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Abstract

Consider an ergodic Markov chain on the real line, with parametric models for
the conditional mean and variance of the transition distribution. Such a setting is
an instance of a quasi-likelihood model. The customary estimator for the param-
eter is the maximum quasi-likelihood estimator. It is not efficient, but as good as
the best estimator that ignores the parametric model for the conditional variance.
We construct two efficient estimators. One is a convex combination of solutions
of two estimating equations, the other a weighted nonlinear one-step least squares
estimator, with weights involving predictors for the third and fourth centered con-
ditional moments of the transition distribution. Additional restrictions on the
model can lead to further improvement. We illustrate this with an autoregressive
model whose error variance is related to the autoregression parameter.

1 Introduction

According to Wedderburn (1974), a quasi-likelihood model is defined by a relation be-
tween mean and variance of the observations. A simple example are i.i.d. observations
with known coefficient of variation, but otherwise unknown distribution; efficient esti-
mators for the mean are constructed in Bickel et al. (1993, p. 68). A related regression
model is considered by Amemiya (1973). A rich class of quasi-likelihood models is given
by generalized linear models with a restriction on the variance of the response. The
basic reference is McCullagh and Nelder (1989). Some surveys may be found in Hinkley
et al. (1991).

For discrete-time stochastic processes, quasi-likelihood models are defined by speci-
fying parametric models for the conditional mean and variance processes given the past.
Examples are the Markov regression models of Zeger and Qaqish (1988), see also Huhtala
(1992). For continuous time, a quasi-likelihood model is described by parametric models
for the compensator and the predictable quadratic variation of a semimartingale. There
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is a considerable literature on quasi-likelihood models for stochastic processes. Several
surveys are collected in Godambe (1991).

We are interested in efficient estimation of the parameter. To keep the model sim-
ple and the assumptions specific, we restrict attention to Markov chains and to one-
dimensional parameters. A version of our approach for general semimartingales is out-
lined in Wefelmeyer (1993). In the Introduction we describe some results on estimating
functions in quasi-likelihood models for Markov chains. They are essentially known in
other settings and easy to derive. Hence we do not prove them. The results will motivate
our construction of an efficient estimator.

Let Xy, ..., X, be observations from an ergodic real-valued Markov chain with tran-
sition distribution @Q(z,dy) and invariant distribution 7(dy). Suppose that we have
parametric models for the conditional mean, or autoregression function, and the condi-
tional variance,

(1.1) /yQ(x,dy) = my(z),
(1.2 [(v=mo@) Q. dy) = vala),

but that the transition distribution is unspecified otherwise.
A large class of estimators for ¢ is obtained as solutions of estimating equations of
the form

n

(13) Z’U]ﬁ(Xzfl)(Xz — m,y(Xi,l)) =0.

i=1

Under appropriate conditions, the corresponding estimator is asymptotically normal

with variance )
W(wﬁvg)/(w(w,gm;g)) :

Here 7(f) is short for the expectation [ f(z)m(dz), and prime denotes differentiation
with respect to ). Consistency and asymptotic normality may be proved along the lines
of Klimko and Nelson (1987).

By the Schwarz inequality, the variance is minimized for wy = m}/vy. The minimal
variance is

(1.4) 1/7r(m;92/v,9).

A version of this result for general discrete-time processes is in Godambe (1985). For
continuous time see Thavaneswaran and Thompson (1986), Hutton and Nelson (1986)
and Godambe and Heyde (1987). The denominator m(mf /vg) in (1.4) is called the quasi-
Fisher information. The optimal estimator is the mazimum quasi-likelithood estimator.

It solves
n

ZU@(Xifl)ilm%(Xifl) (Xz — mg(Xi,l)) =0.

=1



A different, stronger, optimality property of the maximum quasi-likelihood estima-
tor is obtained in Wefelmeyer (1994c): The estimator attains the asymptotic variance
bound for regular estimators which ignore the parametric model (1.2) for the conditional
variance. This implies that the maximum quasi-likelihood estimator does not use the
information about ¥ in (1.2), even though its definition requires (1.2). Crowder (1987)
gives two examples in which there is much more information in (1.2) than in (1.1).
Amemiya (1973), Firth (1987) and Hill and Tsai (1988) consider the loss in efficiency
under the assumption that the underlying model is a specific parametric model. Then
an efficient estimator is given by the maximum likelihood estimator.

If the transition distribution is unspecified except for (1.1) and (1.2), how can we
find a better estimator than the maximum quasi-likelihood estimator? Note first that
the estimators obtained from (1.3) are consistent because X; — my(X;_1) are martingale
increments by condition (1.1). From condition (1.2) we obtain martingale increments

(Xi = ma(Xi 1)) — valXi ).

These lead to further consistent estimating equations besides (1.3),
L 2

(1.5) S wa(Xiss) ((Xi —mp(Xi1))” - W(X,-_l)) ~ 0.
i1

It suggests itself to combine estimating equations (1.3) and (1.5),

(1.6) <wm(Xi—1)(Xi — mﬁ(Xi—l))

+wU(XZ,1)((XZ — m,9(Xi,1))2 — Uﬁ(Xil))> = 0.

Under appropriate conditions, the corresponding estimator is asymptotically normal
with variance

2
(1.7) w(wfnvg + 2w Wy s + w2 (p — vg))/(w(wmmﬁ,\ + wvv’ﬁ)) .
The variance depends on the centered conditional moments

J .
(18) w@) = [(y=mo@) Q. dy),  j =34,

We will not express the dependence of y; and similar terms on (). The variance (1.7) is
minimized for
Wy, = Cy Ay, w, = Cy ' By,

with

(1.9) Ay = my(pa —vj) — vpps,
(1.10) By = wvjvg —mypus,

(1.11) Cy = (ha—vjy)vg — pi.
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By the Schwarz inequality, Cy(x) is positive unless Q(z, -) is degenerate. The minimum
variance is

(1.12) 1/7(Cy (Agmiy + Byv))).

By the Schwarz inequality, this is strictly smaller than the asymptotic variance (1.4)
of the maximum quasi-likelihood estimator unless By = 0. Hence the maximum quasi-
likelihood estimator is inefficient except when By = 0.

The optimal estimator solves

n

(1.13) ZC@(X1_1)_1 (Aﬂ(Xi—l)(Xi - mﬂ(Xi—l))

i=1

+By(Xi1) ((X,- —mp(Xia)) — W(X,-_l))> — 0.

The weights depend, through p3 and g4, on the unknown transition distribution ).
Hence the estimator is, in general, not useful. Suppose, for the moment, that besides
(1.1) and (1.2) we have parametric models for the third and fourth centered conditional
moments,
ps(@) = pao(z),  pa(x) = pae ().

Such a model is called an extended quasi-likelihood model. Consider estimating equations
(1.6), with weights w,, and w, possibly depending on . Under appropriate conditions,
the corresponding estimator is again asymptotically normal. Its asymptotic variance
equals again (1.7), of course now with ps = usg and pg = pgy. The variance is again
minimized for the estimator obtained from (1.13). Now the weights depend on @ through
1 only. The optimal estimator is the extended mazrimum quasi-likelihood estimator. The
optimal weights are determined by Crowder (1986, 1987) for independent observations,
and by Godambe (1987) and Godambe and Thompson (1989) for discrete-time stochastic
processes. These authors restrict attention to the special case with (1.3) and (1.5)
orthogonal, i.e. usy = 0. The general case, also for continuous time, is treated in Heyde
(1987).

We return to the ordinary quasi-likelihood model. Then (1.12) is still a variance
bound for estimators obtained from an equation of the form (1.6), with weights w,, and
w, possibly depending on . Two questions arise. Is (1.12) also a variance bound for
the much larger class of reqular estimators? This will be shown in Theorem 1. Can we
find an estimator which attains the bound for all 7 We describe such an estimator in
Theorem 2. The basic idea is the following. For fixed @), a regular estimator attaining
the bound was obtained above as solution of (1.13). The estimating function, and hence
the estimator, depends on @) through us and ps. We want an adaptive version of the
estimator. There are several options. The most direct one consists in replacing Ay, By,
Cy in the estimating equation (1.13) by estimators. They may still depend on ©J. The
resulting estimating equation may be difficult to solve. A second possibility is a random



convex combination of two estimators which solve equations of the form (1.3) and (1.5),
with appropriate weights. A third option is a weighted nonlinear one-step least squares
estimator; such an estimator can be written in closed form.

In particular, the efficient estimator has the following property. Whatever the para-
metric models for p3 and p4 in an extended quasi-likelihood model, our estimator is
asymptotically as good as the extended maximum quasi-likelihood estimator when pzy
and p49 are correctly specified, and strictly better when they are not.

Additional restrictions on the model can lead to further improvement. In Section
3 we assume that Q(z,dy) = p(y — Jz)dy, with p a mean zero density. Then the
observations come from an autoregressive process with error density p. We specify the
error variance as a function of ¥. The maximum quasi-likelihood estimator is the least
squares estimator. We obtain an efficient estimator as a random convex combination of
two estimators. One is an estimator for ¢, the other is a function of an estimator for
the error variance. Both these estimators are efficient in the usual autoregressive model,
without restriction on the error variance. The first is due to Kreiss (1987), the second
to Wefelmeyer (1994a). A simpler, but inefficient, convex combination is described in
Wefelmeyer (1994b).

2 Main results

Let Xy, ..., X, be observations from a real-valued Markov chain, with unknown transi-
tion distribution Q(z, dy) fulfilling

(2.1 [ QG dy) = mo(),
(2.2) /(y—m,g(ac))QQ(x,dy) = wy(z).

The model can be written as a semiparametric model, with nuisance parameter given
by transition distributions with conditional mean 0 and conditional variance 1. Then
(2.1) and (2.2) can be generated by conditional location and scale transformations.
However, we found it more convenient to treat (2.1) and (2.2) as side conditions on the
nonparametric model described by all transition distributions.

Fix ¥ in some open subset of the real line, and a transition distribution @ fulfilling
(2.1) and (2.2).

Assumptions The Markov chain is stationary and ergodic, with nondegenerate in-
variant distribution 7. The function Cy defined in (1.11) is bounded away from zero
m-almost surely. For 7 in a neighborhood of 4, and for all z, the functions m,(x) are
twice differentiable in 7, with first derivatives at ¢ bounded in . The second derivatives
fulfill Lipschitz conditions at 7 = ¥,

im7(x) —my ()| < |1 =Vlem(2), |07 (@) — vg(2)] < 7= Dlev(2).

T



The functions mly, ml, ¢y, vy, v§, ¢, have finite eighth moments. The fourth conditional
moment of () has finite fourth moment,

4
/(/y4Q(w,dy)) 7(dz) < oo.
The derivatives mj and v} are not both w-almost surely equal to zero.

To keep the proofs short, we do not strive for minimal assumptions. Perhaps one can
avoid second derivatives of my and vy and prove (2.12) below by an appropriate version
of the stochastic equicontinuity argument for M-estimators introduced by Huber (1967)
in the i.i.d. case and by Bickel (1975) for the linear model. A recent reference is Welsh
(1989). In the more specific setting of Section 3 the assumptions will be close to minimal.

To begin we show local asymptotic normality. A local model is introduced as follows.
Let H denote the set of bounded functions h(x,y) such that for all z,

(23 [ han)Q.dy) = o,
(2.4 [ vhle. Q. dy) = m(a),
(2.5) [ (v =mo(@)) h(z,9)Qz,dy) = vj().

For h € H and u € IR we must construct a transition distribution Q" such that (2.1)
and (2.2) hold for Q = Q™" and ¥ = ¥ + n~'/2u. Consider first

QM (z, dy) = (1 + n_l/Quh(x, y))Q(w, dy).

Straightforward calculation shows that for Q@ = Qp** and ¥ = 9 + n~'/2y, relations
(2.1) and (2.2) hold up to terms of order n~!. These terms cancel if we add to h an
appropriate correction 7, of order n~/2 and set

Q™" (z,dy) = (1 +n " u(h(z,y) + ra(z,7)))Q, dy).

A possible choice of 7, is the following. Set

ply) = yI(lyl <n'/Y),
a(z,y) = (y—me(@)’I(ly — mg(z)| < n'/*).

Center these two functions for conditional expectation 0,
pay) = ) - [PW)Q.dy),
a(wy) = a@,y)~ [l v)Q, dy).

Set
ro(x,y) = a(x)p(x,y) + b(x)q(z,y).
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Choose U,y (2) and T,y () between ¢ and 9 + n~'/?u such that

m19+n*1/2u($) = mg(ﬂl‘) + n_1/2um:9nu(w) (‘T)’
vﬂ+n_1/2u($) = /Uﬂ(m) + /n’il/?uv"rnu(ic) ('/L‘)

Define truncated centered moments
o(@) = [ayQ,dy)
2
= [(y=mo(@)) bz, 1)@z, dy),

fis(x)
() = [ (v-mo(a))alz 1)z, dy),
@) = [(v-m@) ey, dy).

Elementary computations show that r, has the desired properties if

av +bjis = my —my=s,
= = ~ ! ! —1/2 [V
afiz +b(fig —ve?) = vl —vh+n Pumi =t

Since s and t are of order n /2, so are a and b. Here and in the following, we often

suppress the dependence on n, and also on ¥. We must set

a = D! ((ﬂ4 — vyl)s — ﬂgt),
= D_l(’ljt - ﬂ38):

with D = (fiy — v90)0 — fi3fiz a determinant. Since Cy is bounded away from zero 7-
almost surely, so is D. Hence D! is bounded. This ends the construction of the local
model.

Write P, for the joint distribution of Xy, ... , X, if Q is true, and P™" if Q""" is true.
The family P™" h € H, u € IR, is the local model at Q. Since it lies in the given model,
it does not exclude reasonable estimators from competing. On the other hand, it is large
enough to give a variance bound which is globally attainable, e.g. by the estimator in
Theorem 2 below. Write 7 ® @ for the invariant joint distribution 7(dz)Q(z, dy) of two
successive observations, and

r@Q(f) = [ [ @0, dy)r(dz).

We have local asymptotic normality,

n 1
log Py [Py = un™"/* 3" h(X;_1, X;) — u'T ® Q(h?) + 0p, (1)
=1
and .
n_1/22h(Xi_1,Xi) = N, under Pn;

=1



where N, is normal with mean zero and variance 7 ® @Q(h?). The functions h will
be called score functions. Local asymptotic normality for Markov chains is basically
due to Roussas (1965). For nonparametric versions see Penev (1991), Greenwood and
Wefelmeyer (1992), and Bickel (1993). Under our conditions a proof may be obtained
directly, or by modifying the argument of Hopfner (1993), who treats Markov step
processes. We need only check an appropriate version of Hellinger differentiability for
Q™" condition H1" in Hopfner et al. (1990). Here it reads

/((1 +n P, y))lﬂ - 1= nm%h(% y))ZQ(fca dy) < n 'ra(z)

with r, decreasing to zero pointwise and m-integrable for large n. This is true because
h is bounded and hence m ® Q)-square integrable. The only of the Assumptions we have
used for local asymptotic normality is ergodicity.

We recall a well-known characterization of regular and efficient estimators. A con-
venient reference is Greenwood and Wefelmeyer (1990). As indicated at the beginning
of this section, the model can be viewed as semiparametric. For such models, and for
the i.i.d. case, versions of the concepts mentioned here are dicussed in the monograph
of Bickel et al. (1993): See p. 46 there for regular estimators, p. 63 for the convolu-
tion theorem, the information (bound), and efficient estimators, p. 70 for efficient score
functions, p. 19 for asymptotically linear estimators and influence functions, and p. 64
for the characterization of regular and efficient estimators.

Let H denote the closure of H in Ly(m ® Q). The efficient score function s € H at
Q minimizes 7 ® Q(h?) over h € H. Hence it is characterized by

(2.6) T ®Q(s*) =7 ® Q(sh) for h € H.
The information bound at () is the squared length of the efficient score function,
(2.7) I=71®Q(s).
An estimator 9, is reqular for ¥ at Q with limit L if, for all h € H and u € IR,
n'2(0, —9—n"Y?u) = L under P™",
By the convolution theorem,
L=M+N in distribution,

where M is independent of N, and N is normal with mean zero and variance I *. This
justifies calling an estimator efficient for 9 at @ if its limit under P, is N. We call I ! a
variance bound for regular estimators. To state the characterization of regular and effi-
cient estimators, we introduce the following definition. An estimator 1§n is asymptotically
linear for ¥ at @ with influence function f(z,y) if

n?(9, —9) = n~1/? > f(Xic1, Xi) 4 op,(1).

=1
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The characterization reads as follows.
An estimator is regular and efficient for 9 at Q if and only if it is asymptotically
linear with influence function f(z,y) = I ‘s(x,vy).

To construct an efficient estimator, we need an explicit description of the efficient
score function s and the information bound I. There are different ways of guessing the
efficient score function. One guess relies on a formal analogy with the i.i.d. case. We
expect that for fixed x the efficient score function is a linear combination of y — my(x)

and (y - m,g(a:))2 —vy(z). Then (2.3) holds. The coefficients in the linear combination

must be chosen such that (2.4) and (2.5) hold. A different guess is that the asymptotic
variance bound (1.12) for estimators based on equations of the form (1.6) equals the
variance bound for the larger class of regular estimators. Then the efficient score function
is obtained from the estimating equation (1.13). The following theorem shows that both
guesses are right.

Theorem 1 The efficient score function at @ is

s(z,y) = Cy(x)™! (Aﬁ(ﬂ?)(y — m,g(:r)) + B,;n(x)((y — 7n19(:16))2 — vg(x))).
The information bound at Q) is positive and equals
I= w(Cgl(Aﬂmg + B,gv;)).
Here Ay, By, Cy are defined in (1.9) to (1.11).

Of the Assumptions we only use the nondegeneracy and moment conditions which
ensure that s is 7 ® (J-square integrable and I is well defined and positive.

Proof of Theorem 1. It suffices to check that the function s is in H and fulfills (2.6).
Then the explicit form of the information bound I is determined from (2.7). To show
that s € H, we must check (2.3) to (2.5) and s € Ly(7® Q). The calculations leading to
(2.3) to (2.6) are straightforward, but tedious, and we omit them. It remains to prove
that s € Ly(m ® @), and that I is well defined and positive.

(i) To prove that s € Ly(m ® @), introduce the conditional moments
vi(@) = [ vQ(z,dy).
The following two integrals are finite:
| [ 4@ Q. dym(da) = (AGws),
[ [ Bo@?y'Qe,dy)n(dz) = (Biw).



Since Cy is bounded away from zero, we easily obtain that s € Ly (7 ® Q).
(ii) Since Cy is bounded away from zero, Q(z,-) is nondegenerate, by the Schwarz
inequality. Write
Ay (z)my(z) + By (x)vy(x)
0 2
= [(#4@) (v = mo@) = my(@)((y = ma(@)) = va(@)) ) Q. dy)

This is positive with positive m-probability since by assumption the derivatives v} and
miy are not both equal to zero m-almost surely. Hence I is well defined and positive.

To describe our efficient one-step estimator for ¥, we need an initial n!/2-consistent
estimator ¥, for ¥, and strongly consistent predictors p;; for the centered conditional
moments p,;(X;) of the transition distribution,

wii — i (X;) =0 almost surely for j = 2,3, 4.

Recall that y; is defined in (1.8). For ¥,, one may choose a n'/2-consistent solution of

n_1/2 i(X'L — mﬂ(Xi_l)) = Opn(].).

=1

We will not discuss conditions for the existence of such a solution here. For p; one may
take [1;;(X;), where fi;; is a Nadaraya-Watson type kernel estimator for the function ;.
For stochastic processes, such kernel estimators are discussed, e.g., by Collomb (1984)
and Truong and Stone (1992). We do not repeat their assumptions here.

With these estimators, we obtain predictors for Ay(X;), By(X;), Co(X;),

Api = miy(X;)(pa — ps;) — v (X5) pai,
Byi = vj(X;) o — miy(X;) pai,
Ci = (pai — pi) i — ai-

Later we replace ¢ by the initial estimator ¥,,. In particular, we obtain an estimator for
the information bound 7,

In = ’]’),—1 Z Ciill (Aﬁmi_lm;% (Xi—l) + Bﬁn,i—lv&n (Xz—l)) .
i=1

Theorem 2. The estimator

n

’l§n = ﬁn + I;lnfl Z C,;_ll (A'ﬂn,z'—l (AXZ — mgn (Xz—l))

+By,,i-1 (E;(z — My, (Xi—l))2 — Vg, (Xi—1)>>

15 reqular and efficient for 9 at Q).
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The estimator 9, involves predictors p;,—1 based on Xoy,...,X;_; rather than es-
timators [i;,,(X;—_1) making full use of the observations Xj,...,X,. We have chosen
predictors because with them the processes

i CiiAp i (Xi - mﬁ(Xi—l))
i=1

and
n 2
> Ci\ By ((Xz - mﬂ(Xz'A)) - Uﬁ(Xi1)>
=1

are martingales. This will be used in the proof of Theorem 2. For a similar approach
see Wefelmeyer (1994c).

In applications it will often be more convenient to use a weighted average of two
estimators which solve equations of the form (1.3) and (1.5). Specifically, let A;, B;, C;
be predictors or estimators for Ay(X;), By(X;), Cy(X;). As above, these estimators may
depend on 9. Let ¥ = 9™ be a n'/?-consistent solution of

n_1/2 Z Ci__llAi_l (Xz - mg(Xi_l)) = Opn(l),
i=1
and let ¥ = 9” be a n'/2-consistent solution of

- 2
> CiiBi ((Xz —my(Xi 1)) — Uﬁ(Xil))-
i=1
Write
I™ = n(CytAgmy), 1" =7(Cy' Byvy).
Let a, be a consistent estimator for 1 / (1+I1v/I™). Then the convex combination

a9 + (1 — a,)V? is efficient for 9.

Proof of Theorem 2. By the characterization of regular and efficient estimators we
must prove that 0, is asymptotically linear with influence function I='s, where s is the
efficient score function and I the information bound determined in Theorem 1. We will
prove the following two expansions, all sums extending over ¢ from 1 to n:

(2.8) n Y2y Cr Ay, (Xi — My, (Xi—l))
=n"12y Cﬁ(Xi—l)_lAﬂ(Xi—l)(Xi - mﬁ(Xi—l))
—n'? (9, — 9)m(Cy" Agmiy) + op, (1),

(2.9) n 2y G By, ((Xz — my, (Xifl))Q — vy, (Xi1)>

=n /2 z Cy(Xi—1) 'By(Xi-1) ((Xz — mﬂ(Xi—l))2 - Uﬂ(Xi—l))
—n!2 (9, — 9w (Cy Byvl) + op, (1).

11



The assertion follows from these two expansions if we prove that I, is a consistent
estimator of
I =7(Cy' Agmly) + 7(Cy ' Byvly).

To show that I, is consistent, we split [, in the same way as I, and prove
(2.10) nt Y Cih Ay, iamy (Xia) = w(Cy' Agmy) + op, (1),
(2.11) N Y CTY By, i1t (Xi) = 7(C7'Byvh) + op,(1).

From now on we restrict attention to (2.8) and (2.10). Relations (2.9) and (2.11) are
proved analogously.

(i) Proof of (2.10). Write the left side of (2.10) as

nt Y Co(Xim1) T Ap(Xi1)miy (Xi1)
+n7 Y (O Agict — Co(Xim) T Ag(Xim1) )mig (X1
40730 O (Ag, iami, (Xih) — Apiamip(Xi1)).
By the ergodic theorem, the first of these three terms converges to m(Cj'Ayml). We

must show that the second and third terms are of order op,(1). For the second term,
note that

Api — Ap(X;) = m%(Xz')(Mz‘ — pa(X;) — pd; + Uﬂ(Xz')Z) - U%(Xz')@si - Ms(Xi))-

It follows easily from the Assumptions that the second term is bounded by an expression
of the form &, 3" r(X;_1), with r 7-integrable. Hence the second term is of order op, (1).
For the third term, we note that

Agi = Agi = (ml, (X0) = mip(Xs)) (pas — 15:)
_(Uén (Xi) — Ub(Xi))M?,i-

The assumptions imply as before that the third term is of order op, (1).
(ii) Proof of (2.8). Choose 9,; between ¥ and 9J,, such that

M, (Xii1) = my(Xi 1) + (9 — O)m)y (X )
Write the left side of (2.8) as

n"Y2 Y O Ag, i (X — my (X))
_n1/2(19n — 'n,_1 ZciflAﬂn,iflmﬂm (Xifl)-

The second of these two terms is dealt with exactly as in part (i) of the proof:
n~ Y Cili Ay, iy, (Xi1) = 7(Cy ' Agmy) + op, (1).

12



To prove (2.8), it remains to show that

(212) n_1/2 Z(Ci__llA'ﬂn,i—l - Cﬂ(Xi_l)_lAg(Xi_1)> ()(Z - mg(Xi_l))
= Opn(l).

Choose 9,,; between ¥ and 9,, such that

Ay, ic1=Agio1+ (U —0)A

:97’”',1'—1'
Write the left side of (2.12) as
n=/? 2(0;111419,1'—1 — Cyp(Xiz1) 7" Ap(Xia )) (X- - mﬁ(Xi_l))
+(0n = )L O Ay (X — mo (X))
+7’L1/2(19n — ) -1 S C l(Al 9inl — 1971._1) (Xz — mﬂ(Xi_l)).

The first term has predictable quadratic variation

2

nt Z(Ci:11A0,1—1 — Cﬂ(Xi—l)ilAﬁ(Xi—l)) vy (Xi—1).

This is shown to be of order op, (1) as in part (i) of the proof. Hence by Lenglart’s
inequality (Jacod and Shiryaev, 1987, p. 35, Lemma 3.30a), the first term is of order
op,(1). The second term is ¥, — ¥ = op,(1), multiplied by a term with predictable

quadratic variation
n-1
> G AG _1ve(Xi1).

This is of order Op, (1). Hence the second term is also of order op, (1). The third term is
n'/2(9, —9) = Op, (1), multiplied by an expression which is again shown to be of order
op, (1).
3 An autoregressive model
Let X, ..., X, be observations from an autoregressive process
Xi=09Xi_1 +¢€i,
where ¢; are i.i.d. with unknown density p having mean zero,
(3.1) Ee =0.
Suppose that the error variance is related to the regression parameter,

(3.2) Ee* = v(9).
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Then we have parametric models of the form (1.1) and (1.2) for the conditional mean
and variance,

(3.3) / yp(y — vz)dy = 9z,
(3.4) /(y —92)%p(y — dx)dy = (V).

Hence the model is a quasi-likelihood model. The results of Section 2 are, however, not
directly applicable because of the special structure of the transition distribution,

(3.5) Q(x, dy) = p(y — Jz)dy.

This is an additional restriction besides (3.1) and (3.2). It also involves 9.
The maximum quasi-likelihood estimator solves

U(?g)_l in—l(Xz - 19Xi_1) =0.

i=1

Hence it equals the least squares estimator

’19n = Zle_le/ ;Xz?fl .

It is well known that, in general, the least squares estimator does not even attain the
variance bound for the usual autoregression model, without restriction (3.2) on the error
variance. This differs from Section 2, where the maximum quasi-likelihood estimator was
as good as the best estimator ignoring the corresponding restriction (2.2). The reason
is that the least squares estimator fails to use not only the information about ¥ in (3.2),
but also the information in (3.5). — For extended maximum quasi-likelihood estimators
in an autoregressive model we refer to Heyde (1987).

We turn to the construction of an efficient estimator for 9. The arguments are similar
to those in Section 2, and we will only sketch them. Fix a density p fulfilling (3.1) and
(3.2).

Assumptions. The parameter varies in an open subset of (—1,1) on which the func-
tion v has a continuous and nonvanishing derivative v'. The density p is absolutely
continuous with logarithmic derivative ¢’ and finite Fisher information

I* = El'(¢)”.
The error distribution is nondegenerate and has finite fourth moment.

To prove local asymptotic normality, we introduce a local model as follows. Besides
p, fix 9. Let K denote the set of all bounded functions k(y) such that

Ek(e) = 0,
Eck(e)
Ec’k(e) = V' (V).

Il
o
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For k € K and v € IR define
P (y) = (140 Pu(k(y) +ra(y)))p(y)-

As in Section 2 one can choose 7, of order n~'/? such that (3.1) and (3.2) hold for
p=p™* and ¥ = 9 +n Y?u. Write P, for the joint distribution of X,,... , X, if p and
¥ are true, and P™* if p™* and ¥ 4+ n~'/2y are true. Similarly as in Huang (1986) or
Kreiss (1987) one obtains local asymptotic normality,

logdPr™* [dP, = un™/2 (=Xl (X; = 9Xi1) + k(X; — 0X;1))
=1

_%1}((1 — 0%)7 I 0(9) + Ek(€)?) + op, (1),

and
n!/? Z(‘Xi—lgl(Xi — 09X 1) + k(X — 19Xi_1)) = Ny under P",

=1

where N is normal with mean zero and variance equal to
(3.6) (1 —9*)"TI*v(9) + Ek(e)?.
Hence the score functions are of the form

(3.7) h(z,y) = —zl'(y — 9z) + k(y — 9z).

Next we determine the efficient score function and the information bound. Let_?
denote the closure of K in Ly(p). The efficient score function minimizes (3.6) over k£ € K.
Similarly as in Theorem 1 the minimum is attained if k(y) equals

ty) = C5 ') (0(0) (5 - 0(9)) - sy

with |
Cy = (u4 - v(19)2)v(19) —p; and p; = Fel.

Since the error distribution is nondegenerate, v(v) is positive. Hence Cy is positive by
the Schwarz inequality. The efficient score function is (3.7) for k& = t,

(3.8) s(z,y) = —xl' (y — 9z) + t(y — Jz).
The information bound is (3.6) for k = ¢,
(3.9) I=(1-9)""Tv) + Cy'v'(9)* (V).

The information bound (3.9) is strictly larger than the bound (1 — ¥?)"'I*v(9) in the
usual autoregressive model, without restriction (3.2) on the error variance.
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By the characterization stated in Section 2, an estimator for ¥ with influence function
I's(z,y) is regular and efficient. To construct such an estimator, we recall some results
for the usual autoregressive model, without restriction (3.2). For this model, Kreiss
(1987) has introduced an efficient estimator ¥ for ), with influence function

(3.10) —(1 =) (I o) 2l (y — Iz).

Write ¢;, = X; — 9, X;_; for the estimated errors of the autoregressive model, with 9,
the least squares estimator. The moments p; of the error distribution are estimated by
the empirical moments

n
y’jﬂ = nil ZSZn
i=1
In particular, uy, estimates zero. According to Wefelmeyer (1994a), the estimator

H;n = H2on — MQ_nllu'?m:ul”
is efficient for ps if us is not restricted by (3.2). The influence function of uj, is

(y — 92)* — po — py " ps(y — Vz).

Wefelmeyer (1994a) treats only expectations of bounded functions. The result here
follows by the usual truncation argument.

We return to the autoregressive model with restriction (3.2). Then puy = v(19), and we
have a new estimator for 9, namely v—'(u3,). Both 9% and v—*(u%,) are not efficient in
this smaller model. An efficient estimator is obtained as a random convex combination
of the two estimators. The weight involves an estimator for I*, say the estimator I} of
Kreiss (1987), and an estimator for Cy, say

Cn = (N'4n - U(ﬁn)Q)v(ﬁn) — 13y

Theorem 3. The estimator

N

Uy = anﬁ; + (1 - an)vil(ﬂ;n)’

with
an =1/ (14 (I;C) 7' (90)?),
1s reqular and efficient for 9 at p.

Proof. We show that 1, has influence function f(z,y) = I"'s(x,y), with s and T
defined in (3.8) and (3.9), respectively. From (3.11) we obtain by Taylor expansion that
v~1(u3,) has influence function

o) (v = 92)° = 0(9) = v(9) sy — V).
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The influence function of ¥ is given in (3.10). The estimator a, is consistent for
a=1/(1+I"Cy)™ ' (9)?).
It follows that 1§n has influence function
—a(l =) (I"v(®)) " 2l (y - da)
1= ap'(9) (0 = V2)* = 0(9) = 0(0) " ua(y — 03))

=J! (_acﬂ'(y — dz) + Cy'v' (9) (0(19) ((y —97)%) — v(ﬂ)) — us(y — 1935)))
=J1! (_xg'(y —9z) + t(y — qu))
=1""s(z,y).

Hence ¥, is regular and efficient for ¢ at p.
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