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Abstract

We consider semiparametric models of semi-Markov processes with arbitrary
state space. Assuming that the process is geometrically ergodic, we characterize
efficient estimators, in the sense of Hájek and Le Cam, for arbitrary real-valued
smooth functionals of the distribution of the embedded Markov renewal process.
We construct efficient estimators of the parameter and of linear functionals of the
distribution. In particular we treat the two cases in which we have a paramet-
ric model for the transition distribution of the embedded Markov chain and an
arbitrary conditional distribution of the inter-jump times, and vice versa.

1 Introduction

Suppose we observe a semi-Markov process Zt, t ≥ 0, with embedded Markov renewal

process (X0, T0), (X1, T1), . . . , on a time interval 0 ≤ t ≤ n. The transition distribution

of the Markov renewal process factors as

D(x, dy, ds) = Q(x, dy)R(x, y, ds),

where Q(x, dy) is the transition distribution of the embedded Markov chain X0, X1, . . . ,

and R(x, y, ds) is the conditional distribution of the inter-jump times Sj = Tj−Tj−1 given

Xj−1 = x and Xj = y. We assume that the embedded Markov chain is geometrically

ergodic. We write P (dx, dy, ds) for the joint stationary law of (Xj−1, Xj, Sj), and P1(dx)

and P2(dx, dy) for its marginals. We are interested in estimation of functionals of Q and

R. Our results hold also for observations (X0, T0), . . . , (Xn, Tn) of the embedded Markov

renewal process. For discrete state space and the fully parametric or nonparametric
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cases, the asymptotic distribution of maximum likelihood estimators, Bayes estimators,

and empirical estimators has been studied by Taga [31], Pyke and Schaufele [27], Hatori

[13], McLean and Neuts [20], Moore and Pyke [22], Ouhbi and Limnios [23, 24] and,

with censoring, by Lagakos, Sommer and Zelen [18], Gill [5], Voelkel and Crowley [32]

and Phelan [25, 26].

We focus primarily on semiparametric models and on the construction of efficient

estimators. The simplest semiparametric models are obtained by specifying a parametric

form for one of the factors of D(x, dy, ds) = Q(x, dy)R(x, y, ds). In one case, we assume

a parametric model Qϑ for the transition distribution of the embedded Markov chain

and leave the conditional distribution of the inter-jump times unspecified (model Q). In

a second case, we assume a parametric model Rϑ for the conditional distribution of the

inter-jump times and leave the transition distribution of the embedded Markov chain

unspecified (model R).

The estimating problems connected with these two models are specific to the semi-

Markov setting; in particular, they have no non-trivial counterpart for Markov chains.

To keep the paper readable and short, we concentrate on the two simple models above.

More general models, involving possibly infinite-dimensional parameters, perhaps on

both factors simultaneously, could be treated along the same lines.

We want to estimate ϑ and linear functionals of the form

Ef(Xj−1, Xj, Sj) =

∫∫
P1(dx)Q(x, dy)

∫
R(x, y, ds)f(x, y, s) = P1QRf,

with Q = Qϑ or R = Rϑ parametric. Interesting applications are estimation of prob-

abilities P (Xj−1 ∈ A,Xj ∈ B, Sj ≤ c), P (Xj−1 ∈ A,Xj ∈ B) and P (Xj−1 ∈ A), and

of ratios P (Sj ≤ c | Xj−1 ∈ A,Xj ∈ B) and P (Xj ∈ B | Xj−1 ∈ A). We can also

treat expectations ESj and conditional expectations E(Sj | Xj−1 ∈ A,Xj ∈ B) and

E(Xj | Xj−1 ∈ A).

Natural estimators for ϑ are the maximum likelihood estimators based on the con-

ditional distributions Qϑ or Rϑ. We show that they are efficient in our two models.

In particular, they are adaptive in the sense that knowing the nonparametric factor of

Q(x, dy)R(x, y, ds) cannot give estimators with smaller asymptotic variance. A natural

estimator for a linear functional Ef(Xj−1, Xj, Sj) is the empirical estimator

1

Nn

Nn∑
j=1

f(Xj−1, Xj, Sj),

2



where Nn = max{j : Tj ≤ n}. Greenwood and Wefelmeyer [8] have shown that this

estimator is efficient in the fully nonparametric semi-Markov model; see also Greenwood

and Wefelmeyer [7] for Markov step processes. We construct better, efficient, estimators

for our two semiparametric models Q and R.

For our first model, the functional Ef(Xj−1, Xj, Sj) can be written

Ef(Xj−1, Xj, Sj) = P1ϑQϑRf =

∫∫
P1ϑ(dx)Qϑ(x, dy)Rxyf

with Rxyf =
∫
R(x, y, ds)f(x, y, s). To exploit the structure of the model, we use a plug-

in estimator, i.e. we replace the conditional expectation Rf by a kernel estimator R̂f .

By what we refer to as the plug-in principle, we expect that P1ϑQϑR̂f will converge at

the parametric rate n−1/2 under appropriate conditions on the kernel and the bandwidth,

even though the kernel estimator has a slower rate of convergence. In a second step,

we replace the parameter ϑ by an estimator ϑ̂. This results in the estimator P1ϑ̂Qϑ̂R̂f

for Ef(Xj−1, Xj, Sj). It is efficient if an efficient estimator ϑ̂ is used for ϑ. Related

plug-in estimators have been used in other, mainly nonparametric, contexts before.

For quadratic functionals of densities with i.i.d. observations see Hall and Marron [12],

Bickel and Ritov [2], Eggermont and LaRiccia [4] and the references there. Similar

results exist for regression models; see e.g. Goldstein and Messer [6] and Efromovich

and Samarov [3]. In semiparametric time series models with independent innovations,

the stationary density can be written as a smooth functional of the innovation density

and the parameters; n1/2-consistent and efficient plug-in estimators are constructed in

Saavedra and Cao [28] and Schick and Wefelmeyer [29, 30].

For our second model, the functional Ef(Xj−1, Xj, Sj) can be written

Ef(Xj−1, Xj, Sj) = P2Rϑf =

∫∫
P2(dx, dy)

∫
Rϑ(x, y, ds)f(x, y, s).

Here we can estimate the nonparametric part P2 by the empirical distribution based on

the embedded Markov chain. Again we replace ϑ by an estimator ϑ̂. We show that the

resulting estimator

1

Nn

Nn∑
j=1

∫
Rϑ̂(Xj−1, Xj, ds)f(Xj−1, Xj, s)

is efficient if ϑ̂ is efficient.

The paper is organized as follows. In Section 2 we state local asymptotic normal-

ity for arbitrary semi-Markov models and characterize efficient estimators for smooth
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functionals on such models. In Section 3 we construct efficient estimators of ϑ and

Ef(Xj−1, Xj, Sj) for model Q, and in Section 4 for model R. Throughout the paper, the

discussion will be informal.

2 Characterization of efficient estimators

In this section we consider general semi-Markov models described by families of distri-

butions Q(x, dy) and R(x, y, dz). To calculate asymptotic variance bounds and char-

acterize efficient estimators, we fix Q and R and introduce a local model at (Q,R)

by perturbing Q as Qnu(x, dy)
.
= Q(x, dy)(1 + n−1/2u(x, y)) and R as Rnv(x, y, ds)

.
=

R(x, y, ds)(1 + n−1/2v(x, y, s)). Since Qnu and Rnv are again conditional distributions,

the function u will vary in some subset U0 of

U = {u ∈ L2(P2) : Qxu = 0},

and the function v will vary in some subset V0 of

V = {v ∈ L2(P ) : Rxyv = 0}.

Here Qxu =
∫
Q(x, dy)u(x, y) and Rxyv =

∫
R(x, y, ds)v(x, y, s). Similarly, we will write

Dxv =
∫∫

D(x, dy, ds)v(x, y, s). The sets U0 and V0 are called the tangent spaces for Q

and R. For simplicity we take them linear and closed. Note that U0 and V0 are orthogonal

subspaces of L2(P ). The perturbations Qnu
.
= Q(1 + n−1/2u) and Rnv

.
= R(1 + n−1/2v)

are meant in the sense that Qnu and Rnv are Hellinger differentiable with derivatives u

and v. For appropriate versions in arbitrary Markov step models and in nonparametric

semi-Markov models see Höpfner, Jacod and Ladelli [14] and Greenwood and Wefelmeyer

[8].

We assume that
∫
D(x, dy, {0}) = 0, that the mean inter-jump time m = ESj is

finite, and that the embedded Markov chain is positive Harris recurrent. Then

n

Nn

→ m a.s. (2.1)

Furthermore, the following law of large numbers and martingale central limit theorem

hold. For f ∈ L2(P ) we have

1

Nn

Nn∑
j=1

f(Xj−1, Xj, Sj)→ Pf a.s., (2.2)
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and for w ∈ L2(P ) with Dxw = 0 we have

n−1/2

Nn∑
j=1

w(Xj−1, Xj, Sj)⇒ m−1/2L, (2.3)

where L is a normal random variable with mean zero and variance Pw2.

Now write M (n) for the distribution of Zt, 0 ≤ t ≤ n, if Q and R are in effect, and

M
(n)
uv if Qnu and Rnv are. Similarly as in Höpfner, Jacod and Ladelli [14] and Greenwood

and Wefelmeyer [8], and using orthogonality of U0 and V0, we obtain local asymptotic

normality : For u ∈ U0 and v ∈ V0,

log
dM

(n)
uv

dM (n)
= Hn −

1

2
σ2(u, v) + op(1), (2.4)

where

Hn = n−1/2

Nn∑
j=1

(
u(Xj−1, Xj) + v(Xj−1, Xj, Sj)

)
,

σ2(u, v) = m−1(P2u
2 + Pv2),

and Hn is asymptotically normal with mean zero and variance σ2.

We want to estimate functionals of (Q,R). A real-valued functional ϕ(Q,R) is said

to be differentiable at (Q,R) with gradient (g, h) if g ∈ U , h ∈ V , and the functional

has a linear approximation in terms of the inner product from the LAN-norm,

n1/2(ϕ(Qnu, Rnv)− ϕ(Q,R))→ m−1(P2(ug) + P (vh)), u ∈ U0, v ∈ V0. (2.5)

The projection (g0, h0) of (g, h) onto U0 × V0 is called the canonical gradient of ϕ. An

estimator ϕ̂ is called regular for ϕ at (Q,R) with limit L if L is a random variable such

that

n1/2(ϕ̂− ϕ(Qnu, Rnv))⇒ L under M (n)
uv , u ∈ U0, v ∈ V0. (2.6)

The convolution theorem of Hájek [11] and Le Cam [19] says that L is distributed as

the convolution of a normal random variable with mean zero and variance σ2(g0, h0) =

m−1(P2g
2
0 + Ph2

0) with another random variable. This justifies calling ϕ̂ efficient if it

has this asymptotic variance.

An estimator ϕ̂ is called asymptotically linear with influence function (a, b) if a ∈ U ,

b ∈ V , and

n1/2(ϕ̂− ϕ(Q,R)) = n−1/2

Nn∑
j=1

(
a(Xj−1, Xj) + b(Xj−1, Xj, Sj)

)
+ op(1). (2.7)
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With these definitions, ϕ̂ is regular and efficient if and only if it is asymptotically linear

with influence function equal to the canonical gradient:

n1/2(ϕ̂− ϕ(Q,R)) = n−1/2

Nn∑
j=1

(
g0(Xj−1, Xj) + h0(Xj−1, Xj, Sj)

)
+ op(1). (2.8)

A reference for this characterization in the i.i.d. case is in Bickel, Klaassen, Ritov and

Wellner [1]; for semi-Markov processes parametrized by D see Greenwood and We-

felmeyer [8].

We point out that the orthogonality of U0 and V0 implies that functionals of one of

the factors of Q(x, dy)R(x, y, ds) can be estimated adaptively with respect to the other

factor in the following sense. Suppose ϕ(Q,R) depends only on Q. Then (2.5) holds

with h = 0, and the canonical gradient is of the form (g0, 0). Suppose now that ϕ̂ is

efficient in a model with R completely unspecified. Then it will remain efficient for any

submodel for R, in particular when R is known. The same holds with interchanged roles

of Q and R. We apply this observation to estimation of ϑ in models Q and R, Sections

3 and 4.

We will also need a version of the central limit theorem (2.3) for functions that are

not conditionally centered. Suppose that the embedded Markov chain is geometrically

ergodic in the L2 sense. For k ∈ L2(P2) define

(Ak)(x, y) =
∞∑
i=0

(Qi
yk −Qi+1

x ).

Set f0(x, y, s) = f(x, y, s)−Rxyf . Then

n−1/2

Nn∑
j=1

(
f(Xj−1, Xj, Sj)− P1QRf

)
= n−1/2

Nn∑
j=1

(
ARf (Xj−1, Xj) + f0(Xj−1, Xj, Sj)

)
+ op(1). (2.9)

Note that QxAk = 0 for k ∈ L2(P2). For Markov chains, the above martingale approxi-

mation goes back to Gordin [9] and Gordin and Lif̌sic [10]; see Meyn and Tweedie [21],

Section 17.4. For semi-Markov processes we refer to Greenwood and Wefelmeyer [8].

From (2.3) we obtain that the above standardized sum is asymptotically normal with

variance m−1(P2(ARf )2 + Pf 2
0 ).
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To calculate gradients of linear functionals Ef(Xj−1, Xj, Sj), we need the following

perturbation expansion due to Kartashov [15, 16, 17]:

n1/2(P1nuQnuk − P1Qk)→ P2(kBu) = P2(uAk), k ∈ L2(P2), (2.10)

where B is the adjoint of A. We will not need the explicit form of B. The perturbation

expansion implies that ϕ(Q,R) = Pf = P1QRf is differentiable for f ∈ L2(P ),

n1/2(P1nuQnuRnvf − P1QRf )→ P2(uARf ) + P (vf0), u ∈ U0, v ∈ V0. (2.11)

Here we have used that U and V are orthogonal. For a proof of (2.11) we refer to

Greenwood and Wefelmeyer [8]. Note that there we do not factor D and have local

parameters h(x, y, s) which here are written u(x, y) + v(x, y, s).

3 Model Q

In this section we consider model Q, in which we have a parametric family Qϑ for Q

and leave R unspecified. For simplicity we assume that ϑ is one-dimensional. A natural

estimator for ϑ is the maximum likelihood estimator based on Qϑ. Suppose Qϑ(x, dy)

has density qϑ(x, y) with respect to some dominating measure νQ(x, dy), and that qϑ has

derivative q̇ϑ with respect to ϑ. Write λϑ = q̇ϑ/qϑ for the score function. The maximum

likelihood estimator ϑ̂ solves the estimating equation

Nn∑
j=1

λϑ(Xj−1, Xj) = 0.

A stochastic expansion of ϑ̂ is now obtained by the usual arguments. First we recall two

well-known relations for λϑ and λ̇ϑ, namely

0 = ∂ϑ(νQqϑ) = νQq̇ϑ = Qϑλϑ,

0 = ∂ϑ(Qϑλϑ) = ∂ϑνQ(λϑqϑ) = νQ(λϑq̇ϑ + λ̇ϑqϑ) = Qϑ(λ2
ϑ + λ̇ϑ).

Write P2ϑ = P1ϑ ⊗ Qϑ and let Iϑ = P2ϑλ
2
ϑ denote Fisher information. We obtain from

the second relation that Iϑ = −P2ϑλ̇ϑ. From the law of large numbers (2.2) and (2.1)

we obtain by Taylor expansion that ϑ̂ is asymptotically linear with influence function

(mI−1
ϑ λϑ, 0):

n1/2(ϑ̂− ϑ) = mI−1
ϑ n−1/2

Nn∑
j=1

λϑ(Xj−1, Xj) + op(1). (3.1)
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From the martingale central limit theorem (2.3) we conclude that n1/2(ϑ̂− ϑ) is asymp-

totically normal with variance mI−1
ϑ .

To prove semiparametric efficiency of ϑ̂, we must interpret ϑ as a functional of (Q,R)

through ϕ(Qϑ, R) = ϑ. The local model for Qϑ is obtained by perturbing ϑ as ϑna =

ϑ + n−1/2a and Qϑ as Qϑna
.
= Qϑ(1 + n−1/2aλϑ). Hence the tangent space U0 for Q

consists of all functions of the form aλϑ, a ∈ R. The canonical gradient (g0, h0) of ϑ is

therefore of the form (a0λϑ, 0), where a0 is determined from (2.5) by

a = m−1P2ϑ(aλϑa0λϑ) = aa0m
−1Iϑ, a ∈ R.

This gives a0 = mI−1
ϑ and g0 = mI−1

ϑ λϑ. Since ϑ̂ has influence function (mI−1
ϑ λϑ, 0) by

(3.1), it is efficient by characterization (2.8). Note that ϑ̂ is adaptive with respect to R

in the sense that it remains efficient even if we know R.

Now we consider estimation of a linear functional Ef(Xj−1, Xj, Sj) = P2ϑRf with

f ∈ L2(P2ϑ ⊗R). A natural estimator is the empirical estimator

1

Nn

Nn∑
j=1

f(Xj−1, Xj, Sj).

We have ARf ∈ U and f0 ∈ V . From (2.9) we obtain that the empirical estimator is

asymptotically linear with influence function (mARf (x, y),mf0(x, y, s)) and asymptotic

variance m(P2ϑ(ARf )2 + P2ϑRf
2
0 ). If nothing were known about Q, the empirical esti-

mator would be efficient; see Greenwood and Wefelmeyer [8]. Since we have assumed a

parametric model Qϑ, we can construct better estimators exploiting the structure of the

model. We assume that the state space is the real line, and that P has Lebesgue density

p. Let p1ϑ and qϑ be the densities of P1ϑ and Qϑ. Then p2ϑ(x, y) = p1ϑ(x)qϑ(x, y) is the

density of P2ϑ. We write Rf = a/p2ϑ with

a(x, y) =

∫
p(x, y, s)ds f(x, y, s)

and estimate Rf by R̂f = â/p̂2 with kernel estimators

â(x, y) =
1

Nn

Nn∑
j=1

1

b2
k
(x−Xj−1

b
,
y −Xj

b

)
f(x, y, Sj),

p̂2(x, y) =
1

Nn

Nn∑
j=1

1

b2
k
(x−Xj−1

b
,
y −Xj

b

)
,
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where k is a mean zero density and b = bn is a bandwidth that tends to zero at a rate

to be determined later. Our estimator for P2ϑRf is P2ϑ̂R̂f with ϑ̂ a n1/2-consistent

estimator of ϑ. We prove that it is asymptotically linear if f is differentiable. Under

appropriate smoothness assumptions on p, a modified proof will cover discontinuous f ,

in particular indicator functions. To calculate the influence function of P2ϑ̂R̂f , we write

R̂f = Rf +
â− a
p̂2

− p̂2 − p2ϑ

p̂2

Rf.

Then our estimator is approximated as

P2ϑ̂R̂f
.
= P2ϑ̂Rf +

∫∫
dxdy(â(x, y)− a(x, y))−

∫∫
dxdy (p̂2(x, y)− p2ϑ(x, y))Rxyf.

Let b = n−1/4. Since the kernel k integrates to one and has mean zero, a change of

variables u = (x−Xj−1)/b and v = (x−Xj)/b and a Taylor expansion give∫∫
dxdy â(x, y) =

1

Nn

Nn∑
j=1

∫∫
dudv k(u, v)f(Xj−1 + bu,Xj + bv, Sj)

=
1

Nn

Nn∑
j=1

f(Xj−1, Xj, Sj) + op(n
−1/2). (3.2)

Similarly,∫∫
dxdy p̂2(x, y)Rxyf

=
1

Nn

Nn∑
j=1

∫∫
dudv k(u, v)

∫
R(Xj−1 + bu,Xj + bv, ds)f(Xj−1 + bu,Xj + bv, s)

=
1

Nn

Nn∑
j=1

RXj−1,Xjf + op(n
−1/2). (3.3)

With the notation f0(x, y, s) = f(x, y, s)−Rxyf , these two expansions lead to

P2ϑ̂R̂f = P2ϑ̂Rf +
1

Nn

Nn∑
j=1

f0(Xj−1, Xj, Sj) + op(n
−1/2). (3.4)

It remains to expand P2ϑ̂Rf . With Qϑna
.
= Qϑ(1 + n−1/2aλϑ) and the perturbation

expansion (2.10) for u = aλϑ and a = n1/2(ϑ̂− ϑ), a Taylor expansion gives

P2ϑ̂Rf = P2ϑRf + P2ϑ(λϑARf )(ϑ̂− ϑ) + op(n
−1/2). (3.5)
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Suppose now that ϑ̂ is efficient. Then it has influence function (mI−1
ϑ λϑ, 0) by (3.1).

Together with (3.4) and (3.5) we obtain that

n1/2(P2ϑ̂R̂f − P2ϑRf )

= mn−1/2

Nn∑
j=1

(
I−1
ϑ P2ϑ(λϑARf )λϑ(Xj−1, Xj) + f0(Xj−1, Xj, Sj)

)
+ op(1).

Hence by (2.3) our estimator is asymptotically normal with variance

m
(
I−1
ϑ (P2ϑ(λϑARf ))2 + P2ϑRf

2
0

)
.

Note that by the Cauchy–Schwarz inequality,

I−1
ϑ (P2ϑ(λϑARf ))2 ≤ P2ϑ(ARf )2.

Since the empirical estimator has asymptotic variance m(P2ϑ(ARf )2 + P2ϑRf
2
0 ), our

estimator is better unless ARf is proportional to λϑ.

Now we prove that our estimator P2ϑ̂R̂f is efficient. By the characterization (2.8)

of efficient estimators, we must show that the influence function of P2ϑ̂R̂f equals the

canonical gradient of the functional ϕ(Q,R) = P2ϑRf . Let ϑna = ϑ + n−1/2a and

Rnv
.
= R(1 + n−1/2v). Then Qϑna

.
= Qϑ(1 + n−1/2aλϑ), and the perturbation expansion

(2.11) implies

n1/2(P2ϑnaRnvf − P2ϑRf )→ aP2ϑ(λϑARf ) + P2ϑR(vf0), a ∈ R, v ∈ V.

Since R is unspecified and hence the tangent space V0 for R is V , the canonical gradient

of P2ϑRf is of the form (a0λϑ,mf0), where a0 is determined from (2.5) by

aP2ϑ(λϑARf ) = aa0m
−1Iϑ, a ∈ R.

This gives a0 = mI−1
ϑ P2ϑ(λϑARf ). Hence P2ϑ̂R̂f is efficient by characterization (2.8).

We end this section with some comments. If we set f(x, y, s) = s, we obtain an

efficient estimator for P2ϑRf = ESj = m, the mean inter-jump time. If the inter-jump

time distribution does not depend on the states, then our estimator is asymptotically

equivalent to the empirical estimator 1
Nn

∑Nn
j=1 Sj.

If the state space is discrete, we can replace R̂ = â/p̂2 by the simpler estimator
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Rf = a/p2 with

a(x, y) =
1

Nn

Nn∑
j=1

1(Xj−1 = x,Xj = y)f(x, y, Sj),

p2(x, y) =
1

Nn

Nn∑
j=1

1(Xj−1 = x,Xj = y).

The analysis of P2ϑ̂Rf then simplifies in (3.2) and (3.3). Some examples would be

estimation of P (a, b, (−∞, c]), P2ϑ(a, b), P1(a) and of ratios R(a, b, (−∞, c]) and Q(a, b).

4 Model R

In this section we consider model R, in which we have a parametric family Rϑ for R

and leave Q unspecified. Again we assume that ϑ is one-dimensional. We proceed as

in Section 3. A natural estimator for ϑ is the maximum likelihood estimator based on

Rϑ. We assume that Rϑ(x, y, ds) has density rϑ(x, y, s) with respect to some dominating

measure νR(x, y, ds), and write µϑ = ṙϑ/rϑ for the score function. We have Rϑµϑ = 0 and

Rϑ(µ2
ϑ + µ̇ϑ) = 0. In particular, the Fisher information Jϑ = P2Rϑµ

2
ϑ equals −P2Rϑµ̇ϑ.

The maximum likelihood estimator solves the estimating equation

Nn∑
j=1

µϑ(Xj−1, Xj, Sj) = 0.

As in Section 3 we obtain that ϑ̂ is asymptotically linear, now with influence function

(0,mJ−1
ϑ µϑ):

n1/2(ϑ̂− ϑ) = mJ−1
ϑ n−1/2

Nn∑
j=1

µϑ(Xj−1, Xj, Sj) + op(1). (4.1)

Hence n1/2(ϑ̂− ϑ) is asymptotically normal with variance mJ−1
ϑ .

To prove efficiency of ϑ̂, we interpret ϑ as a functional of (Q,R) through ϕ(Q,Rϑ) =

ϑ. The local model for Rϑ is described by perturbing ϑ as ϑna = ϑ + n−1/2a and Rϑ as

Rϑna
.
= Rϑ(1 + n−1/2aµϑ). So the tangent space for R consists of all functions of the

form aµϑ, a ∈ R, and the canonical gradient (g0, h0) of ϑ is of the form (0, a0µϑ), where

a0 is determined from (2.5) by

a = m−1P2Rϑ(aµϑa0µϑ) = aa0m
−1Jϑ, a ∈ R.

11



This gives a0 = mJ−1
ϑ and h0 = mJ−1

ϑ µϑ. Since ϑ̂ is asymptotically linear with influence

function (0,mJ−1
ϑ µϑ), it is efficient by characterization (2.8) and adaptive with respect

to Q.

To estimate Ef(Xj−1, Xj, Sj) = P2Rϑf , we can again use the empirical estimator.

However, a better estimator is

P̂2Rϑ̂f =
1

Nn

Nn∑
j=1

∫
Rϑ̂(Xj−1, Xj, ds)f(Xj−1, Xj, s).

Here P̂2 stands for the empirical distribution

1

Nn

Nn∑
j=1

δ(Xj−1,Xj)(dx, dy),

where δ(Xj−1,Xj) is the one-point distribution on (Xj−1, Xj). With Rϑna
.
= Rϑ(1 +

n−1/2aµϑ) and a = n1/2(ϑ̂− ϑ), a Taylor expansion gives

P̂2Rϑ̂f = P2Rϑf + P̂2Rϑ̂f − P2Rϑ̂f + P2Rϑ̂f − P2Rϑf

= P2Rϑf +
1

Nn

Nn∑
j=1

∫
Rϑ(Xj−1, Xj, ds)f(Xj−1, Xj, s)− P2Rϑf

+P2Rϑ(µϑf)(ϑ̂− ϑ) + op(n
−1/2).

Since Rϑµϑ = 0, we have P2Rϑ(µϑf) = P2Rϑ(µϑf0) and hence

n1/2(P̂2Rϑ̂f − P2Rϑf)

= mn−1/2

Nn∑
j=1

(∫
Rϑ(Xj−1, Xj, ds)f(Xj−1, Xj, s)− P2Rϑf

)
+P2Rϑ(µϑf0)(ϑ̂− ϑ) + op(1).

Suppose that ϑ̂ is efficient for ϑ. Then ϑ̂ is asymptotically linear with influence function

(0,mJ−1
ϑ µϑ); see (4.1). From the martingale approximation (2.9) we see that P̂2Rϑ̂f then

has influence function (mARϑf,mJ
−1
ϑ P2Rϑ(µϑf0)µϑ). Hence P̂2Rϑ̂f is asymptotically

normal with variance

m
(
P2(ARϑf)2 + J−1

ϑ (P2Rϑ(µϑf0))2
)
.

Note that by the Cauchy–Schwarz inequality,

J−1
ϑ (P2Rϑ(µϑf0))2 ≤ P2Rϑf

2
0 .

12



Hence our estimator is better than the empirical estimator unless f0 is proportional to

µϑ.

Now we prove that P̂2Rϑ̂f is efficient. Let ϑna = ϑ+n−1/2a and Qnu
.
= Q(1+n−1/2u).

Then Rϑna
.
= Rϑ(1 + n−1/2aµϑ), and (2.11) implies

n1/2(P2nuRϑnaf − P2Rϑf)→ P2(uARϑf) + aP2Rϑ(µϑf0), u ∈ U, a ∈ R.

Since Q is unspecified and hence the tangent space U0 for Q is U , the canonical gradient

of P2Rϑf is of the form (mARϑf, a0µϑ), where a0 is determined by

aP2Rϑ(µϑf0) = aa0m
−1Jϑ, a ∈ R.

This gives a0 = mJ−1
ϑ P2Rϑ(µϑf0). Hence P̂2Rϑ̂f is efficient by characterization (2.8).

For example, if we set f(x, y, s) = s, we obtain an efficient estimator

1

Nn

Nn∑
j=1

∫
Rϑ̂(Xj−1, Xj, ds)s

of the mean inter-jump time m = ESj. It is better than the empirical estimator
1
Nn

∑Nn
j=1 Sj unless s −

∫
Rϑ(x, y, ds)s is proportional to µϑ(x, y, s). If the inter-jump

time distribution does not depend on the states, i.e. Rϑ(x, y, ds) = Rϑ(ds), then our

estimator is equivalent to the simpler estimator
∫
Rϑ̂(ds)s, which is better than the

empirical estimator 1
Nn

∑Nn
j=1 Sj unless s−

∫
Rϑ(x, y, ds)s is proportional to µϑ(s), i.e. if

the inter-jump time distribution Rϑ is exponential with scale parameter ϑ.
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