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Abstract

The marginal density of a first order moving average process can be written as convolu-
tion of two innovation densities. Saavedra & Cao (2000) propose to estimate the marginal
density by plugging in kernel density estimators for the innovation densities, based on esti-
mated innovations. They obtain that for an appropriate choice of bandwidth the variance
of their estimator decreases at the rate 1/n.

Their estimator can be interpreted as a specific U-statistic. We suggest a slightly
simplified U-statistic as estimator of the marginal density, prove that it is asymptotically
normal at the same rate, and describe the asymptotic variance explicitly. We show that the
estimator is asymptotically efficient if no structural assumptions are made on the innovation
density. For innovation densities known to have mean zero or to be symmetric, we describe
improvements of our estimator which are again asymptotically efficient.

Key words: Efficient estimator, least dispersed estimator, plug-in estimator, semiparamet-
ric model, time series.

Running head: Root n consistent density estimators.

1 Introduction

Suppose X1, . . . , Xn are observations from an MA(1) process Xt = εt − ϑεt−1, where εt are
i.i.d. innovations with density f and finite second moment, and |ϑ| < 1. We want to estimate
the density of Xt, say g, at a fixed point x. A widely used estimator for g(x) is the kernel
estimator

g(x) =
1
n

n∑
j=1

Kb(x−Xj),

where Kb(u) = K(u/b)/b with kernel function K and bandwidth b > 0. Note that

g(x) =
∫
f(x+ ϑy)f(y) dy.
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Motivated by this representation, Saavedra & Cao (1999a, 2000) propose the plug-in estimator

ĝSC(x) =
∫
f̂(x+ ϑ̂y)f̂(y) dy,

where ϑ̂ is n1/2-consistent and f̂ is a kernel estimator based on estimated innovations ε̂j . They
obtain that their estimator is n1/2-consistent for the bandwidth b = n−2/5. For this they as-
sume that the innovations have mean zero. They also use rather strong regularity conditions.
Saavedra & Cao (1999b) compare the mean integrated squared error of their estimator and
the usual kernel estimator. We note that for continuous-time processes, corresponding consis-
tency rates for kernel-type estimators are more common. Castellana & Leadbetter (1986) give
conditions for such results to hold in general stationary processes; see also Bosq (1993, 1995),
Blanke & Bosq (1997), Bosq et al. (1999) and Veretennikov (1999). Kutoyants (1997, 1998,
1999) obtains efficiency of estimators for the density of diffusion processes.

The parametric convergence rate n−1/2 for a density estimator may seem striking but
becomes plausible once one notes that g(x) is represented as an integral functional of the
innovation density f . For models with i.i.d. observations it is well known that certain integral
functionals of densities and their derivatives are estimated at the rate n−1/2 if appropriate
kernel estimators for the density are plugged into the functional. Similar results hold for
integral functionals of regression functions and quantile regression functions. Some recent
references are Birgé & Massart (1995), Tsybakov & van der Meulen (1996), Chaudhuri et
al. (1997) and Efromovich & Samarov (2000). Almost sure representations are obtained by
Eggermont & LaRiccia (1999,2001) and Mason (2003). Note that to estimate g(x), we must
also plug in an estimator for ϑ.

The estimator ĝSC(x) can be written

ĝSC(x) =
1
n2b

n∑
i,j=1

Lϑ̂

(x− ε̂i + ϑ̂ε̂j
b

)
with Lϑ(u) =

∫
K(u+ ϑv)K(v) dv. A closely related estimator is the U-statistic

ĝ(x) =
1

n(n− 1)

n∑
i,j=1
i6=j

Kb(x− ε̂i + ϑ̂ε̂j).

This is essentially ĝSC(x) with the random kernel Lϑ̂ replaced by K. In this paper we prove
that n1/2(ĝ(x) − g(x)) is asymptotically normal, and calculate the asymptotic variance. Our
result is valid for bandwidths b = n−a with a strictly between 1/6 and 1/8. We prove it under
much weaker regularity conditions. We also do not assume that the innovations have mean
zero.

Of course, these results are valid only if ϑ 6= 0 because for ϑ = 0 the model reduces to i.i.d.
observations Xj = εj for which it is well-known that no n1/2-consistent estimators exist.
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A slightly more difficult argument would show that ĝSC(x), with random kernel Lϑ̂, is
asymptotically equivalent to our estimator (under weaker regularity conditions, for our choices
of bandwidth, and without the assumption of mean zero innovations).

Since kernel estimators are not n1/2-consistent, there is no attainable variance bound for
them. Here we have n1/2-consistency, and hence a theoretically attainable variance bound. We
prove that our estimator attains the variance bound if we choose an efficient estimator for ϑ.
More precisely, we then have semiparametric efficiency as described in Bickel et al. (1998) for
i.i.d. observations.

If we have additional restrictions on the innovation distributions, such as mean zero or
symmetry, we can improve our estimator. For symmetric innovations, we symmetrize the
estimator as

1
4n(n− 1)

∑
i6=j

(
Kb(x− ε̂i + ϑ̂ε̂j) +Kb(x+ ε̂i + ϑ̂ε̂j) +Kb(x− ε̂i − ϑ̂ε̂j) +Kb(x+ ε̂i − ϑ̂ε̂j)

)
.

For mean zero innovations as in Saavedra & Cao (1999a, 2000), improvements are possible by
subtracting from the estimator for g(x) a term of the form â 1

n

∑n
j=1 ε̂j with properly chosen

random coefficient â.
Estimators of other functionals of MA processes have been considered before. Efficient

estimators of ϑ under various assumptions are in Kreiss (1987), Jeganathan (1995), Drost et
al. (1997) and Schick & Wefelmeyer (2000b). Kreiss (1990) also estimates the coefficients of
infinite-order MA processes. Efficient estimators of linear functionals of the stationary law
are in Schick & Wefelmeyer (2002c). The innovation distribution function of infinite-order MA
processes is estimated in Kreiss (1991). Schick & Wefelmeyer (2002d) prove a functional central
limit theorem and efficiency of a version of ĝSC for higher order moving average processes.

In Section 2 we state our results. In Section 3 we present the results of a small simulation
study. Appendix 1 contains auxiliary results on U-statistics and related statistics, Appendices
2 and 3 contain proofs of Theorems 1 and 2.

2 Results

We consider an MA(1) process Xt = εt− ϑεt−1, where 0 < |ϑ| < 1 and εt are i.i.d. innovations
with distribution function F , density f , mean µ and finite variance σ2. The innovations εt
have representation

εt =
∞∑
s=0

ϑsXt−s; (1)

see e.g. Brockwell & Davis (2002, Section 3.1). For later use, we also introduce the derivative
of εt with respect to ϑ,

ε̇t =
∞∑
s=1

sϑs−1Xt−s =
∞∑
s=1

ϑs−1εt−s. (2)
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Its expectation is

E[ε̇] =
∞∑
s=1

sϑs−1(1− ϑ)µ =
µ

1− ϑ
,

and its variance is

Var[ε̇] =
σ2

(1− ϑ)(1 + ϑ)
.

Let g denote the density of Xt. We want to estimate g at a fixed point x, based on obser-
vations X1, . . . , Xn. Let ϑ̂ be a n1/2-consistent estimator of ϑ. Representation (1) motivates
estimating εj by

ε̂j =
r∑
s=0

ϑ̂sXj−s, j = r + 1, . . . , n,

for some integer r. We modify the estimator given in the Introduction correspondingly and
estimate g(x) by the U-statistic

ĝ(x) =
1

(n− r)(n− r − 1)

n∑
i,j=r+1
i6=j

Kb(x− ε̂i + ϑ̂ε̂j),

where Kb(u) = K(u/b)/b for some kernel function K and some bandwidth b > 0.

Condition 1
The kernel K has compact support, is twice continuously differentiable, and satisfies∫

K(u) du = 1 and
∫
uiK(u) du = 0 for i = 1, 2, 3.

Condition 2
The innovation density f has an absolutely continuous derivative, and the almost everywhere
derivative f ′′ of f ′ is integrable and bounded.

The density of ϑε is fϑ(u) = f(u/ϑ)/|ϑ|. We have the representations

g(x) =
∫
f(x+ ϑy)f(y) dy =

∫
fϑ(y − x)f(y) dy.

The derivatives of g with respect to ϑ and x are

ġ(x) =
∫
yf ′(x+ ϑy)f(y) dy,

g′(x) =
∫
f ′(x+ ϑy)f(y) dy.

We set
ψ(y) = f(x+ ϑy) + fϑ(y − x)− 2g(x), y ∈ R.
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Theorem 1
Assume Conditions 1 and 2. Let ϑ̂ be a n1/2-consistent estimator of ϑ. Let the bandwidth b

fulfill nb6 →∞ and nb8 → 0. Let r/ log n→∞ and r/n→ 0. Then

n1/2(ĝ(x)− g(x)) = n−1/2
n∑
j=1

ψ(εj) +
(
ġ(x)− µg′(x)

)
n1/2(ϑ̂− ϑ) + op(1).

If f also has a finite third moment and K has a bounded third derivative, then we can relax
nb6 →∞ to nb4 →∞.

Typical estimators ϑ̂ of ϑ are such that n1/2(ϑ̂ − ϑ) is asymptotically normal with mean
zero and variance ζ2, say, and asymptotically independent of n−1/2

∑n
j=1 ψ(εj). In this case,

it follows from Theorem 1 that n1/2(ĝ(x)− g(x)) is asymptotically normal with mean zero and
variance

τ2 =
∫
ψ2dF + ζ2

(
ġ(x)− µg′(x)

)2
.

We assume two derivatives for f . The corresponding kernel estimator has optimal band-
width proportional to n−1/5. For our plug-in estimator, a larger bandwidth, with rate between
n−1/6 and n−1/8, say n−1/7, is needed, unless we require the additional assumptions at the
end of Theorem 1. Because we have two derivatives for f , we have four derivatives for g. The
optimal bandwidth for a kernel estimator of g would therefore be proportional to n−1/9.

We show now that ĝ(x) is efficient for g(x) if ϑ̂ is efficient for ϑ. This is an instance of a
parametric “plug-in principle”: If κ̂(ϑ) is an efficient estimator for some functional κ of (ϑ, f)
when ϑ is known, and ϑ̂ is efficient for ϑ, then the plug-in estimator κ̂(ϑ̂) will be efficient when
ϑ is not known. We refer to Klaassen & Putter (2002) for sufficient conditions in the i.i.d.
case. We make the following assumption.

Condition 3
The innovation density f has finite Fisher information for location. This means that f is
absolutely continuous and

J =
∫
`2(y)f(y) dy <∞, where ` = f ′/f.

Then we can write

g′(x) =
∫
`(y)fϑ(y − x)f(y) dy = − 1

ϑ

∫
`(y)f(x+ ϑy)f(y) dy. (3)

The first identity follows from a substitution, while the second follows from integration by parts.
It is well-known that the MA(1) model is locally asymptotically normal under Condition 3.
For various versions see Kreiss (1987), Jeganathan (1995), Drost et al. (1997), Koul & Schick
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(1997) and Schick & Wefelmeyer (2002b). Here we work with the following version. Introduce
a local model by perturbing ϑ as ϑnc = ϑ+ n−1/2c, and f as fnh such that∫ (

n1/2
(
f

1/2
nh (y)− f1/2(y)

)
− 1

2
h(y)f1/2(y)

)2
dy → 0.

For convenience, we choose fnh such that, in addition, ‖fnh − f‖∞ → 0. For an explicit
construction of fnh see Schick & Wefelmeyer (2002b). Here the local parameter c is real, and
h belongs to

L2,0(F ) = {h ∈ L2(F ) :
∫
hdF = 0}.

Write Pn and Pnch for the joint distribution of (X1, . . . , Xn) under (ϑ, f) and (ϑnc, fnh), re-
spectively. Then the local log-likelihood has stochastic approximation

log
dPnch
dPn

= n−1/2
n∑
j=1

(
cε̇j`(εj) + h(εj)

)
(4)

−1
2

(
c2E[ε̇2]J + 2cE[ε̇]

∫
`hdF +

∫
h2dF

)
+ op(1).

The inner product induced by (4) is

((c, h), (c1, h1)) = E[(cε̇`(ε) + h(ε))(c1ε̇`(ε) + h1(ε))]

= cc1E[ε̇2]J + cE[ε̇]
∫
`h1dF + c1E[ε̇]

∫
`hdF +

∫
hh1dF.

A real-valued functional κ is differentiable at (ϑ, f) if there exist c∗ ∈ R and h∗ ∈ L2,0(F ) such
that

n1/2
(
κ(ϑnc, fnh)− κ(ϑ, f)

)
→ cc∗ +

∫
hh∗dF for all (c, h) ∈ R× L2,0(F ).

To characterize efficient estimators of κ, we need to express the right-hand side in terms of the
above inner product, i.e., we must find (cκ, hκ) ∈ R× L2,0(F ) such that

cc∗ +
∫
hh∗dF = ((c, h), (cκ, hκ)) for all (c, h) ∈ R× L2,0(F ).

It is easy to check that

cκ =
c∗ − E[ε̇]

∫
`h∗dF

Var[ε̇]J
=

(1− ϑ2)c∗ − (1 + ϑ)µ
∫
`h∗dF

σ2J
,

hκ = h∗ − cκE[ε̇]` = h∗ − cκ
µ

1− ϑ
`.

An estimator κ̂ of κ is called regular at (ϑ, f) with limit L if L is a random variable such that

n1/2(κ̂− κ(ϑnc, fnh))⇒ L under Pnch for all (c, h) ∈ R× L2,0(F ).

6



The convolution theorem says that L is the convolution of a normal random variable with
mean zero and variance ‖(cκ, hκ)‖2 = ((cκ, hκ), (cκ, hκ)), and some other random variable.
This justifies calling κ̂ efficient for κ at (ϑ, f) if κ̂ is regular and asymptotically normal with
mean zero and variance ‖(cκ, hκ)‖2. It also follows from the convolution theorem that κ̂ is
efficient if and only if

n1/2(κ̂− κ(ϑ, f)) = n−1/2
n∑
j=1

(
cκε̇j`(εj) + hκ(εj)

)
+ op(1).

Here we have used a time series version of the convolution theorem from Bickel et al. (1998,
Section 3.3).

For efficient estimation of g(x), we interpret g(x) as functional of (ϑ, f) via

g(x) =
∫
f(x+ ϑy)f(y) dy =: κg(ϑ, f).

Theorem 2
Assume Condition 3. Then the functional κg is differentiable with c∗ = ġ(x) and h∗ = ψ:

n1/2
(∫

fnh(x+ ϑncy)fnh(y) dy −
∫
f(x+ ϑy)f(y) dy

)
→ cġ(x) +

∫
hψdF.

Using (3) we find that
∫
`ψ dF = (1 − ϑ)g′(x). Thus, by Theorem 2, the pair (cκ, hκ) for

the functional κ = κg is given by

cκ = (ġ(x)− µg′(x))
1− ϑ2

σ2J
and hκ = ψ − cκ

µ

1− ϑ
`.

Consequently, an estimator ĝ(x) of g(x) is efficient if and only if

n1/2(ĝ(x)− g(x)) = n−1/2
n∑
j=1

(
ψ(εj) + (ġ(x)− µg′(x))

1− ϑ2

σ2J

(
ε̇j −

µ

1− ϑ

)
`(εj)

)
+ op(1).

Such an estimator has asymptotic variance

τ2
∗ =

∫
ψ2dF + (ġ(x)− µg′(x))2 1− ϑ2

σ2J
. (5)

From this we see that our kernel estimator ĝ(x) is efficient if

n1/2(ϑ̂− ϑ) = n−1/2
n∑
j=1

1− ϑ2

σ2J

(
ε̇j −

µ

1− ϑ

)
`(εj) + op(1). (6)

This is the characterization of an efficient estimator of ϑ. Indeed, the functional κ(ϑ, f) = ϑ

is differentiable with c∗ = 1 and h∗ = 0, which yields

cκ =
1− ϑ2

σ2J
and hκ = −cκ

µ

1− ϑ
`.
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Efficient estimators of ϑ were constructed in Kreiss (1987) under the assumption of symmetry,
and in Drost et al. (1997), Koul & Schick (1997) and Schick & Wefelmeyer (2002b) under
the assumption that µ = 0. These constructions can be adapted to our slightly more general
situation. Just replace ξ̇j(ϑ) by ξ̇j(ϑ)− 1

n−rn(ϑ)

∑n
i=rn(ϑ)+1 ξ̇i(ϑ) in Schick & Wefelmeyer (2002b,

(5.4) and (5.6)).

Remark 1. We have made no structural assumptions on f . If such are made, the local
parameter h must be restricted correspondingly, to some subset H, say, of L2,0(F ). Then the
above h∗ and hκ must be chosen in H rather than in L2,0(F ).

For example, if f has expectation zero, then H = {h ∈ L2,0(F ) :
∫
yh(y)f(y) dy = 0}, and

cκ and hκ must be replaced by

c0
κ = ġ(x)

1− ϑ2

σ2J
and h0

κ(y) = ψ(y)− a∗y,

with

a∗ =
∫
zψ(z)f(z) dz

σ2
. (7)

If f is known to be symmetric about zero, thenH = {h ∈ L2,0 : h is symmetric about zero},
and cκ and hκ must be replaced by

csκ = ġ(x)
1− ϑ2

σ2J
and hsκ(y) =

1
2

(ψ(y) + ψ(−y)).

In both submodels we have µ = 0, and the stochastic approximation (6) reduces to

n1/2(ϑ̂− ϑ) = n−1/2
n∑
j=1

1− ϑ2

σ2J
ε̇j`(εj) + op(1).

It can be checked that this characterizes efficient estimators in both submodels. Hence an
estimator ϑ̂ satisfying (6) is already efficient in these submodels. The estimator ϑ̂ mentioned
above is thus efficient in the submodels as well. Under symmetry it would however be better
to use a symmetrized kernel estimator in the construction of ϑ̂; see Kreiss (1987), Jeganathan
(1995), Drost et al. (1997) and Koul & Schick (1997).

In the following remarks we construct improved estimators for g(x) in submodels obtained
by restricting the innovation density f .

Remark 2. Suppose that f is known to have mean zero, as in Saavedra & Cao (1999a,
2000). In this case, the estimators ĝ(x) and ĝSC(x) for g(x) are not efficient any more. To see
this, consider the class of estimators

ĝa(x) = ĝ(x)− a 1
n− r

n∑
j=r+1

ε̂j ,
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with ϑ̂ taken to be an efficient estimator for ϑ. As µ = 0, we have E[ε̇] = 0 and, from (13)
below and r/n→ 0,

1
n− r

n∑
j=r+1

ε̂j =
1

n− r

n∑
j=r+1

εj + (ϑ̂− ϑ)
1

n− r

n∑
j=r+1

ε̇j + op(n−1/2) =
1
n

n∑
j=1

εj + op(n−1/2).

Hence we obtain

n1/2(ĝa(x)− g(x)) = n−1/2
n∑
j=1

(
ψ(εj)− aεj + ġ(x)

1− ϑ2

σ2J
ε̇j`(εj)

)
+ op(1).

Thus the asymptotic variance of n1/2(ĝa(x)− g(x)) is

τ2(a) =
∫

(ψ(y)− ay)2f(y) dy + ġ(x)2 1− ϑ2

σ2J

which is uniquely minimized by a = a∗ as in (7), with minimal value

τ2(a∗) = τ2(0)− a2
∗σ

2 = τ2
∗ − a2

∗σ
2.

This shows that ĝa∗(x) has smaller asymptotic variance than ĝ(x). The constant a∗ depends
on ϑ and f and must be estimated. If â∗ is a consistent estimator for a∗, then ĝâ∗(x) is
asymptotically equivalent to ĝa∗(x) and therefore better than ĝ(x). Furthermore,

n1/2(ĝâ∗(x)− g(x)) = n−1/2
n∑
j=1

(
ψ(εj)− a∗εj + ġ(x)

1− ϑ2

σ2J
ε̇j`(εj)

)
+ op(1).

It follows from Remark 1 that ĝâ∗(x) is efficient for g(x) in the restricted model.
Efficiency results for such corrections by “estimators of zero” under linear constraints like

E[ε] = 0 have a long history. See Levit (1975) for the i.i.d. case, Wefelmeyer (1994) for
AR(1), Schick & Wefelmeyer (2002a,b,c) for more general autoregressive and linear processes,
and Müller et al. (2001, 2002) for nonparametric Markov chain models and nonparametric
regression.

Remark 3. Suppose f is known to be symmetric about zero. Then −εt is distributed as εt,
and µ = 0. Hence we can use the symmetrized estimator

1
4(n− r + 1)(n− r)

n∑
i,j=r+1
i6=j

(
Kb(x− ε̂i + ϑ̂ε̂j) +Kb(x+ ε̂i + ϑ̂ε̂j)

+Kb(x− ε̂i − ϑ̂ε̂j) +Kb(x+ ε̂i − ϑ̂ε̂j)
)

with ϑ̂ chosen to be efficient in this restricted model. Under the assumptions of Theorem 1,
this estimator satisfies

n1/2(ĝs(x)− g(x)) = n−1/2
n∑
j=1

(1
2

(ψ(εj) + ψ(−εj)) + ġ(x)
1− ϑ2

σ2J
ε̇j`(εj)

)
+ op(1).

By Remark 1, the symmetrized estimator ĝs(x) is efficient for g(x) under symmetry.
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3 Simulations

In this section we report the results of a simulation study in which we compare the estimator
ĝ(x) with the usual kernel estimator g(x). We restrict ourselves to standard normal innovations,
to two choices of parameter values ϑ = .3, .7, three arguments x = 0, .5, 1, and sample sizes
n = 30, 60. Even for these small sample sizes, ĝ(x) turns out to be noticeably better.

We have used the kernel K(x) = (3− x2) exp(−x2/2)/(2
√

2π). As estimator of ϑ we have
used an approximate minimizer of

∑n
j=r+1(εj,r(ϑ))2, with εj,r(ϑ) =

∑r
s=0 ϑ

sXj−s, namely

ϑ̂ = ϑ̃−
∑n

j=r+1 ε̇j,r(ϑ̃)εj,r(ϑ̃)∑n
j=r+1(ε̇j,r(ϑ̃))2

,

where ϑ̃ is the moment estimator defined as the solution of

ϑ̃

1 + ϑ̃2
=
(
− 1

2

)
∨
∑n

j=2Xj−1Xj∑n
j=2X

2
j−1

∧ 1
2
.

This equation is an empirical version of E(X1X0)/E(X2
0 ) = ϑ/(1+ϑ2). Here, of course, ε̇j,r(ϑ)

denotes the derivative of εj,r(ϑ) with respect to ϑ. On the basis of preliminary simulations we
have chosen r = 3.

Table 1 goes approximately here

In Table 1 we report the simulated mean square errors times 105 based on 20,000 repetitions
for several choices of bandwidth b. For each bandwidth, our estimator ĝ(x) has smaller mean
square error than the kernel estimator. The improvement is more pronounced for larger values
of ϑ. It is around ten percent for ϑ = .3, and around 50 percent for ϑ = .7. The kernel
estimator is known to be sensitive to the choice of bandwidth. For the small sample sizes
considered here, this appears to be true also for our estimator. Simulations not reported here
indicate that our estimator becomes less sensitive to the choice of bandwidth for larger sample
sizes. This is consistent with the asymptotic theory, which shows that the asymptotic variance
of our estimator is independent of the bandwidth.

4 Concluding remarks

In a linear time series driven by independent innovations, the stationary density can be ex-
pressed as a smooth function of the innovation density and the parameters. This suggests
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estimating the stationary density by a plug-in estimator, which replaces the innovation den-
sity and the parameters by estimators. By the plug-in principle we expect that the resulting
estimator can converge at the parametric rate, even though the estimator of the innovation
density has a slower, nonparametric, rate of convergence. In this paper we have shown that
this is indeed the case in a moving average process of order one. We expect our approach
to work more generally for invertible linear time series models or for nonlinear autoregressive
models. A simulation study has shown that the improvement is noticeable already for small
sample sizes. Thus our estimator constitutes a practically useful alternative to the usual kernel
estimators.
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Appendix 1: Auxiliary results

This appendix contains some lemmas which will be used in the proof of Theorem 1. Let εt, t ∈ Z, be
i.i.d. with distribution function F , mean µ and finite variance. Let kn(x, y) be F ×F -square-integrable.
First we study the asymptotic behavior of the U-statistic

Un =
1

n(n− 1)

n∑
i,j=1
i6=j

kn(εi, εj).

Denote its mean by

νn =
∫
kndF × F =

∫
kn(y, z)dF (y)dF (z).

Set
kn1(y) =

∫
kn(y, z)dF (z)− νn, kn2(z) =

∫
kn(y, z)dF (y)− νn.

Lemma 1
Suppose νn → ν for some ν in R, and assume that∫

k2
ndF × F = o(n2) and

∫
k2
nidF = o(n), i = 1, 2. (8)
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Then Un = ν + op(1).

Proof. We have the Hoeffding decomposition Un = νn + Un1 + Un2 +Rn, where

Uni =
1
n

n∑
j=1

kni(εj)− νn,

Rn =
1

n(n− 1)

∑
i 6=j

(
kn(εi, εj)− kn1(εi)− kn2(εj) + νn

)
.

We have n(n− 1)E[R2
n] ≤

∫
k2
ndF ×F = o(n2) and nE[U2

ni] ≤
∫
k2
nidF = o(n). Hence Uni = op(1) and

Rn = op(1). The desired result is now immediate.

Lemma 2
Suppose that
(a) there exist a ν in R such that n1/2(νn − ν)→ 0,
(b) there are functions γ1 and γ2 in L2(F ) such that

∫
(kni − γi)2dF → 0, i = 1, 2, and

(c)
∫
k2
ndF × F = o(n).

Then

n1/2(Un − ν) = n−1/2
n∑
j=1

(
γ1(εj) + γ2(εj)− 2ν

)
+ op(1).

Proof. Consider the Hoeffding decomposition in the proof of Lemma 1. We have n1/2Rn = op(1) since
n(n− 1)E[R2

n] ≤
∫
k2
ndF ×F = o(n) by (c). It follows from (a) and (b) that

∫
γidF = ν and then that

n1/2Uni = n−1/2
n∑
j=1

(γi(εj)− ν) + op(1).

The above and (a) now yield the desired result.

Next we consider the statistic

Wn =
1

n(n− 1)

n∑
i,j=1
i6=j

kn(εi, εj)
∞∑
s=1

βsεi−s with
∞∑
s=1

|βs| <∞.

Lemma 3
Suppose νn → ν for some ν in R, and∫

k2
n(y, z)(1 + y2 + z2)dF (y)dF (z) = o(n). (9)

Then

Wn = νµ
∞∑
s=1

βs + op(1).

Proof. We can write Wn = W̃n + Unµ
∑∞
s=1 βs with

W̃n =
1

n(n− 1)

∑
i 6=j

kn(εi, εj)
∞∑
s=1

βs(εi−s − µ).
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The second moment of W̃n is

1
n2(n− 1)2

∞∑
s=1

βs

∞∑
s′=1

βs′
∑
i 6=j

∑
i′ 6=j′

E[kn(εi, εj)(εi−s − µ)kn(εi′ , εj′)(εi′−s′ − µ)].

Note that the expectations appearing in this sum are zero if either i − s does not equal one of j, i′,
j′, i′ − s′, or i′ − s′ does not equal one of j′, i, j, i − s. Otherwise, each expectation is bounded by a
multiple of the left-hand side of (9). Since, for fixed s and s′, at most 7n(n− 1) +n2 +n(n− 1)2 ≤ 7n3

terms are nonzero, the second moment of W̃n is of order 1
n (
∑∞
s=1 |βs|)2o(n) = o(1). This shows that

W̃n = op(1), and the desired result follows since Un = ν + op(1) by Lemma 1, which applies because
(9) implies (8).

Appendix 2: Proof of Theorem 1

To simplify notation, set (n)r = (n − r)(n − r − 1), and write
∑∗ for the double sum extending over

i, j = r + 1, . . . , n with i 6= j. We introduce

g̃(x) =
1

(n)r

∑∗
Kb(x− εi + ϑεj + (ϑ̂− ϑ)(εj − ε̇i + ϑε̇j)),

g(x) =
1

(n)r

∑∗
Kb(x− εi + ϑεj).

The desired expansion of ĝ(x) follows if we show that

n1/2(ĝ(x)− g̃(x)) = op(1), (10)

n1/2(g̃(x)− g(x)) =
(
ġ(x)− µg′(x)

)
n1/2(ϑ̂− ϑ) + op(1), (11)

n1/2(g(x)− g(x)) = n−1/2
n∑
j=1

ψ(εj) + op(1). (12)

Proof of (10). The key to (10) is the following expansion:

n∑
j=r+1

∣∣ε̂j − εj − (ϑ̂− ϑ)ε̇j
∣∣ = Op(1). (13)

To this end, recall the representations for ε̂j , εj and ε̇j . The left-hand side of (13) can be bounded by
T1 + T2 + |ϑ̂− ϑ|T3 with

T1 =
n∑

j=r+1

r∑
s=0

|ϑ̂s − ϑs − (ϑ̂− ϑ)sϑs−1||Xj−s|,

T2 =
n∑

j=r+1

∣∣∣ ∞∑
s=r+1

ϑsXj−s

∣∣∣, T3 =
n∑

j=r+1

∣∣∣ ∞∑
s=r+1

sϑs−1Xj−s

∣∣∣.
By choice of r,

E[T3] ≤
n∑

j=r+1

∞∑
s=r+1

s|ϑ|s−1E[|X0|] = E[|X0|]O((n− r)r|ϑ|r) = o(1)
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and, similarly, E[T2] = o(1). Since ϑ̂ is n1/2-consistent, there is a constant ρ < 1 such that the
probability of |ϑ̂| > ρ tends to zero. On the event where |ϑ̂| ≤ ρ we get

T1 ≤ (ϑ̂− ϑ)2
n∑

j=r+1

r∑
s=0

s(s− 1)ρs−2|Xj−s| ≤ (ϑ̂− ϑ)2
∞∑
s=0

s2ρs−2
n∑
j=1

|Xj | = Op(1).

This proves (13).
The difference between the corresponding arguments of Kb in ĝ(x) and g̃(x) is

x− ε̂i + ϑ̂ε̂j −
(
x− εi + ϑεj + (ϑ̂− ϑ)(εj − ε̇i + ϑε̇j)

)
= −

(
ε̂i − εi − (ϑ̂− ϑ)ε̇i

)
+ ϑ̂

(
ε̂j − εj − (ϑ̂− ϑ)ε̇j

)
+ (ϑ̂− ϑ)2ε̇j .

Since K has a bounded derivative, we can bound the absolute value of the left-hand side of (10) by

n1/2b−2‖K ′‖∞
(

(1 + |ϑ̂|) 1
n− r

n∑
j=r+1

∣∣ε̂j − εj − (ϑ̂− ϑ)ε̇j
∣∣+ (ϑ̂− ϑ)2 1

n− r

n∑
i=r+1

|ε̇i|
)
.

This bound converges to zero in probability by the n1/2-consistency of ϑ̂, relation (13) and n−1/2b−2 → 0.
This completes the proof of (10).

Proof of (11). Let

U =
1

(n)r

∑∗
K ′b(x− εi + ϑεj)εj ,

W1 =
1

(n)r

∑∗
K ′b(x− εi + ϑεj)ε̇i,

W2 =
1

(n)r

∑∗
K ′b(x− εi + ϑεj)ε̇j .

Then a Taylor expansion and the n1/2-consistency of ϑ̂ yield

S =
∣∣∣n1/2(g̃(x)− g(x))− n1/2(ϑ̂− ϑ)(U −W1 + ϑW2)

∣∣∣
≤ n1/2b−3‖K ′′‖∞

1
(n)r

∑∗
(ϑ̂− ϑ)2(εj − ε̇i + ϑε̇j)2 = Op(n−1/2b−3) = op(1).

This is the only place where we need that nb6 → ∞. Let us now show that we can obtain S = op(1)
under nb4 → ∞ if we also require f to have a finite third moment and K to possess a bounded third
derivative. In this case we use a higher order Taylor expansion to obtain the bound

S ≤ 1
(n)r

∑∗(
n1/2(ϑ̂− ϑ)2V 2

i,j |K ′′b (x− εi + ϑεj)|+ n1/2|ϑ̂− ϑ|3b−4‖K ′′′‖∞V 3
i,j

)
with Vi,j = |εj − ε̇i + ϑε̇j |. In view of the n1/2-consistency of ϑ̂ we obtain S = O(n−1/2b−2) if we show
that that E[V 3

i,j ] < C and Di,j = E[V 2
i,j |K ′′b (x− εi + ϑεj)|] ≤ Db−2 for positive constants C and D and

all i 6= j. The former is easy. For the latter recall that K has compact support. This implies that K ′′

has compact support and shows that |K ′′b | ≤ ab−31[−Lb,Lb] for finite constants a and L. For j < i, εi is
independent of (Vi,j , εj) and we get

Di,j = E
[
V 2
i,j

∫
|K ′′b (x− y + ϑεj)|f(y) dy

]
≤ 2ab−2L‖f‖∞E[V 2

i,j ].
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For j > i, εj is independent of (εi, ε̇i, ε̇j), and we get

Di,j = E
[ ∫

(y − ε̇i + ϑε̇j)2|K ′′b (x− εi + ϑy)|f(y) dy
]
≤ 6ab−2L‖f‖∞E[(|x− εi|+ Lb)2 + ε̇2

i + ε̇2
j ].

This establishes the desired bound Di,j ≤ Db−2.
To deal with U , W1 and W2, we will utilize Lemmas 1 and 3. For this we study

νn,a =
∫∫

K ′b(x− y + ϑz)zaf(y)f(z) dydz =
1
b

∫∫
K ′(u)f(x+ ϑz − bu)zaf(z) dudz.

for a = 0, 1. We have
∫
K ′(u) du = 0 and

∫
uK ′(u) du = −1. By a Taylor expansion

νn,a =
∫
f ′(x+ ϑz)zaf(z) dz −

∫∫
uK ′(u)

∫ 1

0

(
f ′(x+ ϑz − tbu)− f ′(x+ ϑz)

)
dt zaf(z) dudz.

Since f ′ is bounded and continuous, an application of the Lebesgue dominated convergence theorem
gives νn,a →

∫
f ′(x+ ϑz)zaf(z) dz. The limit is g′(x) for a = 0, and ġ(x) for a = 1. An application of

Lemma 1 with kn(y, z) = K ′b(x − y + ϑz)z yields U = ġ(x) + op(1); while an application of Lemma 3
with kn(y, z) = K ′b(x−y+ϑz), together with the representation (2), yields W1 = µg′(x)/(1−ϑ)+op(1)
and W2 = µg′(x)/(1− ϑ) + op(1). Hence U −W1 + ϑW2 = ġ(x)− µg′(x) + op(1), and (11) is proved.

Proof of (12). We rely on Lemma 2 to derive (12). We begin by studying

νn =
∫∫

Kb(x− y + ϑz)f(y)f(z) dydz =
∫∫

K(u)f(x+ ϑz − bu)f(z) dudz.

We will use twice
f(a+ h)− f(a)− hf ′(a) = h2

∫∫
0<s<t<1

f ′′(a+ sth) dsdt,

together with the properties of K and a substitution, to obtain

νn − g(x) = b2
∫∫

u2K(u)
∫∫

0<s<t<1

f ′′(x+ ϑz − stbu) dsdtduf(z) dz

= b2
∫∫

u2K(u)
∫∫

0<s<t<1

f ′′(v)fϑ(v − x+ stbu) dsdtdudv

= b4
∫∫

u4K(u)f ′′(v)
∫∫

0<s<t<1

s2t2
∫∫

0<p<q<1

f ′′ϑ (v − x+ pqstbu) dpdqdsdtdudv.

Since f ′′ is bounded and integrable,

νn = g(x) +O(b4) = g(x) + o(n−1/2).

This is (a) of Lemma 2 with ν = g(x). We have

kn1(y) =
∫
Kb(x− y + ϑz) f(z) dz =

∫
fϑ(y − x+ bu)K(u) du,

kn2(z) =
∫
Kb(x− y + ϑz) f(y) dy =

∫
f(x+ ϑz − bu)K(u) du.

Since f ′ is bounded by Condition 2, relation (b) of Lemma 2 holds with γ1(y) = fϑ(y − x) and
γ2(y) = f(x+ ϑy). An application of Lemma 2 yields (12).
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Appendix 3: Proof of Theorem 2

Since f has finite Fisher information, f is bounded, and its almost everywhere derivative f ′ is in L1.
We will repeatedly use the fact that for ϕ ∈ L1 and an → a 6= 0,∫

|ϕ(any)− ϕ(ay)| dy → 0. (14)

Since Hellinger differentiability implies L1-differentiability, we have

n1/2

∫ ∣∣fnh(y)− f(y)− n−1/2h(y)f(y)
∣∣ dy → 0. (15)

Using the properties of f , we get

n1/2

∫ (
f(x+ ϑncy)− f(x+ ϑy)

)
f(y) dy → c

∫
yf ′(x+ ϑy)f(y) dy. (16)

Since f is bounded and continuous,∫
f(x+ ϑncy)h(y)f(y) dy →

∫
f(x+ ϑy)h(y)f(y) dy. (17)

Since f is bounded, (15) gives

n1/2

∫
f(x+ ϑncy)

(
fnh(y)− f(y)− n−1/2h(y)f(y)

)
dy → 0. (18)

Combining (17) and (18), we get

n1/2

∫
f(x+ ϑncy)(fnh(y)− f(y)) dy →

∫
f(x+ ϑy)h(y)f(y) dy. (19)

Since ‖fnh − f‖∞ → 0, ∫
(hf)(x+ ϑncy)(fnh(y)− f(y)) dy → 0. (20)

Also, ‖fnh‖∞ is bounded. Thus the substitution u = x+ ϑncy and (15) give

n1/2

∫ (
fnh(x+ ϑncy)− f(x+ ϑncy)− n−1/2(hf)(x+ ϑncy)

)
fnh(y) dy → 0. (21)

Finally, since f is bounded and ϑnc → ϑ, we obtain from (14), applied with ϕ = hf ,∣∣∣∣∫ ((hf)(x+ ϑncy)− (hf)(x+ ϑy)
)
f(y) dy

∣∣∣∣ (22)

≤ ‖f‖∞
∫ ∣∣(hf)(x+ ϑncy)− (hf)(x+ ϑy)f(y)

∣∣dy → 0.

Combining (20), (21) and (22),

n1/2

∫ (
fnh(x+ ϑncy)− f(x+ ϑncy)

)
fnh(y) dy →

∫
h(x+ ϑy)f(x+ ϑy)f(y) dy. (23)

Now Theorem 2 follows from (16), (19) and (23).
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Table 1: 105× MSE of the estimators g and ĝ, for selected arguments x, parameter values ϑ,
bandwidths b and sample sizes n.

x = 0 n = 30 n = 60

b .8 .9 1.0 1.1 1.2 .7 .8 .9 1.0 1.1

ϑ = .3 g 295 224 189 187 217 211 150 115 106 124

ĝ 273 205 169 165 192 183 131 100 92 110

b .6 .7 .8 .9 1.0 .5 .6 .7 .8 .9

ϑ = .7 g 687 582 520 492 494 491 416 375 360 368

ĝ 332 302 286 287 308 198 193 196 209 235

x = .5 n = 30 n = 60

b .9 1.0 1.1 1.2 1.3 .8 .9 1.0 1.1 1.2

ϑ = .3 g 199 159 140 143 165 133 99 82 81 97

ĝ 177 141 124 127 149 113 86 71 71 87

b .7 .8 .9 1.0 1.1 .6 .7 .8 .9 1.0

ϑ = .7 g 434 372 337 324 330 308 265 242 236 244

ĝ 208 193 188 193 211 130 127 131 141 161

x = 1 n = 30 n = 60

b 1.3 1.4 1.5 1.6 1.7 1.2 1.3 1.4 1.5 1.6

ϑ = .3 g 62 51 45 44 49 38 30 25 24 27

ĝ 57 47 41 41 45 34 27 23 22 25

b 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4

ϑ = .7 g 90 77 70 68 71 58 49 45 44 47

ĝ 43 39 39 40 46 24 23 23 26 31
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