q(y, dx) defined by

π(dx)Q(x, dy) = π(dy)Q(y, dx). (3.6)

For a function h(x, y) of two arguments we will follow the convention that the transition
distribution of the reversed chain acts on h from right to left, i.e. on the first argument
of h,

(Qh)(y) =

∫
Q(y, dx)h(x, y).

For j ≥ 2, let Q
j
h = Q

j−1
Qh. Introduce

V =
∞∑

j=1

(Q
j − π ⊗Q) on L2(π ⊗Q).

For f ∈ L2(π) and h ∈ H,

π ⊗Q (h · Af) = π(V h · f). (3.7)

This is Lemma 1 of Greenwood and Wefelmeyer (1999), specialized to functions of one
argument. With (3.4) and (3.7), the perturbation expansion (3.2) is

n1/2(πnhf − πf) → π(V h · f). (3.8)
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So far, we have not used the restriction that the invariant distributions are in the
parametric family {πτ : τ ∈ Θ}. Hellinger differentiability (3.1) of the invariant distri-
bution implies for all bounded functions f and u ∈ R,

n1/2(πϑ+n−1/2uf − πf) → uπ(`f). (3.9)

Comparing with (3.8), we obtain a restriction on the local parameter h, namely V h = u`

if Qnh has invariant distribution πϑ+n−1/2un
with un → u. Hence the local parameter

space of Q∗ at Q is
H∗ =

⋃
u∈R

Hu

with
Hu = {h ∈ H : V h = u`}.

We turn to the problem of determining a lower bound for the variance of estimators
for the parameter τ . According to Section 2, the bound is expressed in terms of the
canonical gradient. Consider τ as a functional on Q∗, defined by t(Q) = τ if Q has
invariant distribution πτ . Then

n1/2[t(Qnh)− t(Q)] = n1/2(ϑ+ n−1/2u− ϑ) + o(1) → u for h ∈ Hu.

By definition (2.8), a gradient g ∈ H is determined by

π ⊗Q (hg) = u for h ∈ Hu. (3.10)

The canonical gradient will turn out to be of the form Af with f ∈ L2(π). The following
simple characterization will be useful.

Lemma 1. Let f ∈ L2(π). Then Af is a gradient for ϑ if and only if π(`f) = 1.

Proof. We have V h = u` for h ∈ Hu. By (3.7),

π ⊗Q (h · Af) = π(V h · f) = uπ(`f).

Hence (3.10) holds for g = Af if and only if π(`f) = 1.

The canonical gradient, say g∗, is the projection of an arbitrary gradient into H∗. In
particular, V g∗ = u` for some u. Does the class of gradients in Lemma 1 contain the
canonical gradient? This is the case if we can find f ∈ L2(π) such that V Af = u`, with
u determined by π(`f) = 1. A sufficient condition is invertibility of V A. To calculate
V A, we introduce an operator V analogous to V ,

V =
∞∑

j=1

(Qj − π ⊗Q) on L2(π ⊗Q).
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In accordance with our convention, the restrictions of V and V to functions of one
variable are V R and V L, or

V =
∞∑

j=1

(Qj − Π), V =
∞∑

j=1

(Q
j − Π) on L2(π).

We have

V A = J − Π + V + V on L2(π). (3.11)

This is Lemma 2 of Greenwood and Wefelmeyer (1999), specialized to functions of one
argument.

Lemma 2. The operator V A is invertible on L2,0(π), and

(V A)−1 = (J −Q)(J −QQ)−1(J −Q)

=
∞∑

j=0

(J −Q)(QQ)j(J −Q) on L2,0(π).

Proof. On L2,0(π),

V =
∞∑

j=1

Qj = Q(J −Q)−1, V =
∞∑

j=1

Q
j
= (J −Q)−1Q.

With relation (3.11), we find that on L2,0(π)

V A = J + V + V

= J +Q(J −Q)−1 + (J −Q)−1Q

= (J −Q)−1[(J −Q)(J −Q) +Q(J −Q) + (J −Q)Q](J −Q)−1

= (J −Q)−1(J −QQ)(J −Q)−1.

Now use the fact that Q and Q viewed as operators on L2,0(π) have norms less than 1
in view of Assumption 1. Actually, both norms equal ‖Q− Π‖. Hence V A is invertible
on L2,0(π), and the inverse has the asserted form.

Theorem 1. The canonical gradient for ϑ is

g∗ = [π(`e∗)]
−1Ae∗ with e∗ = (V A)−1`.

We have

π ⊗Q (Ae∗)
2 = π(`e∗), (3.12)

π ⊗Qg2
∗ = [π(`e∗)]

−1. (3.13)
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Proof. By Lemma 2, the operator V A is invertible on L2,0(π). The function e∗ fulfills
V Ae∗ = `, hence Ae∗ ∈ H1 ⊂ H∗. Furthermore, g∗ = [π(`e∗)]

−1Ae∗ is a gradient by
Lemma 1. Finally, (3.12) follows from the fact that V is the adjoint of A, and implies
(3.13).

By (2.9), a least dispersed regular estimator for ϑ in Q∗ has asymptotic variance
π⊗Qg2

∗. The inverse, π(`e∗), may therefore be called the information about ϑ contained
in the marginal laws of the Markov chain.

Remark 1. Suppose the observations X0, . . . , Xn happen to be i.i.d. Then the best
estimator is the maximum likelihood estimator. It solves

∑n
i=1 `τ (Xi) = 0. Theorem 1

implies an infinitesimal robustness property of the maximum likelihood estimator against
Markovian departures from independence: We have Q = Π, Q = Π and V = V = 0
on L2(π), so that, by (3.11), V A = J and (V A)−1 = J on L2,0(π). By Theorem 1, the
canonical gradient for ϑ is g∗ = (π`2)−1R`. By the characterization (2.10), an estimator
ϑ̂n is least dispersed and regular for ϑ in the model Q∗ if and only if

n1/2(ϑ̂n − ϑ) = (π`2)−1n−1/2

n∑
i=1

`(Xi) + oPn(1).

Under appropriate regularity conditions, the maximum likelihood estimator has this
stochastic approximation. For a related robustness result in fully nonparametric Markov
chain models see Penev (1993).

4 The information for reversible chains

In this section we show that reversibility of the Markov chain carries no additional infor-
mation about the parameter of the invariant distribution. (A related result is proved in
Greenwood and Wefelmeyer (1999): In a nonparametric Markov chain model, reversibil-
ity carries no information about functionals of the invariant distribution.) Nevertheless,
the canonical gradient simplifies for reversible chains.

Consider the model Qrev
∗ of all reversible transition distributions in Q∗,

Qrev
∗ = {Q ∈ Q∗ : Q(x, dy) = Q(x, dy)}.

Then π ⊗ Q is symmetric in the two components. To translate this property into a
property of local parameters, we extend some results of Section 3; see also Greenwood
and Wefelmeyer (1999, Section 3).

The perturbation expansion (3.2) generalizes immediately to functions of two argu-
ments: For h ∈ H and k ∈ L2(π ⊗Q),

n1/2(πnh ⊗Qnh k − π ⊗Qk) → π ⊗Q (h · Ak), (4.1)
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where

A = I2 − LQ+ AQ on L2(π ⊗Q), (4.2)

with I2 the identity on L2(π ⊗ Q). Note that A maps L2(π ⊗ Q) onto H. The adjoint
of this extended operator is obtained from (3.7): For h ∈ H and k ∈ L2(π ⊗Q),

π ⊗Q (h · Ak) = π ⊗Q (Bh · k), (4.3)

where

B = I2 + LV on H. (4.4)

If Q and Qnh are reversible, then π⊗Q and πnh⊗Qnh are symmetric. The perturbation
expansion (4.1) and relation (4.3) imply thatBh is symmetric. Hence the local parameter
space of Qrev

∗ is
Hrev
∗ = {h ∈ H∗ : Bh symmetric}.

The canonical gradient g∗ = [π(`e∗)]
−1Ae∗ is of the form Af with f ∈ L2(π). We show

that such functions fulfill the additional property of Hrev
∗ , namely, BAf is symmetric.

We have
BA = I2 − π ⊗Q+RV + LV on L2(π ⊗Q).

This is Lemma 2 of Greenwood and Wefelmeyer (1999). We rewrite BA for functions of
one argument. We have QR = Q and QL = J . Similarly, QR = J and QL = Q. Hence
V L = U and V R = U , where

U =
∞∑

j=0

(Q
j − Π) on L2(π) (4.5)

is defined in analogy to (3.3). We obtain BAR = BAL = RU + LU on L2(π) and may
write, without ambiguity,

BA = RU + LU on L2(π). (4.6)

In particular, if the chain is reversible, Q = Q, then BAf is symmetric for f ∈ L2(π).

Theorem 2. Let Q = Q. Then the canonical gradient for ϑ in model Qrev
∗ equals the

canonical gradient g∗ = [π(`e∗)]
−1Ae∗ for ϑ in model Q∗. We have π⊗Qg2

∗ = [π(`e∗)]
−1

and

e∗ = `+ 2
∞∑

j=1

(−1)jQj`,

π(`e∗) = π`2 + 2
∞∑

j=1

(−1)jπ(` ·Qj`),

Ae∗ = R`+ (R + L)
∞∑

j=1

(−1)jQj`.

10



Proof. By (4.6),

Bg∗ = [π(`e∗)]
−1BAe∗ = [π(`e∗)]

−1(RUe∗ + LUe∗).

Since Q = Q, we have U = U , and Bg∗ is symmetric. Hence g∗ ∈ Hrev
∗ . This shows that

g∗ is canonical in the modelQrev
∗ . Finally, on L2,0(π) we have (V A)−1 = (J−Q)(J+Q)−1,

A = (R − LQ)(J −Q)−1 and A(V A)−1 = (R − LQ)(J +Q)−1. Now expand (J +Q)−1

as a series to get the desired formulas.

5 Construction of efficient estimators

In this section we construct least dispersed regular estimators for ϑ. We need a stronger
version of Assumption 2, namely continuous Hellinger differentiability of τ → pτ at ϑ.

Assumption 3. For τ ∈ Θ, the invariant distribution πτ has a positive µ-density pτ .
The function τ → pτ is Hellinger differentiable with derivative `τ in a neighborhood of
ϑ, and

µ(`τp
1/2
τ − `ϑp

1/2
ϑ )2 → 0 for τ → ϑ. (5.1)

Also, πϑ`
2
ϑ > 0.

By Theorem 1 and the characterization (2.10), an estimator ϑ̂n is least dispersed and
regular for ϑ if and only if

n1/2(ϑ̂n − ϑ) = [π(`e∗)]
−1n−1/2

n∑
i=1

(Ae∗)(Xi−1, Xi) + oPn(1). (5.2)

We will construct such an estimator as a one-step estimator, improving an initial estima-
tor. As usual, the initial estimator will be a discretized and n1/2-consistent estimator ϑ̃n,
see Bickel et al. (1993). Such a discretized estimator can be treated as a deterministic
sequence in the proof.

From Meyn and Tweedie (1993, Section 17.4) we obtain the following martingale
approximation. It goes back to Gordin (1969); see also Gordin and Lif̌sic (1978). For
f ∈ L2(π),

n∑
i=1

[f(Xi)− πf ] =
n∑

i=1

(Af)(Xi−1, Xi) + (V f)(X0)− (V f)(Xn). (5.3)

In particular,

n−1/2

n∑
i=1

e∗(Xi) = n−1/2

n∑
i=1

(Ae∗)(Xi−1, Xi) + oPn(1). (5.4)
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Our construction of the efficient estimator will therefore involve an estimator for e∗, and
not for Ae∗.

We also rely on the sample splitting techniques of Schick (1998). For simplicity we use
his two-split, which picks two blocks X1 = (X0, . . . , Xmn) and X2 = (Xn−mn , . . . , Xn).
We need that

n− 2mn →∞ and n−1/2(n− 2mn) → 0.

With en(x, ϑ̃n, X0, . . . Xn) denoting an estimator of e∗(x), our estimator has the form

ϑ̂n =
1

2

(
ϑ̃n +

1
mn

∑mn

i=1 emn(Xi, ϑ̃n,X2)− πϑ̃n
emn(·, ϑ̃n,X2)

πϑ̃n
[emn(·, ϑ̃n,X2)`ϑ̃n

]

)

+
1

2

(
ϑ̃n +

1
mn

∑n
i=n−mn+1 emn(Xi, ϑ̃n,X1)− πϑ̃n

emn(·, ϑ̃n,X1)

πϑ̃n
[emn(·, ϑ̃n,X1)`ϑ̃n

]

)
. (5.5)

Call a sequence ϑn in Θ local if n1/2(ϑn − ϑ) is bounded.

Theorem 3. Let Assumptions 1 and 3 hold. Suppose that for every local sequence ϑn,

sup
x
|en(x, ϑn, X0, . . . , Xn)| = oPn(n1/2), (5.6)∫
π(dx)[en(x, ϑn, X0, . . . , Xn)− e∗(x)]

2 = oPn(1). (5.7)

Then the one-step estimator ϑ̂n defined in (5.5) satisfies the stochastic expansion (5.2)
and is therefore a least dispersed regular estimator for ϑ.

Proof. Since the initial estimator ϑ̃n is discretized, it suffices to prove the stochastic
expansion (5.4) with local sequences ϑn replacing ϑ̃n in the definition (5.5) of ϑ̂n. Fix
a local sequence ϑn. Because of the sample splitting, we only need to show expansion
(5.4) for the ‘estimator’

ϑn +
1
n

∑n
i=1 ẽn(Xi)− πϑn(ẽn)

πϑn(ẽn`ϑn)

with ẽn(x) = en(x, ϑn, X̃) and X̃ an independent copy of (X0, . . . , Xn); see Schick (1998).
It suffices to show that

πϑn(ẽn`ϑn) = π(e∗`ϑ) + oPn(1), (5.8)

πϑn(ẽn)− π(ẽn) = (ϑn − ϑ)π(e∗`ϑ) + oPn(n−1/2), (5.9)

n−1/2

n∑
i=1

[ẽn(Xi)− π(ẽn)] = n−1/2

n∑
i=1

(Aẽn)(Xi−1, Xi) + oPn(1), (5.10)

n−1/2

n∑
i=1

(Aẽn)(Xi−1, Xi) = n−1/2

n∑
i=1

(Ae∗)(Xi−1, Xi) + oPn(1). (5.11)

12



It follows from (5.6) and Hellinger differentiability at ϑ that

µ[ẽn(p
1/2
ϑn
− p

1/2
ϑ )]2 = oPn(1). (5.12)

We conclude from (5.7) and (5.12) that

µ(ẽnp
1/2
ϑn
− e∗p

1/2
ϑ )2 ≤ 2µ[ẽn(p

1/2
ϑn
− p

1/2
ϑ )]2 + 2π(ẽn − e∗)

2 = oPn(1).

It follows from this and (5.1) that

πϑn(ẽn`ϑn) = µ(ẽnp
1/2
ϑn
`ϑnp

1/2
ϑn

) = µ(e∗p
1/2
ϑ `ϑp

1/2
ϑ ) + oPn(1),

which yields (5.8). Similarly, one verifies

µ(ẽn`ϑpϑ) = µ(e∗`ϑpϑ) + oPn(1).

Thus (5.9) follows if we show that

µ{ẽn[pϑn − pϑ − (ϑn − ϑ)`ϑpϑ]} = oPn(n−1/2).

To see this write its left hand side as

µ{ẽn(p
1/2
ϑn

+ p
1/2
ϑ )[p

1/2
ϑn
− p

1/2
ϑ − 1

2
(ϑn − ϑ)`ϑp

1/2
ϑ ]}

+µ[ẽn(p
1/2
ϑn
− p

1/2
ϑ )(ϑn − ϑ)

1

2
`ϑp

1/2
ϑ ].

Now apply the Cauchy–Schwarz inequality to both terms and then use (5.12) and
Hellinger differentiability at ϑ to conclude the desired result.

To prove relation (5.10), note first that by (5.7),

π[(V ẽn)2] → π[(V e∗)
2].

Hence, for ε > 0, the conditional Markov inequality yields

max
i
P
(
|(V ẽn)(Xi)| > εn1/2

)
≤ E

(
π[(V ẽn)2]

nε2
∧ 1

)
→ 0.

Relation (5.10) now follows from the martingale approximation (5.3).
We verify relation (5.11) with the aid of Schick (1998, Theorem 3.3). We have∫

Q(x, dy)[(Aẽn)(x, y)− (Ae∗)(x, y)] = 0

and
π ⊗Q (Aẽn − Ae∗)

2 ≤ ‖A‖2 · π(ẽn − e∗)
2 → 0

by (5.7) and since A is a bounded operator. Then by Schick (1998, Remark 3.4) the
conditions of his Theorem 3.3 hold, and (5.11) follows.

Remark 2. Let en be an estimator that satisfies condition (5.7) of Theorem 3. Then
the estimator en = (−Bn)∨en∧Bn satisfies (5.7) for every sequence of positive numbers
Bn tending to infinity. This truncated estimator also satisfies (5.6) if Bn = o(n1/2).
Consequently, only condition (5.7) poses any difficulties.
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6 Estimation of e∗

The results of the previous section show that we can construct an efficient estimator of
ϑ if one can construct an estimate en of e∗ which satisfies (5.7). We shall now construct
such an estimator en under the assumption that we can choose appropriate orthonormal
bases for the spaces L2,0(πτ ). More precisely, for each τ ∈ Θ let {ψj,τ : j ≥ 1} be an
orthonormal basis for L2,0(πτ ). We require the following additional properties of these
functions.

(A1) For every j ≥ 1,

µ(ψj,τp
1/2
τ − ψj,ϑp

1/2
ϑ )2 → 0 for τ → ϑ.

(A2) There are positive numbers α, β and C1 such that for all positive integers k and
all τ close to ϑ,

k∑
j=1

‖ψj,τ − ψj,ϑ‖2 ≤ C1k
α|τ − ϑ|2β.

(A3) There are positive numbers γ and C2 such that for all positive integers k and all τ
close to ϑ,

k∑
j=1

πτ (ψ
4
j,τ ) ≤ C2k

γ.

Remark 3. Let us mention that such functions ψj,τ can easily be constructed if the
state space is the real line R and the dominating measure µ is the Lebesgue measure.
In this case, each πτ possesses a continuous distribution function Fτ . This allows us to
choose ψj,τ = φj ◦Fτ , where {φj : j ≥ 1} is an orthonormal basis for L2,0(λ), with λ the
Lebesgue measure on [0, 1]. We may choose the trigonometric basis

φ2k−1(x) =
√

2 sin[2kπ(x− 1/2)],

φ2k(x) =
√

2 cos[2kπ(x− 1/2)], for 0 ≤ x ≤ 1 and k ≥ 1.

Since |φj| ≤
√

2 for all j ≥ 1, condition (A3) holds with C2 = 4 and γ = 1, while
condition (A1) follows from Hellinger differentiability of the map τ 7→ pτ at τ = ϑ.
It follows from the Cauchy–Schwarz inequality and from Hellinger differentiability at ϑ
that

|Fτ (x)− Fϑ(x)| ≤ µ(|pτ − pϑ|) ≤ 2[µ(|p1/2
τ − p

1/2
ϑ |2)]1/2 = O(|τ − ϑ|) as τ → ϑ.

Since |φ′j| ≤
√

8πj for j ≥ 1, condition (A2) holds with α = 3 and β = 1.

Let Ik denote the k × k identity matrix, and introduce vectors

Ψk,τ = (ψ1,τ , . . . , ψk,τ )
T and bk,τ = πτ (`τΨk,τ ).

14



Theorem 4. Suppose that Assumptions 1 and 3 hold, and that conditions (A1) to (A3)
are satisfied for certain α, β, γ. Let kn be a sequence of positive integers such that

kn →∞, kα
nn

−β → 0, k1+γ
n n−1 → 0.

Then condition (5.7) holds for the sequence of estimators

en(x, ϑn, X0, . . . , Xn) = bTkn,ϑn
(Ikn − ÂT

n )(Ikn − ÂnÂ
T
n )−1(Ikn − Ân)Ψk,ϑn

with

Ân =
1

n

n∑
i=1

Ψkn,ϑn(Xj)Ψ
T
kn,ϑn

(Xj−1).

To prove this theorem, we shall rely on the following two approximation results.

Proposition 1. Let {ψj : j ≥ 1} be an orthonormal basis of L2,0(π). Let Γk denote the
projection in L2,0(π) onto the linear span of {ψ1, . . . , ψk}, and set Qk = ΓkQ, Qk = ΓkQ,

e∗,k =
∞∑

j=0

Γk(J −Q)(QkQk)
jΓk(J −Q)Γk`ϑ, k ≥ 1.

Then

‖e∗,k − e∗‖ → 0 as k →∞. (6.1)

Proof. Keep in mind that Q and Q, viewed as operators on L2,0(π), have norms equal
to ‖Q− Π‖ which is less than 1 by Assumption 1, and that ‖a− Γka‖ → 0 as k →∞,
for every a ∈ L2,0(π). Thus the desired result follows from the identity

e∗ − e∗,k = (J − Γk)e∗ +
∞∑

j=1

Γk(J −Q)[(QQ)j − (QkQk)
j](J −Q)`ϑ

+
∞∑

j=0

Γk(J −Q)(QkQk)
j(J − Γk)(J −Q)`ϑ

+
∞∑

j=0

Γk(J −Q)(QkQk)
jΓk(J −Q)(J − Γk)`ϑ

and the expansion

∞∑
j=1

[(QQ)j − (QkQk)
j] =

∞∑
i=0

(QkQk)
i[(Q−Qk)Q+Qk(Q−Qk)]

∞∑
j=0

(QQ)j,
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valid on L2,0(π). Here we have used Cj −Dj =
∑j−1

i=0 D
i(C −D)Cj−i−1 for operators C

and D and positive integers j.

Proposition 2. Suppose that conditions (A1) and (A2) hold for certain α, β. For k ≥ 1
and τ ∈ Θ define

e∗,k,τ = bTk,τ (Ik − AT
k,τ )(Ik − Ak,τA

T
k,τ )

−1(Ik − Ak,τ )Ψk,τ

with Ak,τ = π(QΨk,τ ·ΨT
k,τ ) and QΨk,τ = (Qψ1,τ , . . . , Qψk,τ )

T . Then

‖e∗,kn,ϑn − e∗‖ → 0

for all local sequences ϑn, and for every sequence kn of positive integers satisfying

kn →∞, kα
nn

−β → 0. (6.2)

Proof. Fix a sequence kn satisfying (6.2), and a local sequence ϑn. We shall first show
that

‖e∗,kn,ϑn − e∗,kn,ϑ‖ → 0. (6.3)

Write |v|2 for the Euclidean norm of a vector v, and |M |∗ for the spectral norm of a
matrix M . Then |M |2∗ is the largest eigenvalue of MTM . It is now easy to see that (6.3)
follows if we show that

sup
k
|bk,ϑ|2 <∞, |bkn,ϑn − bkn,ϑ|2 → 0, (6.4)

sup
k
|Ak,ϑ|∗ < 1, |Akn,ϑn − Akn,ϑ|∗ → 0, (6.5)

π(|Ψkn,ϑn −Ψkn,ϑ|22) → 0. (6.6)

Of course, relation (6.6) follows from condition (A2) and assumption (6.2). From as-
sumption (5.1) we obtain that πϑn(`2ϑn

) → πϑ(`2ϑ). This is equivalent to

∞∑
j=1

[πϑn(`ϑnψj,ϑn)]2 →
∞∑

j=1

[π(`ϑψj,ϑ)]2.

Moreover, by condition (A1) and assumption (5.1) we have πϑn(`ϑnψj,ϑn) → πϑ(`ϑψj,ϑ)
for all j ≥ 1. Hence

∞∑
j=1

[πϑn(`ϑnψj,ϑn)− πϑ(`ϑψj,ϑ)]2 → 0.

Relation (6.4) follows from this and |bk,ϑ|22 ≤ π(`2ϑ). The spectral norm of a k×k matrix
M can be expressed as

|M |∗ = sup{|uTMv| : u, v ∈ Rk, |u|2 = |v|2 = 1}.
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This representation is particularly helpful when dealing with a matrix of the form M =
π(QΦ ·ΨT ) with Φ and Ψ in Lk

2,0(π). In this case one finds with the aid of the Cauchy–
Schwarz inequality that

|uTπ(QΦ ·ΨT )v| = |π(Q(uT Φ) · vT Ψ)| ≤ ‖Q− Π‖ ‖uT Φ‖ ‖vT Ψ‖2,

|uT
(
π(QΦ · ΦT )− π(QΨ ·ΨT )

)
v| ≤ ‖uT (Φ−Ψ)‖ ‖vT Φ‖+ ‖uT Ψ‖ ‖vT (Φ−Ψ)‖.

From the first inequality we obtain |Ak,ϑ|∗ ≤ ‖Q − Π| < 1 and hence the first part of
relation (6.5). The second inequality and relation (6.6) imply the second part of relation
(6.5). This concludes the proof of (6.3).

Now we show that e∗,k,ϑ coincides with e∗,k of the Proposition 1 if we take ψj = ψj,ϑ.
Indeed, for this choice of orthonormal basis, we find that Γk`ϑ = bTk,ϑΨk,ϑ, and that for

each a ∈ Rk we have Qk(a
T Ψk,ϑ) = aTAk,ϑΨk,ϑ and Qk(a

T Ψk,ϑ) = aTAT
k,ϑΨk,ϑ. In the

last step we have used the fact that π(QΨk,ϑ · ΨT
k,ϑ) = π[Ψk,ϑ(QΨk,ϑ)T ] = AT

k,ϑ. Using
the above and the fact that |Ak,ϑ|∗ < 1, it is now easy to see that

e∗,k =
∞∑

j=0

bTk,ϑ(Ik − AT
k,ϑ)(Ak,ϑA

T
k,ϑ)j(Ik − Ak,ϑ)Ψk,ϑ.

This simplifies to e∗,k,ϑ. Thus the desired result follows from (6.3) and Proposition 1.

Proof of Theorem 4. Note that E(Ân) = Akn,ϑn . It follows from the arguments in
Proposition 2 that it suffices to show that |Ân − E(Ân)|∗ = oPn(1). We shall prove the
stronger property E|Ân − E(Ân)|22 → 0.

By Assumption 1, there exists a finite constant c such that for all h ∈ L2(π ⊗Q ),

E

{
1

n

n∑
i=1

h(Xi−1, Xi)− E[h(X0, X1)]

}2

≤ c

n
E[h2(X0, X1)].

From this, the Cauchy–Schwarz inequality, condition (A3) and the properties of kn,

E|Ân − E(Ân)|22 ≤
c

n

kn∑
i=1

kn∑
j=1

E[ψ2
i,ϑn

(X1)ψ
2
j,ϑn

(X0)] ≤
ckn

n

kn∑
i=1

π(ψ4
i,ϑn

) → 0.

Remark 4. In the reversible case we have Ak = AT
k . This allows us to replace Ân by

the symmetrized estimate 1
2
(Ân + ÂT

n ).
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7 Comparison with parametric results

Our results apply in particular to the situation in which we have a parametric model for
the transition distributions, say {Qτ : τ ∈ Θ}. The estimator in Section 5 does not use
the model except through the associated family of invariant distributions {πτ : τ ∈ Θ}.
In this section, we compare known results for such parametric models with our results.
For the sake of brevity, we keep the discussion heuristic and do not reproduce the
regularity conditions given in the literature.

As before, we assume that Θ is one-dimensional and that the πτ have positive µ-
densities pτ . Then Qτ (x, dy) has as µ(dy)-density, say qτ (x, y), for (π-almost) all x in
the state space S.

Write mτ (x, y) = q̇τ (x, y)/qτ (x, y) for the logarithmic derivative, with respect to the
parameter τ , of qτ (x, y). As before, we will omit the parameter if it equals the true
parameter ϑ. A perturbation of the transition distribution at τ = ϑ is of the form

Qϑ+n−1/2u(x, dy)
.
= Q(x, dy)[1 + n−1/2um(x, y)]. (7.1)

Hence the local parameter space at ϑ is the linear span, say Hpar, of m. Here par stands
for ‘parametric’.

The perturbation expansion (3.8), applied to Qnh = Qϑ+n−1/2u, with approximation
(7.1), gives

n1/2(πϑ+n−1/2uf − πf) → uπ(V m · f).

Comparing with (3.9), we obtain

` = V m. (7.2)

The canonical gradient for the parameter, viewed as a functional t(Qτ ) = τ of the
transition distribution, is of the form gpar = uparm, with u determined by (2.8),

n1/2[t(Qϑ+n−1/2u)− t(Q)] = n1/2(ϑ+ n−1/2u− ϑ) = u
!
= uparu · π ⊗Qm2.

Hence
gpar = (π ⊗Qm2)−1m,

and the lower bound for the asymptotic variance of regular estimators is

π ⊗Qg2
par = (π ⊗Qm2)−1.

An efficient estimator for the parameter is the maximum likelihood estimator. It is a
solution in τ of the estimating equation

n∑
i=1

mτ (Xi−1, Xi) = 0.
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Of course, the canonical gradient gpar is also obtained as projection onto Hpar of
the gradient g∗ = [π(`e∗)]

−1Ae∗, with e∗ = (V A)−1`, which is canonical for the larger
model Q∗ of all transition distributions with invariant distribution in {πτ : τ ∈ Θ}; see
Theorem 1. To show that g∗ projects to gpar, we note first that (3.7) and (7.2) imply

π ⊗Q (m · Ae∗) = π(V m · e∗) = π(`e∗),

so that π ⊗Q (mg∗) = 1. We also have π ⊗Q (mgpar) = 1 and therefore π ⊗Q [m(g∗ −
gpar)] = 0, i.e. gpar is the projection of g∗ onto Hpar.

The last orthogonality property implies that, as expected, the asymptotic variance
of the maximum likelihood estimator is never larger than that of the efficient estimator
in the larger model Q∗. The variance reduction can be considerable. An extreme case
would be that the transition distributions Qτ all have the same invariant distribution.
Then the invariant distribution contains no information at all about the parameter. We
had to exclude this case in Sections 3 to 6, through the assumption that π`2 > 0.

The maximum likelihood estimator is only feasible if the transition distributions Qτ

are tractable. Kessler (2000) restricts attention to estimators which are solutions τ = ϑf
n

of estimating equations of the form

n∑
i=1

fτ (Xi) = 0, (7.3)

with fτ ∈ L2,0(πτ ). A Taylor expansion shows that ϑf
n admits a stochastic expansion

n1/2(ϑf
n − ϑ) = −(πḟ)−1n−1/2

n∑
i=1

f(Xi) + oPn(1). (7.4)

For regularity conditions we refer to Sørensen (1998). Here ḟ is the derivative, with
respect to the parameter, of fτ at τ = ϑ; we suppress the index ϑ. Differentiating
πτfτ = 0 under the integral, we obtain −πḟ = π(`f). Together with the martingale
approximation (5.3), we can write the stochastic expansion as

n1/2(ϑf
n − ϑ) = [π(`f)]−1n−1/2

n∑
i=1

(Af)(Xi−1, Xi) + oPn(1). (7.5)

Hence ϑf
n has asymptotic variance

[π(`f)]−2 · π ⊗Q (Af)2. (7.6)

The asymptotic variance is minimized for the estimator ϑe∗
n obtained from the esti-

mating equation (7.3) with
f = e∗ = (V A)−1`.
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To prove this, we note first that by (7.6) and (3.12), the asymptotic variance of ϑe∗
n is

[π(`e∗)]
−2 · π ⊗Q (Ae∗)

2 = [π(`e∗)]
−1.

Now write

π(`f) = π(V Ae∗ · f) = π ⊗Q (Ae∗ · Af). (7.7)

The Schwarz inequality and (3.12) give

[π(`f)]2 ≤ π ⊗Q (Ae∗)
2 · π ⊗Q (Af)2 = π(`e∗) · π ⊗Q (Af)2.

We arrive at the inequality between the asymptotic variances of ϑf
n and ϑe∗

n :

[π(`f)]−2 · π ⊗Q (Af)2 ≥ [π(`e∗)]
−1.

A different characterization of the optimal influence function is given in Kessler
(2000): The corresponding influence function is closest to the influence function (π ⊗
Qm2)−1m = gpar of the maximum likelihood estimator among all influence functions
[π(`f)]−1Af of estimators ϑf

n with fτ ∈ L2,0(πτ ). We have just shown that the optimal
influence function is Ae∗. Indeed, Ae∗ is the projection of m into the space {Af : f ∈
L2(π)}. This follows from (7.7) and

π ⊗Q (m · Af) = π(V m · f) = π(`f).

The estimating equations (7.3) contain the estimator which would be the maximum
likelihood estimator if the observations were independent, the solution ϑ`

n of

n∑
i=1

`τ (Xi) = 0.

The asymptotic variance of ϑ`
n is, using (3.7),

(π`2)−2 · π ⊗Q (A`)2 = (π`2)−2 · π(` · V A`).

This is larger than the asymptotic variance of ϑe∗
n since by the Schwarz inequality and

(3.12),

(π`2)2 = [π(` · V Ae∗)]2 ≤ π ⊗Q (A`)2 · π ⊗Q (Ae∗)
2 = π ⊗Q (A`)2 · π(`e∗).

To calculate the maximum likelihood estimator, the logarithmic derivative mτ of
the transition distribution Qτ must be tractable. To calculate the estimator ϑe∗

n , the
function e∗ = (V A)−1`must be tractable. The estimator ϑ`

n requires only the logarithmic
derivative `τ of the invariant distribution πτ .
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The estimator ϑ̂n introduced in Theorem 3 has the same asymptotic variance as
ϑe∗

n . It does, however, not require knowledge of Qτ . Hence it is adaptive in the sense
that whatever the model for the transition distributions, it is asymptotically as good as
the estimator ϑe∗

n , which, in turn, is optimal among solutions of estimating equations∑n
i=1 fτ (Xi) = 0 in the model {Qτ : τ ∈ Θ}. To put it differently: Even though ϑe∗

n

requires knowledge of Qτ , it does not exploit any of the information about τ in the model
{Qτ : τ ∈ Θ}.

(Analogous results hold for quasi-likelihood models, which are defined by paramet-
ric models for the conditional mean and variance of a Markov chain. The maximum
quasi-likelihood estimator requires knowledge of the conditional variance but does not
extract any information from it. Furthermore, one can construct an estimator which
is asymptotically as good but does not use the model for the conditional variance; see
Wefelmeyer (1996). This estimator has thus an adaptivity property analogous to ϑ̂n.)

8 Discretely observed diffusions

Consider a stationary version of the diffusion process X defined by the stochastic differ-
ential equation

dXt = bϑ(Xt)dt+ σϑ(Xt)dBt, (8.1)

where B is Brownian motion. For simplicity, we assume again that ϑ is one-dimensional.
Suppose we observe the process at n equidistant time points t0 = 0, . . . , tn = n∆. The
observations Xt1 , . . . , Xtn form a stationary and reversible Markov chain. Its transition
distribution Qϑ(x, dy) is difficult to calculate, in general, but its invariant distribution
πϑ(dx) is that of the diffusion process and can be given explicitly: The Lebesgue density
of πϑ is

pϑ(x) = [Cϑsϑ(x)σϑ(x)
2]−1

with

sϑ(x) = exp
[
− 2

∫ x

0

bϑ(y)

σϑ(y)2
dy
]

and norming constant

Cϑ =

∫
[sϑ(x)σϑ(x)2]−1dx.

Estimation of ϑ was first studied for the case when ∆ tends to zero with n tending to
infinity; see Le Breton (1976), Florens-Zmirou (1989), Jacod and Genon-Catalot (1993)
and Kessler (1997). For comparison with our results we must assume that ∆ is fixed.
For fixed ∆, a computer-intensive approximate maximum likelihood estimator based on
numerical approximation of the transition density was developed in Pedersen (1995a),
(1995b). By now there is a considerable literature on simpler, inefficient, estimators.
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Here we restrict attention to estimators for which the asymptotic variance can be cal-
culated explicitly. They are based on two types of estimating equations:

n∑
i=1

fϑ(Xti) = 0 (8.2)

with πϑfϑ = 0, see (7.3); and martingale estimating equations

n∑
i=1

fϑ(Xti−1
, Xti) = 0 (8.3)

with Qϑfϑ = 0.
The first type was already discussed in Section 7 in the context of general parametric

Markov chain models. For fϑ(x) = `ϑ(x) = ṗϑ(x)/pϑ(x) we obtain what would be
the maximum likelihood estimator if the observations were i.i.d. This estimator is not
efficient. Kessler (2000) shows that the estimator ϑe∗

n based on fϑ = e∗ defined in
Theorem 2 is optimal among solutions of (8.2). If the diffusion model is correct, the
estimator ϑ̂n introduced in Theorem 3 is asymptotically as good as ϑe∗

n . By Theorem 2,
the asymptotic variance of ϑ̂n (and hence of ϑe∗

n ) is [πϑ(`ϑe∗)]
−1 with

πϑ(`ϑe∗) = πϑ`
2
ϑ + 2

∞∑
j=1

(−1)jπϑ(`ϑ ·Qj
ϑ`ϑ).

However, ϑe∗
n depends on Qϑ through V A. Hence, if the diffusion model is misspecified,

then ϑe∗
n will, in general, be inconsistent, while our estimator remains consistent as long

as the model for πϑ is correct.
For solutions ϑf

n of the second type of estimating equations, (8.3), we obtain a stochas-
tic approximation similar to (7.4),

n1/2(ϑf
n − ϑ) = (πϑ ⊗Qϑḟϑ)−1n−1/2

n∑
i=1

fϑ(Xti−1
, Xti) + oPnϑ

(1). (8.4)

Hence ϑf
n is asymptotically normal with variance

(πϑ ⊗Qϑḟϑ)−2πϑ ⊗Qϑf
2
ϑ. (8.5)

If we take fϑ(x, y) = mϑ(x, y), the logarithmic derivative of the transition density,
then the estimating equation (8.3) gives the maximum likelihood estimator, which is
efficient if the diffusion model is correct, and in general better than our estimator ϑ̂n.
But as noted, mϑ is often not tractable.

The maximum likelihood estimator exploits the parametric diffusion model fully.
Other choices of fϑ use less information about the model. A simple class of estimating
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equations are the quasi-likelihood estimating equations, based on parametric models for
certain conditional moments. They are also called polynomial estimating equations. The
simplest is the linear estimating equation, with

fϑ(x, y) = wϑ(x)[y − aϑ(x)], (8.6)

where wϑ(x) is some weight function, and aϑ(x) =
∫
Qϑ(x, dy)y is the conditional mean

of Xti given Xti−1
= x. In many cases the conditional mean cannot be written explic-

itly and must be calculated numerically. This is, however, easier than calculating the
maximum likelihood estimator. The asymptotic variance (8.5) with fϑ as in (8.6) is
minimized for wϑ(x) = ȧϑ(x)/vϑ(x), where vϑ(x) =

∫
Qϑ(x, dy)[y − aϑ(x)]2 is the con-

ditional variance of Xti given Xti−1
= x. For this choice of wϑ, the asymptotic variance

is [πϑ(ȧ2
ϑ/vϑ)]−1. We refer to Bibby and Sørensen (1995), and for generalizations to

polynomial estimating equations to Kessler (1995) and Bibby and Sørensen (1996), and
to the reviews of Bibby and Sørensen (1997) and Sørensen (1997). For quasi-likelihood
models see also Wefelmeyer (1996).

Another class of martingale estimating equations is introduced by Kessler and Sø-
rensen (1999). The generator of the diffusion process (8.1) is

Lϑ =
1

2
σϑ(x)2 d

2

dx2
+ bϑ(x)

d

dx
.

An eigenfunction ϕϑ(x) with eigenvalue λϑ solves Lϑϕϑ(x) = −λϑϕϑ(x). We have
(Qϑϕϑ)(x) = e−λϑ∆ϕϑ(x) and obtain martingale estimating equations (8.3) with

fϑ(x, y) = wϑ(x)[ϕϑ(y)− e−λϑ∆ϕϑ(x)]. (8.7)

Kessler and Sørensen (1999) obtain optimal linear combinations of a finite number of
such estimating equations.

From the form of the asymptotic variances we see that none of the estimators in this
section, excepting the (intractable) maximum likelihood estimator, is always superior to
our estimator. Some are simpler to calculate than ours, though none is straightforward.
Unlike our estimator, they break down if certain features of the diffusion model are
misspecified.
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