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Abstract

Suppose we have specified a parametric model for the transition distribution
of a Markov chain, but that the true transition distribution does not belong to the
model. Then the maximum likelihood estimator estimates the parameter which
maximizes the Kullback—Leibler information between the true transition distribu-
tion and the model. We prove that the maximum likelihood estimator is asymp-
totically efficient in a nonparametric sense if the true transition distribution is
unknown.

1 Introduction

Suppose we observe Xj,...,X, from an ergodic Markov chain on an arbitrary state
space. We have specified a parametric model Qy(z,dy) for the transition distribution,
and an initial distribution ny(dz). Consider the following two situations:

1. We believe, erroneously, that the model is correct, and use the maximum likelihood
estimator for estimating the parameter.

2. We know that the model is incorrect, and want to fit a transition distribution
from the model to the true transition distribution, using Kullback—-Leibler information
as ‘distance’.

Both situations lead to the same problem: Let Q(x,dy) be the true transition distri-
bution and 7(dz) the true initial distribution. Write 7 (dz) for the invariant distribution.
Suppose that Qg(z,dy) has a density gy(z,y) with respect to some dominating measure
m(z,dy). By the Kullback-Leibler information we mean the expectation 7@ loggy of
log gs(x, y) under the joint invariant distribution 7®Q = 7(dz)Q(z, dy) of two successive
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observations. Write k(7 ® Q) for the parameter 9 which maximizes the Kullback—Leibler
information. A natural estimator for 7 ® Q is the empirical measure

Then k(FE,) is an estimator for the mazimum Kullback-Leibler information functional
k(m ® Q). By definition of the functional, ¥ = k(E,,) maximizes

1 n
Enloggqy = - > logge(X; 1, X;).

=1

This means that k(FE,) is the mazimum likelihood estimator.

We see that in both situations we are led to use the maximum likelihood estimator
for estimating the maximum Kullback—Leibler information functional. Here we will be
interested in the following question: Is the maximum likelihood estimator efficient for
this functional if the model is misspecified? We expect that it is efficient according to
the following heuristic argument. The empirical distribution E,, is efficient for 7 @ @
in a certain sense. See Greenwood and Wefelmeyer (1995), extending Penev (1991)
who considers estimating the invariant distribution 7. If one were to prove that & is
differentiable in a suitable sense, efficiency of the maximum likelihood estimator would
follow.

We do not pursue this approach here. Instead, we use that the maximum likelihood
estimator solves an estimating equation and admits the following stochastic expansion.
For simplicity, suppose that 1) varies in a compact subset of the real line. Write £ and

s, respectively, for the first and second derivative of loggy with respect to ¥. From
now on we write k(@) for k(m ® Q). Since ¥ = k(Q) maximizes 7Q log gy, we have
TQlq) = 0. Let J = ¥ be a consistent solution of

n_1/2 ZK%(Xi_l, Xz) = Op(l),

=1

for instance the maximum likelihood estimator. A Taylor expansion gives
n'/? (9 = k(Q)) = —(7Qlig) '™ ? Y by (Xior, Xi) + 0p(1).
i=1

Using WQEZ(Q) = Oy=i(Q)TQ¥y = —D, say, we could avoid writing a second derivative of
gy and get

n'/? () — k(Q)) = D'n ="/ ie;(@ (Xi1, X;) 4 0p(1), (1.1)
=1

and hence asymptotic normality of the estimator by a central limit theorem for Markov
chains.



In the i.i.d. case, Huber (1967) gives conditions for (1.1) to hold for the maximum
likelihood estimator. They do not involve a second derivative of gy. Ogata (1980)
translates the argument to Markov chains. Weaker conditions are given by Pollard
(1985) for the i.i.d. case, and by Hosoya (1989) for stationary linear processes. See also
Andrews and Pollard (1994). McKeague (1984) and Kutoyants (1988) prove asymptotic
normality of the maximum likelihood estimator for misspecified diffusion models.

It is the purpose of this paper to show that the stochastic expansion (1.1) leads to
an optimality property of the estimator U when the true transition distribution may not
be in the parametric model, or even in a local neighborhood.

Our result is new even in the i.i.d. case, for which the proofs simplify considerably.
The only other result on efficiency of an estimator under a fixed distribution outside a
misspecified model we are aware of is Theorem 5 in Beran (1977). He uses the Hellinger
distance to fit a parametric model for i.i.d. observations. He shows that the minimum
Hellinger distance functional is a boundedly differentiable function of the true density,
and estimates the functional by replacing the density by an estimator. He proves that
the estimator is efficient under misspecification, and robust at the parametric model.
Bounded differentiability of minimum Hellinger distance functionals is also obtained by
Yang (1991) and Ying (1992).

We use arguments similar to those in Greenwood and Wefelmeyer (1995). There we
considered efficiency of empirical estimators n=! 3> | f(X;_1, X;) with f bounded. Here
the function which arises is f = %(Q) which will, in general, be unbounded.

The result given here generalizes easily to finite-dimensional parameters and to
higher-order Markov chains. It probably remains true for observations coming from
more general time series, at least if they are locally asymptotically normal in an appro-
priate sense.

2 An optimality property of the maximum likeli-
hood estimator

Let Xy, ..., X, be observations from a Markov chain with values in a measurable state
space E. Let Q(z,dy) denote the transition distribution, and 7(dx) the initial distribu-
tion.

As usual, write nQ(dy) = [n(dz)Q(x,dy) and n®Q(dz, dy) = n(dz)Q(x,dy). For
a function f(z) write nf = [n(dz)f(z) and Qf(z) = Q.f = [Q(x,dy)f(y). For a
function f(x,y) of two arguments, we interpret Qf as Qf(z) = Q.f = [ Q(z,dy) f(z,y)
and Q*f as Q¥ 'Qf.

Assumption 1. The Markov chain is positive Harris recurrent with invariant distribu-
tion 7.

Let ||f|| = (7f?)'/? denote the norm of Ly(7), and || R|| = sup{||Rf]| : ||f|| = 1} the
corresponding operator norm of a transition kernel R(x,dy). Set Il(z, dy) = 7(dy).
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Assumption 2. We have ||Q7 — II|| — 0 for j — oc.

We wish to prove that any estimator Y with stochastic approximation (1.1) is efficient
in the sense of a Hajek-LeCam convolution theorem described as follows. The initial
distribution 7 is fixed. We regard the collection of transition distributions on E as a
parameter space for the distributions governing the data. Under Assumption 1, the
model is locally asymptotically normal at the true transition distribution @), fixed above,
in the following sense. Let

H = {h, : E? — IR bounded, measurable, Q,h = 0 for all z € E} .
This space plays the role of local parameter space. For h € H set
Qnn(z,dy) = Q(x, dy) (1 +n"Y2h(z, y)) i

Write P, and P, for the joint distribution of X, ... , X,, if @ and @, respectively, are
true. Then, under Assumption 1,

n 1
log dPyy /AP, = n Y h(Xio1, Xi) — EthQ +o0p,(1) (2.1)
=1
and
n 2N h(X1, Xi) = Ny, (2.2)
=1

where N, is normal with mean 0 and variance 7Qh2. This nonparametric version of
local asymptotic normality is due to Penev (1991).
The Ly (7 ® Q)-closure of H is

H={heL(r®Q): Q:h=0forallz € E}.
Call a functional k(Q) differentiable at Q with canonical gradient g if g € H and

n'? (k(Qun) — k(Q)) = 7Qhg,  heH. (2.3)
Call an estimator & reqular for k at () with limit L if

nt/? (];' — k(th)) = L under P, h € H.

The convolution theorem says that L = M + N, where M is independent of N, and N
is normal with mean 0 and variance mQg?. This justifies calling k efficient if its limit
distribution is N.

Call an estimator & asymptotically linear for k at () with influence function f if

'/ (k- k(Q)) = n~'/2 ﬁj F(Xi_1, X;) + op, (1). (2.4)
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We have the following characterization.

Proposition. Under Assumption 1, an estimator is reqular and efficient for a differen-
tiable functional k at Q if and only if it is asymptotically linear with influence function
equal to the canonical gradient of k.

For an appropriate version of the convolution theorem and the Proposition see Green-
wood and Wefelmeyer (1990).
Now we turn to our misspecified model. It is determined by a parametric family

Qy¢(z, dy) of transition distributions and an initial distribution 7y(dz) on the state space
E.

Assumption 3. The parameter space © is compact. For v € FE, the transition dis-
tributions Qy(x,dy) have a density q9(z,y) with respect to some dominating measure
m(z,dy), and gy is measurable. There is a unique ¥ = k(Q) in the interior of © which
mazximizes the Kullback—Leibler information Q) logqy. The function logqy is twice dif-
ferentiable in the following sense: For 9 € © and T — 1,

log gr = log gy + (T — ) (£y + 7r) (2.5)
with U € Lo(m @ Q) and r, — 0 in Lo(m ® Q). For ¥ — k = k(Q),
9 =L + (0 = k) (€, + s9) (2.6)
with ¢}, € Ly(m @ Q) and sy — 0 in Ly(m ® Q). Further,

D = —7Qf; > 0.
For f € Ly(m) define

(Af)(z.y) = S (QLf — QI ). (2.7)

J=0

Theorem. Under Assumptions 1 and 2 on the true transition distribution and As-
sumption 3 on the parametric model, any estimator 9 fulfilling

n'/? (9~ k(@) =D 'n /2 iz;@ (X;_1, X;) + op, (1) (2.8)
=1

is reqular and efficient for the mazimum Kullback—Leibler information functional k at Q.
The canonical gradient of k and the influence function of ¥ are both (setting k = k(Q))

g(z,y) = D7 (G(,y) — Quly + (AQL) (2, y)) (2.9)



with A defined in (2.7). The asymptotic variance of U is

j=1

The maximum likelihood estimator fulfills (2.8) under appropriate conditions, as
detailed in the Introduction.

The proof of the Theorem is based on Lemmas 1, 5 and 6 in Section 3 below. Defini-
tion (2.3) of differentiability requires that k(Qys) is defined for n sufficiently large. This
is shown in Lemma 4.

Proof. The Proposition characterizes regular and efficient estimators. By Lemma 6, the
functional k is differentiable at () with canonical gradient g given by (2.9). It remains
to show that ) has influence function equal to g. Write & = k(Q). Rewrite (2.8) as

n'?(0 — k) = D' Y (G(Xicr, Xi) — Q(Xicr, ) + Q(Xio1, 6)) + op, (1).
i=1
We have 7Q¥¢, = 0 by Lemma 5. From the martingale approximation in Lemma 1,
applied for f = @/}, we obtain

Y QX by) = 072 3 (AQE) (Xiiy, Xi) + op, (1)

=1 =1

From definition (2.9) of g we see that

n'2(0 — k) = n~1/? > 9(Xi1, Xi) +op, (1)

=1

Hence 9 is asymptotically linear in the sense of (2.4) with influence function equal to
the canonical gradient g, and the Theorem is proved. O

If @ happens to lie in the parametric model, say @ = Qy, then k(Qy) = 9. In this
case, Qyylly = 0 for all z € E, and Y1, £4(X;-1,X;) is a martingale. The gradient
reduces to

gﬂ(.’l?, y) = D1;1£;9($’ y)
with Dy = —myQysly, and the asymptotic variance reduces to the inverse of the Fisher
information,

79Qug5 = Dy mgQuly =1 [m9Quly -



3 Lemmas

We will make use of the following martingale approximation of Gordin and Lif$ic (1978,
Remark 3); see also Durrett (1991, p. 375). The idea goes back to Gordin (1969).

Lemma 1. Under Assumption 2, for f € Ly(m),

WY (F(Xes) = mf) = 172 S (A (Kics, Xo) + 0r, (1)

=1

with A defined in (2.7).

The maximum Kullback—Leibler information functional k(@) maximizes 7@ log gy.
We will see that Q) log gy has derivative WQE;C(Q) at 9 = k(Q), and we obtain the gradient
of k(@) from the equation WQE;C(Q) = 0. To prove that k(Q) is differentiable, we must
know that 7Qf} varies smoothly with (). We do not wish to assume that £ is bounded.
A reasonable condition on £y is 7 ® @-square integrability which leads to the question
whether a functional of the transition distribution of the form 7 f is differentiable if f
is m-square integrable. In particular, we must prove that 7 varies continuously with Q).
This is a stability property of the invariant distribution. Our arguments follow those of
Kartashov (1985a), (1985b), who proves a different version of stability. The replacement
of R by A is also implicit in Penev (1991). Set I(z,dy) = €,(dy). Recall the notation
I(z, dy) = w(dy).

Lemma 2. Under Assumption 2, the operator [ —Q+11 on Ly(m) has a bounded inverse
R=1I+) (¢ —1). (3.1)
j=1
Each transition distribution Q' with ||Q' — Q|| < ||R|| " has a unique invariant distribu-
tion ©' =7 (I — (Q' — Q)R)™" such that uniformly for f € Ly(n) with ||f|| <1,

n'f—nf =m(Q ~ QRf +0(|Q - QI (3.2)

In particular, there are an € > 0 and a ¢ such that |Q' — Q|| < € implies for f € Ly(m)
with || f]] <1,

[7'f —=7fl <@ = Q| (3.3)
The operator R in (3.2) can be replaced by the operator A defined in (2.7).

Proof. By Assumption 2, ||@? — II|| < ba’, and the operator R given by (3.1) is the
bounded inverse of I — Q +II. For ||Q" — Q|| < ||R|| ™}, the operator I — (Q' — Q)R has
a bounded inverse S. Set 7’ = 7S. We show that 7’ is the unique invariant distribution
of Q'. First apply S ! to 7' = 7S and obtain

T=m(l-(Q-QR) =" -7(Q - Q)R

7



Then apply R ! to obtain
r=rR'=r(I-Q+M)-7'(Q -Q) =7 —7'Q +m.

Hence 7'Q)' = ©’'. Reversing the steps, we see that the invariant distribution is unique.
Assertion (3.2) now follows by von Neumann expansion of S. Since R is bounded, (3.2)
implies (3.3).

It remains to show that R can be replaced by A. Recall definitions (2.7) and (3.1)
of the operators A and R and use

(@ = Q)(@ -1)f = [(@ - Q). dy) [ (Q4.d2) - @ (w,d2)) £(2)

to write
m(Q — Q)Rf =m(Q — Q)Af.
Hence (3.2) holds also with R replaced by A. m

Lemma 3. Under Assumption 2, for h € H and n sufficiently large, Q,n has a unique
invariant distribution m.p, and uniformly for functions f(z,y) with 7Qf?* <1,

' (M Qunf — Q) = 7QA(f — Qf + AQS). (3.4)

Proof. By definition of Q,, the sequence n'/?||Qn, — Q|| is bounded. Recall that
T(Qf)?* < mQf?. Use Lemma 2 with f replaced by Qf and Q,h = 0 for all z to obtain

02w Qunf —7Qf) = wQhf + ' (mup — 1)Qf + (mun — QRS
— TQRhf + TQRAQS = 7Qh(f — Qf + AQY).

The next three lemmas involve the misspecified model. The argument follows, in
part, Beran (1977), who considers the i.i.d. case and Hellinger distance.

Lemma 4. Let Assumption 2 hold. Let © be compact and log gy continuous in Ly(m®Q).
Then, for h € H and n sufficiently large, there exists 9 = k(Qnp) for which the Kullback—
Leibler information m,pQnplogqy is mazximized. If the mazimum of wQ) logqy is unique,

then k(Qnn) — k(Q).

Proof. We show that for n sufficiently large there exists ¥ = k(Qnn) for which
Tnh@nn 10g g9 is maximized. Fix n and h. Set S = (I — (Qnn — Q)R)_l. By Lemma 2
we have m,, = 7S. Hence

thth, log gy = 7T'S’anh, lOg qy-

For n sufficiently large, the operators S and @, are continuous in Ly(7). By Assumption
3, the function ¥ — log ¢y is continuous in Ly(7). Hence 7, Qnp log gy is continuous in
¥, and the maximum is attained.



Furthermore, since the operator A is also continuous in Ly(7), Lemma 3 implies
Sup | Qnn log g9 — 7Q log go| — 0.
9€0
Hence

TnhQnn 108 Qr(q,,) — 7TQlog k),
TnhQnn 108 Qr(Q,.) — TQ10g g,y — 0.

Therefore,

TQ 108 qr(q,.,) — TR 108 qr(q)- (3.5)

Since © is compact, we may choose a subsequence on which k(Q,;) converges. Let kg
denote the limit. On the subsequence,

TQ10g qr(q,,) — TQ 10g g, -

Comparing with (3.5), we obtain 7Qloggr, = 7Qloggkg). Since k(Q) is unique, we
have ky = k(@), and the proof is finished. O

Lemma 5. Let Assumption 2 hold. Let logqy be differentiable in the sense of (2.5).
Then for all n and h € H with k(Qyy) in the interior of O, the function m,pQnyl0g gy
is differentiable at 9 = k(Qnn) with derivative ththégc(th) =0.

Proof. Write

t_lﬂ—nhth (log 9+t — log Qﬂ) = thth (619 + Tﬁ—l—t)-

By Lemma 3 and assumption (2.5) we have 7,,Qnrr9+: — 0ast — 0. Hence the function
Tnh@nn 10g gy is differentiable in ¢ with derivative m,,Qnplly. Since k(Qnn) maximizes
Tnh@nnlog gy by Lemma 4 and lies in the interior of © by hypothesis, the assertion
follows.

Lemma 6. Under Assumptions 2 and 3, the functional k is differentiable at @) in the
sense of (2.3) with canonical gradient g defined in (2.9).

Proof. By Lemma 4 we have k(Q,,) — k(Q). Since k = k(Q) is in the interior of
© by Assumption 3, so is k(Q,) for n sufficiently large. With Lemma 5 we obtain

0 = ththE;c(th) (3-6)
= ththE;g + (k(th) - k) thth(Elkl + sk(th))'

By Lemma 3,
ththﬁg — WQEZ =—-D.

9



By Lemma 3 and relation (2.6),

TnhQnhSk(Q,,) — 0-

Solve (3.6) for k(Qy) to obtain

k(Qnn) — E(Q) = D' Qualy, (14 0(1)) - (3.7)
Since 7Q¢), = 0 by Lemma 5, we may use Lemma 3 with f = ¢} to obtain
D P Quill, = 1 (TanQun — Q)L
— TQh(L, — QL + AQL,) = TQhyg.

Relation (3.7) then implies

n'? (k(Qun) — k(Q)) = D™ 'nQhyg.

This is the assertion. O
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