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Abstract. An invertible causal linear process is a process which has infinite order moving average
and autoregressive representations. We assume that the coefficients in these representations depend
on a Euclidean parameter, while the corresponding innovations have an unknown centered distri-
bution with some moment restrictions. We discuss efficient estimation of differentiable functionals
in such a semiparametric model. For this we first obtain a suitable semiparametric version of local
asymptotic normality and then use Hájek’s convolution theorem to characterize efficient estimators.
Then we apply this result to construct efficient estimators of the Euclidean parameter and of linear
functionals of the innovation distribution.
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1. Introduction

An invertible causal linear process is a family {Yt : t ∈ Z} of random variables which has infinite
order moving average and autoregressive representations

Yt = Xt +
∞∑
s=1

αsXt−s, t ∈ Z,(1.1)

Yt = Xt −
∞∑
s=1

βsYt−s, t ∈ Z.(1.2)

Here the innovations {Xt : t ∈ Z} are independent and identically distributed random variables
with zero mean and finite variance. We assume that the distribution function F of the innovations
is unknown otherwise. We also assume that the coefficients α1, α2, . . . and β1, β2, . . . are summa-
ble, and that they depend on a Euclidean parameter ϑ. Of course, the coefficients β1, β2, . . . are
determined by the coefficients α1, α2, . . . . This is a semiparametric model. Examples are the clas-
sical AR(p) models, the MA(q) models and the ARMA(p,q) models. We study efficient estimation
of differentiable functionals of (ϑ, F ). To this end we first derive, in Section 2, an appropriate
semiparametric version of local asymptotic normality in the sense of Le Cam.

Estimation of ϑ is well-studied in a number of special cases. It is known that ϑ can be estimated
adaptively : There are estimators for ϑ that are asymptotically as good as the best estimator for ϑ
when F is known. In order to prove efficiency of estimators for ϑ, it is therefore enough to show local
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asymptotic normality for fixed F , i.e. parametrically, perturbing only ϑ. This is done for AR(1) by
Akahira [1], for AR(p) by Akritas and Johnson [2], and for ARMA(p,q) by Kreiss [15]. An extension
to AR(p) with regression trend is in Swensen [25], to MA(q) with regression trend in Garel [7], and to
vector ARMA(p,q) with regression trend in Hallin and Puri [9] and Garel and Hallin [8]. Nonlinear
autoregressive models are studied in Hwang and Basawa [11] and Jeganathan [13]; a heteroscedastic
generalization in Drost, Klaassen and Werker [5]. Kreiss [17, 18] considers invertible causal linear
processes (1.1) with arbitrary coefficients α1, α2, . . . and F known or known up to scale.

Here we are interested in estimating functionals which depend not only on ϑ but also on F . This
requires a semiparametric version of local asymptotic normality, perturbing both ϑ and F . Such a
result has already been obtained in special cases: for AR(1) by Huang [10], for AR(p) by Kreiss [16].
These cases are covered by the nonlinear autoregressive model considered in Koul and Schick [14].
Our proof of local asymptotic normality for linear processes relies partly on their arguments.

Section 3 briefly recalls a characterization of least dispersed regular estimators in the context of
our model. Section 4 constructs an efficient estimator for the expectation of a square-integrable
function under the innovation distribution. So far, such a result has been obtained for the AR(1)
model by Wefelmeyer [26], and for nonlinear and heteroscedastic autoregressive models by Schick
and Wefelmeyer [24]. Section 5 contains an efficient estimator for ϑ. The construction avoids
some unpleasant features of previous estimators: sample splitting, truncation of the score function,
assumption of symmetry of the innovation distribution.

Another interesting application of Section 2 is efficient estimation of the stationary law, specifi-
cally of linear functionals of this law. The construction requires space and uses additional results of
independent interest, and we give it elsewhere, Schick and Wefelmeyer [23]. In Section 6, however,
we discuss a special case which can be tackled by a different and direct method, namely efficient
estimation of moments of the stationary distribution.

2. Local asymptotic normality

In this section we prove local asymptotic normality for invertible causal linear processes. An
essential step is the approximation by nonlinear autoregressive processes of increasing order. Let
us formally introduce our model. We fix a measurable function ψ from R to R. As finite-dimensional
parameter space we take an open subset Θ of Rk. As infinite-dimensional parameter space we take
the collection F of all innovation distributions with zero mean, finite variance and finite Fisher
information for location, and for which ψ is square-integrable. The condition on ψ is needed if we
want to estimate the expectation of ψ, e.g. moments of the innovation distribution. Recall that
a distribution function F has finite Fisher information I(F ) for location if F has an absolutely
continuous density f and

(2.1) I(F ) =
∫
`2F dF <∞, where `F = f ′/f.

Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be functions from Θ into the Banach space of absolutely
summable sequences:

∞∑
s=1

|αs(ϑ)| <∞ and
∞∑
s=1

|βs(ϑ)| <∞, ϑ ∈ Θ.
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Set β0(ϑ) = 1 and α0(ϑ) = 1 for ϑ ∈ Θ. For each (ϑ, F ) in Θ× F, we let Pϑ,F denote a probability
measure for which the process {Yt : t ∈ Z} has the infinite order moving average and autoregressive
representations

Yt = Xt(ϑ) +
∞∑
s=1

αs(ϑ)Xt−s(ϑ), t ∈ Z,(2.2)

Yt = Xt(ϑ)−
∞∑
s=1

βs(ϑ)Yt−s, t ∈ Z,(2.3)

with innovations {Xt(ϑ) : t ∈ Z} that are independent and identically distributed with distribution
function F . These assumptions imply that {Yt : t ∈ Z} is a centered process with autocovariance
function

γt(ϑ, F ) = Eϑ,F (Y0, Yt) =
∫
x2 dF (x)

∞∑
s=0

αs(ϑ)αs+t(ϑ), t = 0, 1, 2, . . . .

By our assumption on α, the autocovariances are absolutely summable and

(2.4)
∞∑
s=0

|γs(ϑ, F )| ≤
∫
x2 dF (x)

( ∞∑
t=0

|αt(ϑ)|
)2
.

We assume that we can only observe the string Y0, . . . , Yn. We now single out a point τ in Θ and
an innovation distribution function G in F with density g and derive local asymptotic normality at
(τ,G) for a parametric submodel obtained by restricting the innovation distribution functions to a
subset {Fη : η ∈ ∆} of F with F0 = G and ∆ an open neighborhood of the origin in Rq. We call
the map η 7→ Fη a (q-dimensional) path (through G). For the applications in Sections 4 and 5, it
suffices to take q = 1. Since Fη belongs to F, it has finite Fisher information for location, and thus
a density, which we denote by fη. We say that the path is smooth if the following four conditions
hold:
1. The variances are continuous at the origin:

lim
η→0

∫
x2 dFη(x) =

∫
x2 dG(x).

2. The second moments of ψ are continuous at the origin:

lim
η→0

∫
ψ2(x) dFη(x) =

∫
ψ2(x) dG(x).

3. The Fisher informations are continuous at the origin:

lim
η→0

I(Fη) = I(G).

4. The map η 7→ Fη is Hellinger differentiable at the origin: There is a measurable function ζ from
R to Rq such that

∫
‖ζ‖2 dG <∞ and

(2.5)
∫ [

f1/2
η (x)− g1/2(x)− 1

2
ηT ζ(x)g1/2(x)

]2
dx = o(‖η‖2).
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The map ζ is called Hellinger derivative. It follows from Ibragimov and Has’minskii [12, Chapter
1, Lemma 7.2] that ∫

ζ dG = 0 and
∫
xζ(x) dG(x) = 0.

Let

(2.6) H = {h ∈ L2(G) :
∫
h dG = 0 and

∫
xh(x) dG(x) = 0}.

The following lemma and corollary show that H is the tangent space of F at G.

Lemma 1. For each ζ in Hq there exists a smooth path η 7→ Fη which has ζ as its Hellinger
derivative.

Proof. Fix ζ ∈ Hq. If ζ is bounded and Lipschitz, we can take dFη = (1 + η>ζ) dG for η in Rq

with ‖η‖ sufficiently small so that 1 + η>ζ is indeed a density. Otherwise we have to replace ζ by
a bounded and Lipschitz continuous version in Hq. This is achieved by first truncating ζ, then
smoothing this version and finally projecting the smoothed version back into Hq. For this fix a in
(0, 1/2) and let ϕ denote the standard normal density. For η ∈ Rq, η 6= 0, the smoothed version

ζ̄η(x) =
∫
ζ∗η (x− ‖η‖ay)ϕ(y) dy, x ∈ R,

of ζ∗η = ζ 1[‖ζ‖ ≤ ‖η‖−a] is Lipschitz (with Lipschitz constant Lη = O(‖η‖−2a)) and bounded
(‖ζ̄η‖ ≤ ‖η‖−a) and converges to ζ in quadratic mean (

∫
‖ζ̄η − ζ‖2 dG → 0 as η → 0). But

ζ̄η may not belong to Hq. Therefore we need to modify it slightly. Let γ(x) = (1, x)> and
γη(x) = (1,−‖η‖−a ∨ x ∧ ‖η‖−a)>, and put

ζη = ζ̄η −
∫
ζ̄ηγ
> dG

(∫
γηγ
> dG

)−1
γη

for η close to the origin. As
∫
ζηγ
> dG = 0, we see that ζη ∈ Hq. Moreover, we have ‖η>ζη‖ ≤

‖η‖1−a + o(‖η‖1−a) and
∫
‖ζη − ζ‖2 dG→ 0 as η → 0. Define Fη by dFη = (1 + ηζη)dG for η close

enough to 0 so that 1 + η>ζη ≥ 0. It is now easy to check that Fη is a smooth path. �

In Sections 4 and 5 we consider one-dimensional sequences rather than q-dimensional paths. For
an appropriate version of Lemma 1, set q = 1, ζ = h, η = n−1/2 and a = 1/4 in the proof of
Lemma 1 to obtain the following.

Corollary 1. For each h in H there exists a sequence 〈hn〉 in H such that

|hn| ≤ n1/8,

∫
|hn − h| dG→ 0,

and such that the distribution function Fn,h with G-density 1+n−1/2hn has finite Fisher information
I(Fn,h) which converges to I(G).

To obtain local asymptotic normality we need to impose some smoothness assumptions on the
maps α and β.
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Assumption 1. The function α is locally Lipschitz at τ : There is a constant L such that for all
ϑ in a neighborhood of τ ,

∞∑
s=1

|αs(ϑ)− αs(τ)| ≤ L‖ϑ− τ‖.

Assumption 2. The maps β1, β2, . . . are continuously differentiable with gradients β̇1, β̇2, . . . , and
for some δ > 0,

∞∑
s=1

sup
‖ϑ−τ‖<δ

‖β̇s(ϑ)‖ <∞.

We also need a condition which guarantees a good approximation of the actual innovation Xt(ϑ)
for large t by the truncated innovation defined by

(2.7) ξt(ϑ) = Yt +
t∑

s=1

βs(ϑ)Yt−s, t = 1, 2, . . . .

Note that

Eϑ,F |Xt(ϑ)− ξt(ϑ)| ≤
∫
|x| dF (x)

∞∑
s=t+1

|βs(ϑ)|
∞∑
k=0

|αk(ϑ)|,(2.8)

Eϑ,F [(Xt(ϑ)− ξt(ϑ))2] ≤
∫
x2 dF (x)

( ∞∑
s=t+1

|βs(ϑ)|
∞∑
k=0

|αk(ϑ)|
)2
.(2.9)

Call a sequence 〈ϑn〉 in Θ local (at τ) if 〈n1/2(ϑn − τ)〉 is bounded.

Assumption 3. There are functions rn from Θ into the set of positive integers such that for all
local sequences 〈ϑn〉 and 〈ϑ∗n〉,

n−1/2rn(ϑ∗n)→ 0 and n
∞∑

s=rn(ϑ∗n)+1

|βs(ϑn)| → 0.

Remark 1. We should point out that the above three assumptions are met by the AR, MA and
ARMA models under the usual assumptions. To be more transparent, let us look at the simplest
such models and give explicit formulas for α and β.

(i) Consider first the AR(1) process Yt = Xt+ϑYt−1 with |ϑ| < 1. In this case, αs(ϑ) = ϑs, while
β1(ϑ) = −ϑ and βs(ϑ) = 0 for s ≥ 2.

(ii) For the MA(1) process Yt = Xt + ϑXt−1 with |ϑ| < 1, we have α1(ϑ) = ϑ and αs(ϑ) = 0 for
s ≥ 2, while βs(ϑ) = (−ϑ)s.

(iii) Finally consider the ARMA(1,1) process Yt − ϑ1Yt−1 = Xt − ϑ2Xt−1 with Θ = {(ϑ1, ϑ2) :
ϑ1, ϑ2 ∈ (−1, 1), ϑ1 6= ϑ2}. Then αs(ϑ) = (ϑ1 − ϑ2)ϑs−1

1 and βs(ϑ) = (ϑ2 − ϑ1)ϑs−1
2 .

From these formulas for α and β it is easy to see that the above three assumptions hold.
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It follows from Assumption 2 that the maps ϑ 7→ Xt(ϑ) and ϑ 7→ ξt(ϑ) are continuously differ-
entiable in a neighborhood of τ with gradients

Ẋt(ϑ) =
∞∑
s=1

β̇s(ϑ)Yt−s and ξ̇t(ϑ) =
t∑

s=1

β̇s(ϑ)Yt−s.

We will also use the following consequences of Assumption 2.

Lemma 2. Let 〈ϑn〉 be a local sequence. Then for sn tending to infinity,
n∑

j=sn+1

Eτ,G[|ξj(ϑn)− ξj(τ)− (ϑn − τ)>ξ̇j(τ)|2] → 0,(2.10)

(n− sn)−1
n∑

j=sn+1

Eτ,G[‖ξ̇j(ϑn)− Ẋj(τ)‖2] → 0.(2.11)

Proof. The spectral norm of a non-negative definite matrix is bounded by the largest absolute row
sum. This and (2.4) show that the spectral norms of the dispersion matrices [γ|r−s|(τ,G)]r,s=0,...,t

of (Y0, . . . , Yt) under Pτ,G are bounded uniformly in t by a constant K. Using this we find that the
left-hand side of (2.10) is bounded by

Kn

n∑
j=0

|βj(ϑn)− βj(τ)− (ϑn − τ)>β̇j(τ)|2,

which tends to zero by Assumption 2. Similarly, one verifies that

(n− sn)−1
n∑

j=sn+1

Eτ,G[‖ξ̇j(ϑn)− ξ̇j(τ)‖2] ≤ K
∞∑
j=0

‖β̇j(ϑn)− β̇j(τ)‖2,

which also converges to zero by Assumption 2. Finally, we have

(n− sn)−1
n∑

j=sn+1

Eτ,G[‖ξ̇j(τ)− Ẋj(τ)‖2] ≤ K
∞∑

j=sn+1

‖β̇j(τ)‖2 → 0.

This completes the proof of (2.11). �

Note that under Pϑ,G the process {Ẋt(ϑ) : t ∈ Z} is centered with finite second moments,

Eϑ,G[Ẋ0(ϑ)] = 0 and Eϑ,G[‖Ẋ0(ϑ)‖2] <∞,

and has dispersion matrix
V (ϑ,G) = Eϑ,G[Ẋ0(ϑ)Ẋ>0 (ϑ)].

We can use this and a martingale central limit theorem to show that

Sn(ϑ,G) = n−1/2
n∑
j=1

(
Ẋj(ϑ)`G(Xj(ϑ))

ζ(Xj(ϑ))

)
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is asymptotically normal under Pϑ,G with mean vector zero and dispersion matrix

W (ϑ,G) =
[
V (ϑ,G)I(G) 0

0
∫
ζζ> dG

]
.

Let Qn,ϑ,η denote the distribution of (Y0, . . . , Yn) under Pϑ,Fη .

Theorem 1. Let 〈ϑn〉 be a local sequence, and let 〈wn〉 = 〈(u>n , v>n )>〉 be a bounded sequence in
R
k × Rq. Then

log
dQn,ϑn+n−1/2un,n−1/2vn

dQn,ϑn,0
(Y0, . . . , Yn) = w>n Sn(ϑn, G)− 1

2
w>nW (τ,G)wn + oPϑn,G(1),

L(Sn(ϑn, G)|Pϑn,G) =⇒ N(0,W (τ,G)).

Theorem 1 establishes local asymptotic normality locally uniformly in ϑ. This is in the spirit of
Jeganathan [13], Drost, Klaassen and Werker [5] and Koul and Schick [14].

To prove Theorem 1 we shall show first that the distributions Qn,ϑ,η are asymptotically equivalent
to other distributions Q̄n,ϑ,η for which local asymptotic normality is essentially known. Note that
Qn,ϑ,η has density

qn,ϑ,η(y0, . . . , yn) = Eϑ,Fη

[ n∏
j=0

fη

( j∑
i=0

βi(ϑ)yj−i +
∞∑

i=j+1

βi(ϑ)Yj−i
)]
, y0, . . . , yn ∈ R.

Since this density is hard to work with, we shall now show that it can be replaced by the more
manageable density

q̄n,ϑ,η(y0, . . . , yn) = qrn(ϑ∗n),ϑ,η(y0, . . . , yrn(ϑn))
n∏

j=rn(ϑ∗n)+1

fη

( j∑
i=0

βi(ϑ)yj−i
)
, y0, . . . , yn ∈ R,

for some fixed local sequence 〈ϑ∗n〉 and rn as in Assumption 3. Indeed, we have for every constant
C,

(2.12) sup
‖ϑ−τ‖+‖η‖≤Cn−1/2

∫
|qn,ϑ,η − q̄n,ϑ,η| dλn+1 → 0.

Here λ denotes the Lebesgue measure on the Borel sets of R and λm its m-fold product. The above
is a simple consequence of the following lemma and Assumption 3.

Lemma 3. For every ϑ ∈ Θ and η ∈ ∆,∫
|qn,ϑ,η − q̄n,ϑ,η| dλn+1 ≤ (I(Fη))1/2

n∑
j=rn(ϑ∗n)+1

Eϑ,Fη

∣∣∣ ∞∑
i=1

βj+i(ϑ)Y−i
∣∣∣.

Proof. Fix ϑ ∈ Θ and η ∈ ∆. Set

Rj =
∞∑
i=1

βj+i(ϑ)Y−i, j ≥ 0.
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Using the inequality |
∏m
i=1 ai −

∏m
i=1 bi| ≤

∑m
k=1

∏k−1
i=1 |ai||ak − bk|

∏m
j=k+1 |bj | and then the sub-

stitutions xk =
∑k

i=0 βk(ϑ)yk−i we can calculate∫
|qn,ϑ,η − q̄n,ϑ,η| dλn+1 ≤

n∑
j=rn(ϑ∗n)+1

Eϑ,Fη

∫ ∞
−∞
|fη(xj +Rj)− fη(xj)| dxj .

Since Fη has finite Fisher information, we may choose fη to be absolutely continuous and have∫
|f ′η| dλ ≤ (I(Fη))1/2. Using this and Fubini’s theorem we can bound∫ ∞

−∞
|fη(x+R)− fη(x)| dx =

∫ ∞
−∞

∣∣∣ ∫ 1

0
Rf ′η(x+ sR)ds

∣∣∣ dx ≤ (I(Fη))1/2|R|.

The desired result is now immediate. �

We also need the following result.

Lemma 4. There exists δ > 0 and a finite constant C such that for all positive integers r and
whenever ‖ϑ− τ‖+ ‖η‖ < δ,∫

|qr,ϑ,η − qr,τ,0| dλr+1 ≤ (r + 1)C(‖ϑ− τ‖+ ‖η‖).

Proof. Note that

Rj(ϑ) =
∞∑
i=1

βj+i(ϑ)Y−i =
∞∑
k=1

Φj,k(ϑ)X−k(ϑ) with Φj,k(ϑ) =
k−1∑
i=0

βj+k−i(ϑ)αi(ϑ).

Easy calculations show that, for all j ≥ 1,
∞∑
k=1

|Φj,k(ϑ)| ≤
∞∑
k=1

|βk(ϑ)|
∞∑
i=0

|αi(ϑ)|,(2.13)

∞∑
k=1

|Φj,k(ϑ)− Φj,k(τ)| ≤
∞∑
i=0

|αi(ϑ)|
∞∑
k=1

|βk(ϑ)− βk(τ)|(2.14)

+
∞∑
k=1

|βk(τ)|
∞∑
i=0

|αi(ϑ)− αi(τ)|.

Let U1, U2, . . . be independent random variables each uniformly distributed on the open interval
(0, 1). Let F−1 denote the quantile function of the distribution function F , i.e. F−1(u) = inf{s ∈
R : F (s) ≥ u} for 0 < u < 1. Then Rj(ϑ) has the same distribution under Pϑ,Fη as

R̃j(ϑ, η) =
∞∑
k=1

Φj,k(ϑ)F−1
η (Uk).

This allows us to write

qr,ϑ,η(y0, . . . , yr) = E
[ r∏
j=0

fη

( j∑
i=0

βi(ϑ)yj−i + R̃j(ϑ, η)
)]
, y0, . . . , yr ∈ R.



EFFICIENT ESTIMATION IN INVERTIBLE LINEAR PROCESSES 9

Using the fact that∫
|fη(x+ s+ t)− g(x+ s)| dx ≤

∫
|fη(x)− g(x)| dx+ (I(G))1/2|t|, s, t ∈ R,

we can now infer that∫
|qr,ϑ,η − qr,τ,0| dλr+1 ≤ (r + 1)

∫
|fη − g| dλ+ (I(G))1/2(Ar(ϑ, η) +Br(ϑ, η)),

where

Ar(ϑ, η) =
r∑
j=1

j∑
i=1

|βi(ϑ)− βi(τ)|Eϑ,η[|Yj−i|]

≤ r

∞∑
k=1

|βk(ϑ)− βk(τ)|
∞∑
i=0

|αi(ϑ)|
∫
|x| dFη(x)

and

Br(ϑ, η) =
r∑
j=0

E[|R̃j(ϑ, η)− R̃j(τ, 0)|]

≤
r∑
j=0

∞∑
k=1

(
|Φj,k(ϑ)− Φj,k(τ)|

∫
|x| dFη(x) + |Φj,k(τ)|

∫
|x||fη(x)− g(x)| dx

)
.

Here we have used the fact that∫ 1

0
|F−1
η (u)−G−1(u)| du =

∫ ∞
−∞
|Fη(x)−G(x)| dx

≤
∫ ∞

0

∫
|t|>x
|fη(t)− g(t)| dt dx

=
∫
|x||fη(x)− g(x)| dx.

The first equality is known, see for example Bickel and Freedman [3, relation (8.1)], and the last
equality follows from an application of Fubini’s theorem. To get the inequality, we have used the
fact that

∫ x
−∞(fη(t)− g(t)) dt = −

∫∞
x (fη(t)− g(t)) dt.

It follows from the properties of a regular path that∫
(1 + |x|)|fη(x)− g(x)| dx = O(‖η‖).

The desired result is now immediate in view of this, the above inequalities and Assumptions 1 and
2. �

Let Q̄n,ϑ,η denote the distribution with density q̄n,ϑ,η. It follows from (2.12) that for 〈ϑn〉 local
and n1/2ηn bounded, 〈Q̄n,ϑn,ηn〉 and 〈Qn,ϑn,ηn〉 are contiguous and

(2.15) log
dQ̄n,ϑn,ηn
dQn,ϑn,ηn

(Y0, . . . , Yn) = oPϑn,ηn (1).
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Note that Q̄n,ϑ,η is the distribution of (Y0, . . . , Yn) under a probability measure Prn(ϑ∗n),ϑ,Fη for
which {Yt : t ≤ rn(ϑ∗n)} have the same distribution as under Pϑ,Fη , and {ξt(ϑ) : t > rn(ϑ∗n)} are
independent and identically distributed with common distribution function Fη and independent of
{Yt : t ≤ rn(ϑ∗n)}. In other words, the truncated innovations {ξt(ϑ) : rn(ϑ∗n) < t ≤ n} under the
measure Pϑ,Fη become the actual innovations under the measure Prn(ϑ∗n),ϑ,Fη . Thus under these
alternative measures our observations form a nonlinear autoregressive process of order rn(ϑ∗n).
Sufficient conditions for local asymptotic normality of such models have been given in Koul and
Schick [14] if rn(ϑ∗n) equals a constant. Their conditions, however, extend easily to the present case
with rn(ϑ∗n) tending to infinity. Indeed, we have the following result.

Theorem 2. Let 〈ϑn〉 and 〈τn〉 be local sequences and 〈wn〉 = 〈(u>n , v>n )>〉 a bounded sequence in
R
k × Rq. Then, with P ∗n = Prn(ϑ∗n),ϑn,G,∫

|qrn(ϑ∗n),ϑn,n−1/2vn
− qrn(ϑ∗n),τ,0| dλrn(ϑn)+1 → 0,(2.16)

n∑
j=rn(ϑ∗n)+1

|ξj(τn)− ξj(ϑn)− (τn − ϑn)>ξ̇j(ϑn)|2 = oP ∗n (1),(2.17)

max
rn(ϑ∗n)<j≤n

n−1/2‖ξ̇j(ϑn)‖ = oP ∗n (1),(2.18)

(n− rn(ϑ∗n))−1
n∑

j=rn(ϑ∗n)+1

ξ̇j(ϑn) = oP ∗n (1),(2.19)

(n− rn(ϑ∗n))−1
n∑

j=rn(ϑ∗n)+1

ξ̇j(ϑn)ξ̇>j (ϑn) = V (τ,G) + oP ∗n (1).(2.20)

Consequently,

log
dQ̄n,ϑn+n−1/2un,n−1/2vn

dQ̄n,ϑn,0
(Y0, . . . , Yn) = w>n S̄n(ϑn, G)− 1

2
w>nW (τ,G)wn + oP ∗n (1),(2.21)

L(S̄n(ϑn, G)|P̄n,ϑn) =⇒ N(0,W (τ,G)),(2.22)

where

S̄n(ϑ,G) = (n− rn(ϑ∗n))−1/2
n∑

j=rn(ϑ∗n)+1

(
ξ̇j(ϑ)`G(ξj(ϑ))

ζ(ξj(ϑ))

)
.

Proof. We need only show that (2.16) to (2.20) hold. The remaining statements (2.21) and (2.22)
follow then as in Koul and Schick [14]. Of course, (2.16) follows from Lemma 4 and the fact that
rn(ϑ∗n)(‖ϑn − τ‖+ ‖n−1/2vn‖)→ 0 by Assumption 3.

It follows from (2.10) and (2.11) and contiguity of 〈Q̄n,τ,0〉 and 〈Qn,τ,0〉 that (2.17) to (2.20) hold
with ϑn = τ . Thus (2.21) and (2.22) hold with ϑn = τ . This yields contiguity of 〈Q̄n,ϑn,0〉 and
〈Q̄n,τ,0〉. (2.10) and (2.11) imply also (2.17) to (2.20) with P ∗n replaced by Pτ,G. This gives (2.17)
and (2.20) as 〈Q̄n,ϑn,0〉 and 〈Qn,τ,0〉 are contiguous. �
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It follows from Theorem 2 and (2.15) that the sequences 〈Qn,ϑn,ηn〉 and 〈Qn,τ,0〉 are contiguous
whenever 〈ϑn〉 is local and n1/2ηn is bounded. From this and (2.15) we obtain that

log
dQ̄n,ϑn+n−1/2un,n−1/2vn

dQ̄n,ϑn,0
(Y0, . . . , Yn)− log

dQn,ϑn+n−1/2un,n−1/2vn

dQn,ϑn,0
(Y0, . . . , Yn) = oPϑn,G(1).

Thus Theorem 1 follows if we show that

(2.23) S̄n(ϑn, G)− Sn(ϑn, G) = oPϑn,G(1).

Of course, this statement is easily verified with the help of Assumption 3 if `G and all the components
of ζ are Lipschitz continuous. The general result follows from the fact that the Lipschitz continuous
functions are dense in L2(G).

Remark 2. Theorem 2 establishes local asymptotic normality locally uniformly in ϑ. This yields
the following consequence. Under the assumptions of the above theorem, for 〈ϑn〉 local,

S̄n(ϑn, G)− S̄n(τ,G) = M(τ,G)(ϑn − τ) + oPϑ,G(1),

where M(τ,G) is the matrix consisting of the first k columns of W (τ,G). This and (2.23) yield for
such sequences 〈ϑn〉 and ϑ∗n = ϑn:

(2.24) (n− rn(ϑn))−1/2
n∑

j=rn(ϑn)+1

ζ(ξj(ϑn)) = n−1/2
n∑
j=1

ζ(Xj(τ)) + oPτ,G(1),

and, if V (τ,G) is invertible,

(2.25) Ūn(ϑn, G) = Un(τ,G) + oPτ,G(n−1/2)

with

Ūn(ϑn, G) = ϑn + (n− rn(ϑn))−1
n∑

j=rn(ϑn)+1

(V (τ,G)I(G))−1ξ̇j(ϑn)`G(ξj(ϑn)),(2.26)

Un(τ,G) = τ +
1
n

n∑
j=1

(V (τ,G)I(G))−1Ẋj(τ)`G(Xj(τ)).(2.27)

3. Characterization of efficient estimators

Let κ denote a function from Θ × F into Rm. In this section we recall a characterization of
least dispersed regular estimators of κ in the context of our model. Fix τ in Θ and G in F, let
Assumptions 1 to 3 hold and assume that V (τ,G) is positive definite. Let H denote the tangent
space (2.6) of F at G. For each t ∈ Rk fix a sequence 〈ϑn,t〉 in Θ such that n1/2(ϑn,t − τ) → t.
For each h ∈ H fix a sequence 〈hn〉 in H such that |hn| ≤ n1/8 and

∫
(hn − h)2 dG → 0, and such

that the distribution function Fn,h with G-density 1+n−1/2hn has finite Fisher information I(Fn,h)
which converges to I(G). Such a sequence exists by Corollary 1. Let Q(n)

t,h denote the distribution
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of (Y0, . . . , Yn) under Pϑn,t,Fn,h . By Theorem 1, Q(n)
t,h is locally asymptotically normal,

log
dQ

(n)
t,h

dQ
(n)
0,0

(Y0, . . . , Yn) = n−1/2
n∑
j=1

[t>Ẋj(τ)`G(Xj(τ)) + h(Xj(τ))− 1
2
σ2(t, h) + oPτ,G(1),

L
(
n−1/2

n∑
j=1

[t>Ẋj(τ)`G(Xj(τ)) + h(Xj(τ))]|Pτ,G
)

=⇒ N(0, σ2(t, h)),

with squared LAN norm

(3.1) σ2(t, h) = t>V (τ,G)I(G)t+
∫
h2 dG.

We assume that κ is differentiable at (τ,G) in the sense that there are an m× k matrix A and
a vector b ∈ Hm such that

(3.2) n1/2(κ(ϑn,t, Fn,h)− κ(τ,G))→ At+
∫
bh dG, (t, h) ∈ Rk ×H.

An estimator κ̂ of κ is called regular at (τ,G) with limit Q if Q is a distribution such that

L(n1/2(κ̂− κ(ϑn,t, Fn,h))|Pϑn,t,Fn,h) =⇒ Q, (t, h) ∈ Rk ×H.

We now express the right-hand side of (3.2) in terms of the inner product induced by the LAN
norm (3.1),

At+
∫
bh dG = A(V (τ,G)I(G))−1V (τ,G)I(G)t+

∫
bh dG.

It follows from the Hájek–LeCam convolution theorem that a regular estimator κ̂ for κ is least
dispersed at (τ,G) if and only if

(3.3) κ̂ = κ(τ,G) +
1
n

n∑
j=1

[A(V (τ,G)I(G))−1Ẋj(τ)`G(Xj(τ)) + b(Xj(τ))] + oPτ,G(n−1/2).

Also, any estimator κ̂ fulfilling (3.3) is regular. For the required semiparametric version of the
convolution theorem we refer to Bickel et al. [4, Section 3.3]; the result there is stated for the i.i.d.
case but easily seen to be valid for any locally asymptotically normal model.

4. Efficient estimators of a linear functional of the innovation distribution

In this section we construct a least dispersed regular estimator of the functional κψ defined by

κψ(ϑ, F ) =
∫
ψ dF, ϑ ∈ Θ, F ∈ F.

Fix τ in Θ and G in F, let Assumptions 1 to 3 hold and assume that V (τ,G) is positive definite. The
functional is obviously differentiable at (τ,G) with A = 0 and b = ψ∗, where ψ∗ is the projection
of ψ onto H:

ψ∗(x) = ψ(x)−
∫
ψ dG− c∗x, x ∈ R,
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with

c∗ =
∫
xψ(x) dG(x)∫
x2 dG(x)

.

Hence, by characterization (3.3), an estimator ψ̂n of the functional κψ is least dispersed and regular
at (τ,G) if and only if

(4.1) ψ̂n =
∫
ψ dG+

1
n

n∑
j=1

ψ∗(Xj(τ)) + oPτ,G(n−1/2).

It suggests itself to construct such an estimator as in the following theorem. By an estimator of
the Euclidean parameter we mean a sequence 〈ϑ̃n〉 with ϑ̃n = Tn(Y0, . . . , Yn) for some measurable
function Tn from R

n+1 into Θ. Call ϑ̃n discretized if cn1/2ϑ̃n takes values in Zk for some positive
c. Call it n1/2-consistent at (τ,G) if n1/2(ϑ̃n − τ) = OPτ,G(1). Each estimator n1/2-consistent at
(τ,G) has an obvious discretized n1/2-consistent modification.

Theorem 3. Let ϑ̃n be a discretized estimator of the Euclidean parameter that is n1/2-consistent
at (τ,G). Define

ψ̃n(ϑ) = (n− rn(ϑ))−1
n∑

j=rn(ϑ)+1

[ψ(ξj(ϑ))− ĉn(ϑ)ξj(ϑ)], ϑ ∈ Θ,

ĉn(ϑ) =

∑n
j=rn(ϑ)+1 ξj(ϑ)ψ(ξj(ϑ))∑n

j=rn(ϑ)+1 ξ
2
j (ϑ)

, ϑ ∈ Θ.

Then ψ̃n(ϑ̃n) satisfies (4.1) and is therefore a least dispersed and regular estimator of κψ at (τ,G).

Proof. Since the estimator ϑ̃n is discrete and n1/2-consistent at (τ,G), it suffices to show that the
“estimator” ψ̃n(ϑn) satisfies (4.1) for every local sequence 〈ϑn〉. Fix such a local sequence 〈ϑn〉. In
view of (2.24) with ζ = ψ∗, it suffices to show that

ψ̃n(ϑn) =
∫
ψ dG+ (n− rn(ϑn))−1

n∑
j=rn(ϑn)+1

ψ∗(ξj(ϑn)) + oPτ,G(n−1/2).

This is equivalent to

(ĉn(ϑn)− c∗)(n− rn(ϑn))−1
n∑

j=rn(ϑn)+1

ξj(ϑn) = oPτ,G(n−1/2).

Using contiguity, we can verify the latter under the sequence 〈P̄n〉 = 〈Prn(ϑn),ϑn,G〉. Since the
variables ξrn(ϑn)+1(ϑn), . . . , ξn(ϑn) are independent and identically distributed under P̄n, we obtain

(n− rn(ϑn))−1
n∑

j=rn(ϑn)+1

ξj(ϑn) = OP̄n(n−1/2)

and
ĉn(ϑn) = c∗ + oP̄n(1),
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which yields the desired result. �

Example 1. Suppose we want to estimate the m-th moment of the error distribution for some
m > 1. Then we need to take ψ(x) = xm. The least dispersed regular estimator in this case has
the simple form

µ̂n,m −
µ̂n,m+1

µ̂n,2
µ̂n,1

where

(4.2) µ̂n,ν =
1

n− rn(ϑ̃n)

n∑
j=rn(ϑ̃n)+1

ξνj (ϑ̃n), ν = 1, 2, . . . .

Example 2. An important example is given by the choice ψ(x) = 1[x ≤ t], for which κψ(ϑ, F ) =
F (t) is the value of the distribution function F at t. Here t is a fixed real number. The corresponding
least dispersed regular estimator is given by F̂n(t, ϑ̃n) with ϑ̃n as in Theorem 3 and

F̂n(t, ϑ) = (n− rn(ϑ))−1
n∑

j=rn(ϑ)+1

(
1[ξj(ϑ) ≤ t]− ĉn(t, ϑ)ξj(ϑ)

)
with

ĉn(t, ϑ) =

∑n
j=rn(ϑ)+1 ξj(ϑ)1[ξj(ϑ) ≤ t]∑n

j=rn(ϑ)+1 ξ
2
j (ϑ)

.

Of course, F̂n(t, ϑ) is just an improved version of the empirical estimator based on the pseudo-
innovations ξrn(ϑ)+1(ϑ), . . . , ξn(ϑ) that incorporates the constraint that the innovations have zero
mean. See Schick and Wefelmeyer [24] for a variant of this result for nonlinear autoregression
models.

It follows from Theorem 3 that

n1/2|F̂n(t, ϑ̃n)− Fn(t)| = oPτ,G(1),

where

Fn(t) =
1
n

n∑
j=1

(
1[Xj(τ) ≤ t]− c∗(t)Xj(τ)

)
with c∗(t) =

∫
x1[x ≤ t] dG(x)∫

x2 dG(x)
.

We shall now strengthen this to uniform convergence.
Note that the maps t 7→ F̂n(t, ϑ), Fn and G have obvious extensions to [−∞,∞]. It is easy

to check that the process {n1/2(Fn(t) − G(t)) : t ∈ [−∞,∞]}, viewed as element of the space
D([−∞,∞]) endowed with the Skorohod topology, converges in distribution under Pτ,G to a cen-
tered continuous Gaussian process with covariance function

(s, t) 7→ G(s ∧ t)−G(s)G(t)− c∗(s)c∗(t)
∫
x2 dG(x).

Let Fn,∗(t, ϑ) denote the version of F̂n(t, ϑ) obtained by replacing ĉn(t, ϑ) by c∗(t). A similar
argument as for Fn shows that the process {n1/2(Fn,∗(t, ϑn) − G(t)) : t ∈ [−∞,∞]} converges in
distribution under P̄n,ϑn = Prn(ϑn),ϑn,G to the same Gaussian process whenever 〈ϑn〉 is local, and
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is therefore tight under Pτ,G by contiguity. Finally, a simple argument shows that for every local
〈ϑn〉,

sup
t∈R
|ĉn(t, ϑn)− c∗(t)| = oP̄n,ϑn (1).

From this we can conclude that for every local 〈ϑn〉,

sup
t∈R

n1/2|F̂n(t, ϑn)− Fn,∗(t, ϑn)| = oP̄n,ϑn (1).

We obtain from the above that

sup
t∈R

n1/2|F̂n(t, ϑ̃n)− Fn(t)| = oPτ,G(1).

Thus 〈F̂n(t, ϑ̃n)〉 is also a least dispersed and regular estimator of the infinite dimensional functional
(ϑ, F ) 7→ F at (τ,G). See Schick and Susarla [22] and Bickel et al. [4, Section 5.2] for appropriate
infinite-dimensional versions of the convolution theorem.

5. Efficient estimation of the Euclidean parameter

Fix τ in Θ and G in F, let Assumptions 1 to 3 hold and assume that V (τ,G) is positive defi-
nite. We also assume that a preliminary n1/2-consistent estimator of the Euclidean parameter is
available. In this section we construct a least dispersed regular estimator of the Euclidean param-
eter. The functional associated with the Euclidean parameter maps (ϑ, F ) to ϑ. This functional is
differentiable at (τ,G) with A the k ×K identity matrix and b = 0. By characterization (3.3), an
estimator ϑ̂n of the Euclidean parameter is least dispersed and regular at (τ,G) if and only if

(5.1) ϑ̂n = Un(τ,G) + oPτ,G(n−1/2),

where Un(τ,G) is defined in (2.27).
Such estimators have been constructed by Kreiss [15, 16], Drost, Klaassen and Werker [5] and

Koul and Schick [14] in special cases under various assumptions. They all require the availability of
preliminary n1/2-consistent estimators and use Le Cam’s discretization technique. We shall follow
this approach as well. Our construction does not need additional assumptions and does not require
truncation arguments as used in Koul and Schick [14], or sample splitting techniques as used in
Koul and Schick [14] and Drost, Klaassen and Werker [5], or symmetry of the innovation density
as in Jeganathan [13].

As we will be using a discretized version of the preliminary estimator, it suffices to construct
functions un from Θ× Rn+1 into Rd such that, with Ûn(ϑ) = un(ϑ, Y0, . . . , Yn) for ϑ ∈ Θ, we have
for every local sequence 〈ϑn〉:

(5.2) Ûn(ϑn) = Un(τ,G) + oPτ,G(n−1/2).

From this one immediately obtains that ϑ̂n = Ûn(ϑ̃n) satisfies (5.1) for every discretized n1/2-
consistent estimator ϑ̃n. In view of Remark 2 and contiguity, relation (5.2) is equivalent to

(5.3) Ûn(ϑn) = Ūn(ϑn, G) + oP̄n,ϑn (n−1/2),
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with Ūn(ϑn, G) as in (2.26) and P̄n,ϑn = Prn(ϑn),ϑn,G. This suggests to take

(5.4) Ûn(ϑ) = ϑ+ (n− rn(ϑ))−1
n∑

j=rn(ϑ)+1

(V̂n(ϑ)În(ϑ))−1ξ̇j(ϑ)L̂n,ϑ(ξj(ϑ)),

where

În(ϑ) = (n− rn(ϑ))−1
n∑

j=rn(ϑ)+1

L̂2
n,ϑ(ξj(ϑ)),(5.5)

V̂n(ϑ) = (n− rn(ϑ))−1
n∑

j=rn(ϑ)+1

ξ̇j(ϑ)ξ̇j(ϑ)>,(5.6)

and where

(5.7) L̂n,ϑ(x) = Ln−rn(ϑ)(x; ξrn(ϑ)+1(ϑ), . . . , ξn(ϑ))

is an estimator of `G(x) constructed from the truncated innovations ξrn(ϑ)+1(ϑ), . . . , ξn(ϑ). We
shall take

(5.8) Lm(x; y1, . . . , ym) =

∑m
j=1 a

−2
m ρ′(a−1

m (x− yj))
mbm +

∑m
j=1 a

−1
m ρ(a−1

m (x− yj))
, x, y1, . . . , ym ∈ R,

where am and bm are positive constants and ρ is a symmetric continuously differentiable density
with finite second moment and such that |ρ′(x)| ≤ Ck(x) and |ρ′′(x)| ≤ Cρ(x) for all x ∈ R and
some constant C. A possible choice is the logistic density.

Theorem 4. Let ϑ̃n be a preliminary estimator of the Euclidean parameter that is discretized and
n1/2-consistent at (τ,G). Let Ûn(ϑ) be defined as in (5.4) to (5.8) with an → 0, bn → 0 and
na4

nb
2
n → ∞. Then Ûn(ϑ̃n) satisfies (5.1). This estimator is thus a least dispersed and regular

estimator of the Euclidean parameter at (τ,G). It is also locally asymptotically minimax adaptive
at (τ,G) in the sense of Fabian and Hannan [6].

To prove this theorem we shall rely on the following lemma.

Lemma 5. Let {εt : t ∈ Z} be independent random variables with common distribution function
G, and let cm,j(i) with m, j, i = 1, 2, . . . and j ≤ m be real numbers such that

K = sup
m,j

∞∑
i=1

|cm,j(i)| <∞.

Set

ζm,j =
∞∑
i=1

cm,j(i)εj−i.
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Then, as m→∞,

∆m = E
[ ∫

Lm(x; ε1, . . . , εm)− `G(x))2 dG(x)
]
→ 0,(5.9)

1
m

m∑
j=1

L2
m(εj ; ε1, . . . , εm) = I(G) + op(1),(5.10)

m−1/2
m∑
j=1

ζm,j

[
Lm(εj ; ε1, . . . , εm)−

∫
Lm(x; ε1, . . . , εm) dG(x)− `G(εj)

]
= op(1).(5.11)

Proof. The first two results follow from Schick [20, 3.7. Example 1]. Now let

L̃m(x) = Lm(x; ε1, . . . , εm)−
∫
Lm(z; ε1, . . . , εm) dG(z)− `G(x), x ∈ R.

For distinct elements i1, . . . , ir of {1, . . . ,m}, let L̃m,i1,...,ir be defined as L̃m but with the variables
εi1 , . . . , εir replaced by εm+1, . . . , εm+r. It follows from Schick [20] that

(5.12) |L̃m(x)− L̃m,i1,...,ir(x)| ≤ rdm, where dm = 4C sup
t∈R
|ρ(t)|m−1a−2

m b−1
m .

Thus it is easy to see that (5.11) is equivalent to

(5.13) Dm = m−1/2
m∑
j=1

ζm,jL̃m,j(εj) = op(1).

The second moment of the left-hand side is

E[D2
m] =

1
m

m∑
i=1

m∑
j=1

∞∑
k=1

∞∑
l=1

cm,i(k)cm,j(l)E[εi−kεj−kL̃m,i(εi)L̃m,j(εj)].

Using (5.12) and the inequality a2 ≤ 2b2 + 2(a− b)2 we get

E[ε2
l L̃

2
m,j(εj)] ≤ 2E[ε2

1]
(
E
[ ∫

L̃2
m,j,l(x) dG(x)

]
+ 4d2

m

)
≤ 2E[ε2

1][∆m + 4d2
m], l < j ≤ m,

and with the Cauchy–Schwarz inequality,

|E[εkεlL̃m,i(εi)L̃m,j(εj)]| ≤ 2E[ε2
1][∆m + 4d2

m], k < i ≤ m, l < j ≤ m.

If all the indices are distinct we can do even better. Then, utilizing
∫
L̃m,i1,...,ir(x) dG(x) = 0, we

get
E[εkεlL̃m,i(εi)L̃m,j(εj)] = E[εkεl(L̃m,i(εi)− L̃m,i,j(εi))(L̃m,j(εj)− L̃m,j,i(εj))]

and obtain

|E[εkεlL̃m,i(εi)L̃m,j(εj)]| ≤ 4d2
mE[ε2

1], k < i < j ≤ m, l < j, l 6= i.

Using these bounds we arrive at

E[D2
m] ≤ (8K2md2

m + 4K2∆m)E[ε2
1]→ 0.

This implies (5.13). �
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Proof of Theorem 4. Fix a local sequence 〈ϑn〉. We need only prove (5.3). Abbreviate rn(ϑn) by r
and n− rn(ϑn) by m. Set

Yn = (Y0, . . . , Yn), Zn = (ξr+1(ϑn), . . . , ξn(ϑn)), Xn = (Xr+1(ϑn), . . . , Xn(ϑn)).

Keep in mind that the sequences 〈L(Yn | Pr,ϑn,G)〉, 〈L(Yn | Pϑn,G)〉 and 〈L(Yn | Pτ,G)〉 are
contiguous.

Since the variables ξr+1(ϑn), . . . , ξn(ϑn) are independent with common distribution function G
under Pr,ϑn,G, it follows from the previous lemma that

În(ϑn) = I(G) + oPr,ϑn,G(1).

Using this, (2.20) and contiguity, we see that the desired (5.3) is implied by

(5.14) (n− r)−1
n∑

j=r+1

ξ̇j(ϑn)[Lm(ξj(ϑn); Zn)− `G(ξj(ϑn))] = oPϑn,G(n−1/2).

Our next goal is to show that (5.14) is equivalent to the following version in which we have replaced
truncated residuals by actual residuals:

(5.15) (n− r)−1
n∑

j=r+1

ξ̇j(ϑn)[Lm(Xj(ϑn); Xn)− `G(Xj(ϑn)] = oPϑn,G(n−1/2).

For this we need the bound
n∑

j=r+1

|Lm(x; Zn)− Lm(x; Xn)|2 ≤ B(a−4
m + a−5

m b−1
m )

n∑
j=r+1

|ξj(ϑn)−Xj(ϑn)|2

for some constant B, which follows from inequalities (L1) and (L3) in Schick [21]. Now use (2.23),
(2.9), Assumption 3 and the Cauchy–Schwarz inequality to conclude the equivalence of (5.14)
and (5.15). Using the identity ξ̇j(ϑn) =

∑j−1
i=0 β̇j−i(ϑn)Yi and (2.4) we find by straightforward

calculations that

(5.16) Eϑn,G

(∥∥∥ n∑
j=r+1

ξ̇j(ϑn)
∥∥∥2)
≤ 2n

( ∞∑
i=1

‖β̇i(ϑn)‖
)2
∫
x2 dG(x)

( ∞∑
j=0

|αj(ϑn)|
)2

= O(1).

Since the innovations X1(ϑn), . . . , Xn(ϑn) are independent with common distribution function G
under Pϑn,G, we obtain from (5.9) that

∫
Lm(x; Xn) dG(x) = oPϑn,G(1). This and (5.16) show that

(5.15) is equivalent to

(n− r)−1
n∑

j=r+1

ξ̇j(ϑn)
[
Lm(Xj(ϑn); Xn)−

∫
Lm(x; Xn) dG(x)− `G(Xj(ϑn))

]
= oPϑn,G(n−1/2).

But this follows by applying (5.11) to the components of the left-hand side. This application is
justified by the fact that

(5.17) ξ̇j(ϑn) =
∞∑
s=1

δj,s(ϑn)Xj−s(ϑn) with δj,s(ϑn) =
s∧j∑
i=0

β̇i(ϑn)αs−i(ϑn)
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under Pϑn,G and that

(5.18)
∞∑
s=1

‖δj,s(ϑn)‖ ≤
∞∑
i=1

‖β̇i(ϑn)‖
∞∑
t=1

|αt(ϑn)|.

6. Estimating moments of the stationary distribution

In this section we show how the results of the previous sections can be used to construct least
dispersed regular estimators of moments of the stationary distribution. Note that the first moment
of the stationary distribution is zero. Thus we focus on estimating them-th moment for some integer
m greater than one. We choose F as in Section 2, with ψ(x) = xm. Then the error distributions
have finite 2m-th moments. We shall write µν(F ) for the ν-th moment of a distribution F in F,
ν = 1, . . . ,m. We shall also require that the functions Aν from Θ into R defined by

Aν(ϑ) =
∞∑
j=0

ανj (ϑ), ϑ ∈ Θ,

are differentiable for ν = 2, . . . ,m.
The functional associated with the m-th moment of the stationary distribution is

κ(ϑ, F ) = Eϑ,F (Y m
1 ), ϑ ∈ Θ, F ∈ F.

It follows from the moving average representation (2.2) that

κ(ϑ, F ) = χ(A2(ϑ), . . . , Am(ϑ), µ2(F ), . . . , µm(F )),

for some continuously differentiable function χ from R
2m−2 to R. For example, for m = 2 we have

κ(ϑ, F ) = A2(ϑ)µ2(F ), ϑ ∈ Θ, F ∈ F,

while for m = 4 we have

κ(ϑ, F ) = A4(ϑ)(µ4(F )− 3µ2(F )2) + 3(A2(ϑ)µ2(F ))2, ϑ ∈ Θ, F ∈ F.

We shall also assume that we have at our disposal a least dispersed regular estimator ϑ̂n of the
Euclidean parameter, and consequently also a discretized n1/2-consistent estimator ϑ̃n of the Eu-
clidean parameter. We have already seen in Example 1 that a least dispersed regular estimators of
the ν-th moment of the error distribution is given by

µ̂∗n,ν = µ̂n,ν −
µ̂n,ν+1

µ̂n,2
µ̂n,1, ν = 2, . . . ,m,

where µ̂n,ν is defined in (4.2). In view of the differentiability of the functions Aν , a least dispersed
regular estimators of Aν is given by Aν(ϑ̂n), ν = 2, . . . , n. By the differentiability of χ we obtain
now that

χ(A2(ϑ̂n), . . . , Am(ϑ̂n), µ̂∗n,2, . . . , µ̂
∗
n,m)

is a least dispersed regular estimator of κ.
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