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Abstract

A semi-Markov process stays in state = for a time s and then jumps to state y
according to a transition distribution Q(z,dy, ds). A statistical model is described
by a family of such transition distributions. We give conditions for a nonparametric
version of local asymptotic normality as the observation time tends to infinity.
Then we introduce ‘empirical’ estimators for linear functionals of the distribution
(dz)Q(z,dy,ds), with m denoting the invariant distribution of the embedded
Markov chain, and characterize the empirical estimators which are efficient for a
given model. We discuss efficiency of several classical estimators, in particular
the jump frequency, the proportion of visits to a given set, the proportion of time
spent in a set, and an estimator for @ (z,{y} x [0,t]) suggested by Moore and
Pyke (1968) for countable state space.

1 Introduction

A semi-Markov process Y = (Y})>0 is a process on the time interval [0, o), with values
in some arbitrary state space F, which stays in state z for a time s and then jumps to
state y according to a transition distribution Q(z, dy, ds). For a review of estimation in
semi-Markov models see Jain (1990). Applications are discussed in Janssen (1986) and
Andersen et al. (1993).

Let T; denote the i-th jump time. Set Tp = 0. Write X; = Y7, for the state of
Y at time T;, and S; = T; — T;_; for the sojourn time of Y in state X;_;. Then
(Xi, S;), i > 0, is a Markov chain with transition distribution Q(z, dy, ds). Suppose the
transition distribution @ (z, dy x [0, 00)) of the Markov chain X;, ¢ > 0, has an invariant
distribution 7(dz). We want to estimate functionals of the form

(1) Qs = [[[ 7(d)Q(z, dy, ds) (2, v, 5),
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with f(z,y,s) a 7(dx)Q(z,dy, ds)-square integrable function on E x E x [0,00). We
observe Y on a time interval [0,n] and write N, for the observed number of jumps. If
Y is recurrent, a natural estimator for 7Q f is the ‘empirical’ estimator

Nn

=1

For countable state space, Pyke and Schaufele (1964) show that n'/?(E,f — 7Qf) is
asymptotically normal. Our main result, Theorem 1, characterizes the functions f for
which F, f is efficient in a given model.

Here are two applications for the model in which @ is completely unknown. By
Theorem 2 the proportion #{X; € B}/N, of visits to B is an efficient estimator for
the probability 7B of B under the invariant distribution of the embedded chain. By
Theorem 3 the proportion n™! [ 1(Y; € B)dt of time spent by Y in B is an efficient
estimator for the probability of B under the invariant distribution of the semi-Markov
process Y.

Let us indicate two further applications when the state space is countable. Then
the transition distribution @ is determined by the numbers @, (t) = Q (=, {y} x [0, ]).
In the time interval [0,n], let N2¥(¢) count the transitions from z to y after a sojourn
time not longer than ¢, and NZ(¢) the visits to x of duration not longer than ¢. Write
N = N¥(o0) and NF = NZ(oo) for the corresponding counts with arbitrary sojourn
times. Theorem 6 says that the estimator N} ¥(t)/N? is efficient for @Qu,(t) if @ is
completely unknown. Theorem 8 says that the estimator N*Y N%(¢)/(NZ)? introduced
by Moore and Pyke (1968) is efficient for (., (¢) if the sojourn time and next state are
independent given the present state.

If the estimator (1.2) is based on a function of other arguments besides X; 1, X;
S;, then it is never efficient, not even if () is completely unknown. This can be seen
by an argument similar to Theorem 1. We also refer to the comment on this point in
Greenwood and Wefelmeyer (1995a). A simple example for countable state space is the
estimator N2(¥ /(N® — 1) for the two-step transition probability Q2 (z, {y} x [0, 0)),
with Ng@)y counting the two-step transitions from x to y. The estimator can be written
as a ratio of two empirical estimators, with denominator (NF—1)/(N,,—1) and numerator

Nn

(Nn - 1)71 Z 1(Xi72 =, XZ = y)

1=2

The latter estimator is not asymptotically equivalent to an estimator of the form (1.2),
and one can show that it is not efficient. A better estimator for Q2 (z, {y} x [0,0))
would make use of the representation of Q2 in terms of the one-step transition distribu-
tion Q.

When the state space E is countable, we may describe the semi-Markov process
through the counting processes N* = (Nf)i>0, * € E, with NP the number of visits to
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state x in the time interval [0, ¢]. The vector of processes N*, x € E, was introduced and
studied in detail by Pyke (1961a,b) under the name ‘Markov renewal process’. (This
name is often used in the sense introduced by Cinlar (1969), namely for the Markov chain
(X;,T;), 1 > 0.) The counting processes N¥ are used in applications to survival analysis.
Typically, one considers a large number of i.i.d. copies of the semi-Markov process
on a fized time interval. This leads to a different asymptotic theory. For asymptotic
normality of estimators for ()., (t) on the basis of censored observations in such a setting
we refer to Lagakos et al. (1978), Gill (1980), Voelkel and Crowley (1984) and Phelan
(1990b). Bayes estimators are considered by Phelan (1990a). We will not study efficiency
questions for these estimators here.

The paper is organized as follows. In Section 2 we formulate a nonparametric ver-
sion of local asymptotic normality for semi-Markov models, and recall a Hajek—LeCam
convolution theorem for differentiable functionals on such models. We show that the
linear functional 7@ f defined in (1.1) is differentiable, and determine its gradient. Our
main result, Theorem 1, describes a condition on the function f which is necessary and
sufficient for the empirical estimator E,, f defined in (1.2) to be efficient in a given model.
We apply the result to two specific models: one in which nothing is assumed about the
transition distribution, and one in which the sojourn time and next state are assumed
independent given the present state. Section 3 gives applications for countable state
space. The lemmas are proved in Section 4.

2 Characterizing efficient empirical estimators

Let E be an arbitrary set with countably generated o-field €. Let (X;, S;), i > 0, be a
Markov chain with values in E X [0, 00), transition distribution Q(z, dy, ds) and initial
distribution n(dz)eg(ds). In particular, Sy = 0. Set

T, = )5S, 120,
=0
Ny, = max{i>0:T; <t} t>0.

Then Y; = Xy,, t > 0, is called a semi-Markov process. The process stays in state X;_;
for a sojourn time S;. At jump time T; it jumps to state Xj.

As usual, write

T ® Q(dr, dy,ds) = w(dz)Q(z,dy,ds),
7Q(dy,ds) = [ 7(dz)Q(w,dy,ds).

For a suitably integrable function f(zx,y, s) write
Qf(2) = Quf = [[ Q. dy,ds)f(z,y,9)

3



and for a function f(z) set
nf = [w(da)f (@)

In particular, for a function f(z,y, s),

"Qf = (r 8 Q)f = [[[ 7(de)Q(x,dy, ds)F (@, 9).

Assumption 1. The Markov chain (X;,S;), © > 0, is positive Harris recurrent.
Introduce the marginal distributions
Ql(xady):Q(xadyx [0,00)), QQ(Z‘,dS):Q(Z‘,EXdS)-

Let 7 denote the invariant distribution of ;. We note that 7() is the invariant distri-
bution of Q).

The mean sojourn time in state x is

m(x) = /Qg(x,ds)s.

Assumption 2. We have Q3 (x,{0}) =0 for x € E, and mm < 0.

Let ||f|| = (7f?)'/? denote the norm of Ly(7), and || R|| = sup{||Rf]| : ||f|| = 1} the
corresponding operator norm of a transition kernel R(x,dy). Set Il(z, dy) = 7(dy).

Assumption 3. We have ||Q] — II|| = 0 for j — oo.
We use the notations
F=L(r®Q), Fy=L(r), F1=L(r®Q1), F>=Ly(1m®Qs).
Note that for f; € F} and f € F5,

QI=Q1fi, Qf:=Q2f

Let H denote the subspace of F' consisting of all functions h(z,y, s) with Q,h = 0 for
all x € E. Write bH for the subspace of bounded functions in H. Define H; and H,,
bH, and bH, correspondingly.

The semi-Markov process Y is observed on the time interval [0, n]. Write P, for the
distribution of Yy, ¢t € [0,n]. We begin with three essentially probabilistic lemmas. The
proofs of Lemmas 1, 4 and 5 are in Section 4.

Lemma 1. Under Assumptions 1 and 2, n/N, - mm a.s.



By Assumption 2, mm is positive. Lemma 1 and a central limit theorem for Markov
chains (Meyn and Tweedie, 1994, p. 411, Theorem 17.0.1(i)) imply the following.

Lemma 2. Under Assumptions 1 and 2, for h € H,

Ny
n 23 h(Xi1,X;, Si) = Ny under P,

i=1
where Ny, is normal with mean 0 and variance (mm) *mQh?.

From Lemma 1 and a martingale approximation for Markov chains of Gordin and
Lifsic (1978), the idea of which goes back to Gordin (1969), we obtain the following

stochastic approximation. For a stronger version of the martingale approximation with
a more detailed proof we refer to Greenwood and Wefelmeyer (1995a, Lemma 1).

Lemma 3. Under Assumptions 1 to 3, for f € F,

n

V2N (f(Xim, X, Si) — mQf — (Af)(Xim1, X4, ) = op, (1)

=1

with
(2.1) (Af)(@,y,5) = f(2,9,5) — Quf + (AQS)(z,y).
Here Ay is defined for fy € Fy by
(2.2) (Aofo)(z,y) = 3 (@1 fo — QL fo).
3=0

The operator Ag is linear and maps Fy into H;. The operator A is linear and maps
F into H; it is the identity on H. Lemmas 1 and 3 imply that for f € F' the empirical
estimator

Np,
E.f=N;* Z f(Xiz1, X5, S5)
i1

introduced in (1.2) admits a stochastic approximation

Np,
(23) nl/Q(Enf — WQf) =Tm - 77,71/2 Z(Af) (Xifl, Xi, S,) + OPn(l)-

i=1
Then Af is called the influence function of E, f in H. Lemma 2 implies that n'/?(E, f —
mQf) is asymptotically normal with variance mm - 1Q(Af)?. For finite or countable

state space, different proofs of asymptotic normality have been given by Taga (1963)
for f(z,y,s) equal to §,(y) and sd,(z) with u € E, by Pyke and Schaufele (1964) and

5



Hatori (1966) for general f(z,y,s), and by McLean and Neuts (1967) for sfo(x). For
arbitrary state space, refinements of this central limit theorem are given by Malinovskii
(1985) for f(x,y,s) equal to s, (1986) and (1987) for f(y) and (1991) for f(x,s).

We turn to two statistical lemmas. First we show that a semi-Markov model is locally
asymptotically normal under our assumptions. Such a model is indexed by a family of
transition distributions. Examples which we consider later are the ‘full’ model, indexed
by the set of all transition distributions on F, and the model indexed by the set of
transition distributions for which the sojourn time and next state are independent given
the present state. We describe a local model around the fixed transition distribution @
as follows. Fix a closed linear subspace G C H. Choose G' C bG such that G’ is dense in
G. The set G’ will play the role of local parameter space. For h € G' choose a sequence
Qnn of transition distributions in the index set with derivative h in the following sense:

(2.4) Qnn(z,dy, ds) = Q(z,dy, ds) (1 + n’l/zhn(ac, v, s))

with h, — h in sup-norm. We write P, and P, for the distribution of Y}, t € [0, n], if
Q@ and @Q,,, respectively, are true, and the initial distribution is 7.

Lemma 4. Under Assumptions 1 and 2, for h € G,

Ny, 1
logdP,,/dP, = n /2 Z h(Xi 1, X:,Si) — 5(7Tm)’17rQh2 +op,(1).

=1

Together with Lemma 2, this is a nonparametric version of local asymptotic normal-
ity. For finite state space and finite-dimensional parameter, and when the sojourn time
and next state are independent given the present state, the lemma is basically due to
Akritas and Roussas (1980). For arbitrary state space, a parametric version is implicit
in Malinovskii (1992). The lemma remains true if differentiability (2.4) is replaced by
an appropriate variant of Hellinger differentiability. For Markov step processes, with
transition distribution

Q(z, dy, ds) = Q1(x, dy)A(z) exp (—sA(x)) ds,

compare condition H1” in Hopfner et al. (1990). Versions of Lemma 4 for Markov step
processes are contained in Hopfner (1993a, 1993b). He writes the approximation to the
likelihood ratio in a different way. Local asymptotic normality for Markov step processes
is also implicit in Malinovskii (1989). The strong differentiability condition (2.4) suffices
for our purposes.

The efficiency concept we use is asymptotic. From Lemmas 4 and 2 we see that the
underlying family of distributions is locally approximated by a Gaussian shift family
indexed by functions A in the local parameter space G'. Given a smooth functional of
the transition distribution, we can describe a lower bound on the asymptotic risk for a
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large class of estimators of the functional. Smoothness is defined as follows. A functional
k(Q) is said to be differentiable on G' with gradient g if g € F and

n*? (k(Qun) — k(Q)) = 7Qhg,  he .

The projection gg of g into G is also a gradient, the canonical gradient. It is uniquely
determined. We consider the following class of estimators. An estimator £ is called
reqular on G' for k with limit L if

n'? (k= k(Qu)) = L under P, heG.

The point here is that L does not depend on the local parameter h. In other words: the
distribution of the standardized error is asymptotically equivariant under local changes
of measure.

The convolution theorem states that L = M + N with M independent of N, and N
normal with mean 0 and variance mm - 1QgZ. A convenient reference is Greenwood and
Wefelmeyer (1990). Among estimators k having such a representation of the limit L,
those with M = 0 have standardized error n'/? </;' — k(Q)) most concentrated, asymp-
totically, in any symmetric interval. Egqivalently, they have minimal asymptotic risk

with respect to any bounded symmetric bowl-shaped loss function. This justifies calling
k efficient on G’ for k if

n'/? (l:: - k(Q)) = N under P,.

The local parameter space G’ does not enter the definition of efficiency except that it
restricts the competing estimators to those which are regular on G’.

The next lemma says that 7Q)f is a differentiable functional of ). It generalizes a
result for Markov chains and functions f(y) = 1(y < t) in Penev (1991).

Lemma 5. Under Assumption 3, for f € F, the functional 7Q [ is differentiable on G’
with gradient Af.

We can now characterize the functions f for which the empirical estimator E, f is
efficient in a given model, with local parameter space G'.

Theorem 1. Under Assumptions 1 to 3, for f € F, the estimator E, f is reqular and
efficient on G' for mQf if and only if Af € G.

Proof. By Lemma 5, the functional 7Q f is differentiable on G’ with gradient g = Af.
The estimator F, f is regular and efficient on G’ for 7Q) f if and only if it has the canonical
gradient gs as influence function in H:

Np,
(2.5) n'?(E,f —nQf) = mm-n~'/? > 96(Xi1, Xi, Si) + op, (1).

i=1
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This is a straightforward consequence of local asymptotic normality, Lemmas 2 and
4. For a convenient reference see Greenwood and Wefelmeyer (1990). The factor mm
appears because the gradient is defined in terms of the norm (7Qh?)'/2, not in terms
of the norm ((7rm)’17rQh2)1/ ? induced by local asymptotic normality. — On the other
hand, by relation (2.3) the estimator E, f has the stochastic approximation

n1/2(Enf - TQf) =mm- nt/? %(Af)(Xi—la X, S;) +op,(1).

i=1

If Af = gg, the estimator F, f must be regular and efficient by the characterization
(2.5). Conversely, if E, f is regular and efficient, then, again by characterization (2.5),

(2.6) P12 (g6 — Af)(Xio, X, Si) = op, (1).

i=1

By Lemma 2, the asymptotic variance of this random variable is (7m)™'7Q(g9q — Af)%.
By (2.6) we must have 7Q(g9qg — Af)? = 0 and hence Af = g¢ ™ ® Q-a.s. O

Let us apply Theorem 1 to the full model with arbitrary (), and to the model in
which the sojourn time and next state are independent given the present state.

1. Full model. In this subsection we consider the model in which no structural
assumptions on the transition distribution are made. Then there is a particularly simple
local model, with G = H and local parameter space G' = bH: For h € bH, set

Qnn(z,dy,ds) = Q(z,dy, ds) (1 + n_l/Zh(x, Y, s)) )

Differentiability (2.4) holds trivially with A, = h. Since the operator A maps F into H,
Theorem 1 implies the following.

Theorem 2. Under Assumptions 1 to 3, for all f € F, the estimator E, f is regular
and efficient on bH for Qf. Its asymptotic variance is mm - TQ(Af)?.

For f(z,y,s) = 1(y € B) we obtain that the proportion #{X; € B}/N, of visits to
B among the observed jumps is an efficient estimator for the probability 7B of B under
the invariant distribution of the embedded Markov chain.

The proportion n™t [ 1(Y; € B)dt of time spent by the semi-Markov process Y in
B is an estimator for m(mlg)/mm. This is the probability of B under the invariant dis-
tribution of Y7; see e.g. Tomko (1989). The following theorem shows that the estimator
is efficient if () is completely unknown. We make an additional assumption on Q)».

Assumption 4. The family of distributions Q2(x,ds) is tight.



The assumption can be avoided in Theorem 3 if one knows that Y, converges in
distribution. Tomko (1989) gives sufficient conditions.

Theorem 3. Let Assumptions 1 to 4 hold, and let 7Q)y have a finite second moment.
Then n/N, is reqular and efficient on bH for mm. For B € &, the estimatorn™" [ 1(V; €
B)dt is regular and efficient on bH for m(mlg)/mm.

Proof. Consider first the estimator
~ Nn
kg = Nn_l Zszl(Xz_l S B)
i=1
It is of the form E, f with f(z,y,s) = sl(z € B). We have
TQf? < //7T(da:)QQ(a:,ds)s2 < 00.

Hence f € F', and kp is regular and efficient on bH for m(mly) by Theorem 1. In
particular, kg = Ty, /N, is regular and efficient on bH for 7m. It remains to show that
the estimator kg is asymptotically equivalent to the estimator

Nn‘l/l(Yt e B)dt.
0

Then kg is asymptotically equivalent to n/N,, and kg / kg is asymptotically equivalent
to the proportion of time spent by Y in B, and Theorem 3 is proved. To prove the
required asymptotic equivalence, write

Tn,
fp = N1 / 1(Y; € B)dt.
0

Since n/N, is bounded in probability by Lemma 1, it remains to show that n~'/2(n —
Ty,) = op,(1). It suffices to see that T, 1 — T, is bounded in probability. By
Assumption 4, for each ¢ > 0 there exists ¢ such that for all x € F|

Qs (z,]c,0)) < e.
Hence for all n,
P{Tn 1 —Tn, > c} = /P(Yn € dzr)Qs (z,[c,0)) < e.
m

From the proof of Theorem 3 and Lemmas 2 and 3 we obtain in particular that N, /n
is asymptotically normal. For finite state space see Taga (1963).
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2. Conditionally independent time and state. In this subsection we consider the
model given by all transition distributions for which the sojourn time and next state are
independent given the present state,

Q(z,dy,ds) = Q1(z,dy)Q2(z, ds).
A local model is introduced as follows. For h; € bH; and he € bH, set
Quun, (@, dy) = Qu(z,dy) (1407 h(a,y)),
Qonh,(x,ds) = Qa(zx,ds) (1 +n Y2 hy(x, s)) )
Choose G = H, + H,. For
h =hy+ hy € bH; + bHy = G’

set
th(.T, dy: dS) = anhl (33, dy)Q?nhz (.T, dS)
Then differentiability (2.4) holds with

hn('xaya S) = h’l(way) + hg(l', S) + n_l/th(I: y)h2($, S)‘

Theorem 4. Under Assumptions 1 to 3, for f € F, the estimator E, f is regular and
efficient on bHy + bHy for nQf if and only if f € Fy + F.

Proof. By Theorem 1, the estimator E, f is regular and efficient on bH; + bH, if and
only if Af € H; + Hy. By definition (2.1) of Af,

(Af)(ﬂ?, Y, S) = f(xa Y, S) - wa + (AOQf)(xay)
We have ApQf € H,. Furthermore, f — Qf € H; + H, if and only if f € F} + F5. O

1/2

The spaces H; and H, are orthogonal with respect to the norm (7Qf?)!/2. In par-

ticular, for h = hy + hy and b’ = | + b, in Hy + Ho,
Wthl = 7TQ1h,1h’1 + ’ﬂ'QQthIQ.

By Theorem 4, for f; € F; the estimator

Np,
E,fi =N,* Zfl(XiflaXi)

=1

is regular and efficient on bH; + bH, for (), f;. By Lemma 5, the functional 7@, f; has
canonical gradient

fl(xay) - Qlwfl + (AOQlfl)(xa y)
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The canonical gradient is in H;. This means that E), f; remains efficient under arbitrary
restrictions on (). For example, the semi-Markov process may be a Markov step process,
with

Q2(z,ds) = A(z) exp (—sA(x)) ds,
or a Markov chain, with Qs (z,{1}) =1 for x € E. Efficiency of E, f; for Markov step
processes was already shown in Greenwood and Wefelmeyer (1994), for Markov chains
in Greenwood and Wefelmeyer (1995a) and Bickel (1993).

While E, f; remains efficient under restrictions on (Q9, it is not true that F,, fo remains
efficient under restrictions on 1, in general. By (2.3) the influence function of E, f5 in
H is

f2($’ S) - Qwa2 + (AOQQfQ)(wa y)

If H; is replaced by a smaller space, say Hj, then AqQ,fo may fall outside Hj, and
the influence function will not equal the canonical gradient in H]. An example is the
estimator n/N,. By the proof of Theorem 3, it is asymptotically equivalent to E, fo
with fo(x,s) = s. We have Q3 f, = m and

(AOQ2f2)(xa y) = Z( {ym - Q{;u'—lm)a
j=0

which may not lie in Hi. Hence it may be possible to improve the estimator n/N,, if we
know more about ();. This is not surprising in view of the fact that n/N,, estimates mm
which depends, through 7, on @);.

3 Countable state space

In this section we apply the results of Section 2 to some functionals of interest when the
state space F is countable, with discrete o-field. Fix a transition distribution Q(z, dy, ds)
and an initial distribution n(dz)e¢(ds). Introduce

Qey = Ql (CC, {y}) 5 Hac(t) = QQ (xa [07 t]) .
The transition distribution is determined by the numbers
Qay(t) = Q (2, {y} x [0,7]) = oy Fuy(?),

with F,,(t) the conditional distribution function of the sojourn time in state z, given
that the next state will be y. Note that

Hw(t) = z quny(t)-

yek

The mean sojourn time in state x is
Mg = /t dH,(t).
1

1



Write ¢}, = Q' (z, {y}) for the i-step transition probability from  to y.

Assumptions 1 to 3 of Section 2 are implied by the following assumption. It will be
in force throughout Section 3.

Assumption. The Markov chain (X;,S;), i > 0, is irreducible and positive recurrent,
and ||@Q) — || = 0 for j — oco. Further, H,(0) = 0 for x € E, and Y ,cp Tym, < 00,
where the m, denote the invariant probabilities of (qzy).

The estimators below will be expressed in terms of the following four statistics. In
the time interval [0,n], and for u,v € E, let N} (t) count the transitions from u to v
after a sojourn time not longer than ¢, and let N!(¢) count the visits to u of duration
not longer than ¢. Write N*¥ = N*’(c0) and N = N*(oco) for the corresponding counts
with arbitrary sojourn time.

1. Full model. In this subsection we consider the model given by all transition
distributions, and construct a local model with local parameter space G' = bH as in
Subsection 1 of Section 2.

Theorem 5. For u,v € E and t > 0, the estimators N}*/Ny,, N* /N, N¥(t)/N" and
N (t)/N¥ are reqular and efficient in bH for my, Guy, Hu(t) and Fy,(t), respectively.

Proof. Apply Theorem 2 with f(z,y, s) replaced by 6, (v), 6.(2)0,(v), 6u(z)1(s < t) and
0u(2)0,(y)1(s < t). These functions are in bF. Hence the estimators N*/N,,, N*/N,,
NY(t)/N, and N (t)/N, are regular and efficient on bH for m,, myquy, T, H,(t) and
TuGuv Fuv (t), respectively. The assertion follows by combining these estimators appropri-
ately. O

Theorem 5 implies the following.

Theorem 6. For u,v € E and t > 0, the estimator N (t)/NY is reqular and efficient
on bH for Qu,(t).

We will see that the estimator in Theorem 6 can be improved if the sojourn time
and next state are known to be independent given the present state.

2. Conditionally independent time and state. In this subsection we consider the
model given by all transition distributions for which the sojourn time and next state
are independent given the present state. This means that Fy,(¢) does not depend on y.
Hence

me(t) = Hw(t)a Qxy(t) = waHz(t)-
We show that the first three estimators in Theorem 5 remain efficient in this smaller

model. Construct a local model with local parameter space G' = bH; + bH, as in
Subsection 2 of Section 2.
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Theorem 7. For u,v € E and t > 0, the estimators N*/N,, N* /N and N*(t)/N}"
are regular and efficient on bHy + bHy for 7y, quw and H,(t), respectively.

Proof. Apply Theorem 4 with f(x,y, s) replaced by d,(v), 6.(2)d,(v) and 6, (x)1(s < t).
These functions are in bF; + bF,. Hence N¥/N,, N’ /N, and N}(t)/N, are regular and
efficient on bH; + bHy for m,, myqyu, and 7, H,(t), respectively. The assertion follows by
combining these estimators appropriately. O

By Lemmas 2 and 3, the estimators in Theorem 7 are asymptotically normal. For
finite state space see Moore and Pyke (1968). Theorem 7 implies the following.

Theorem 8. For u,v € E and t > 0, the Moore—Pyke estimator N**N¥(t)/(N¥)? is
regular and efficient on bHy + bHy for Qu,(t).

Moore and Pyke (1968) introduce the estimator described in Theorem 8 and show
that it is asymptotically normal if the sojourn time and next state are independent
given the present state. They remark that, according to Pyke and Schaufele (1964), this
assumption incurs no loss of generality. The argument is also in Pyke and Schaufele
(1966). Note, however, that in the larger model the Moore-Pyke estimator does not
estimate Quy(t) but gu, Hy(t).

The estimator N}’ (t)/N} in Theorem 6 is not efficient when the sojourn time and
next state are independent given the present state. It is the ratio of the two estimators
N"(t)/N, and N¥/N,. The second estimator is efficient on bH; + bHy by Theorem
7; the first is of the form E,f with f(z,y,s) = 0.(x)d,(y)1(s < t). Since f is not in
F| + F>, the first estimator is inefficient by Theorem 4. Hence N}¥(t)/NY is inefficient.

4 Proofs of the lemmas

Proof of Lemma 1. By Assumption 2, the expectation mm of S; under the stationary
law 7 ® Q9 of (X;,S;) is finite. By Assumption 1, the Markov chain (X3, S;), ¢ > 0, is
positive Harris recurrent, and the ergodic theorem (e.g., Meyn and Tweedie, 1994, p.
411, Theorem 17.0.1(iv)) implies

n
T,/n=mn" ZSi — Tm  a.s.
i=1

We have Ty, /n <1< Ty,+1/n and N,, — oo a.s. Hence Ty, /n — 1 a.s. and therefore
Ty, /Nn — m™m a.s. This implies n/N,, — mm a.s. m|

Proof of Lemma 4. To prove local asymptotic normality, we need a representation
of the likelihood ratio in terms of the transition distributions ) and @,;. It is obtained
by specializing the representation for multivariate point processes due to Jacod (1975).
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Associate with the semi-Markov process Y a multivariate point process, i.e. a random
measure on (0,00) X E,

N(dta dy) = Z E(T3,X;) (dt, dy)'

i>1

If the transition distribution is (), the random measure has compensator
v(dt, dy) = Q(X,-, dy, dt — T, ) /Qz (X, [t — Tw,_,0)) .

See Jacod (1975, Proposition (3.1)) or Jacod and Shiryaev (1987, p. 136, Theorem 1.33).
Set

a = v({t} xE),
vé(dt,dy) = 1(ay = 0)v(dt,dy).

Write vy, and o if the transition distribution is Q,, and define Yy, by
Vnh(dta dy) = Ynh(ta y)ll(dt, dy)

Since the initial distribution 7 of the semi-Markov process Y does not change with @),
we obtain from Jacod (1975, Theorem (5.1)) or Jacod and Shiryaev (1987), p. 190,
Theorem 5.43) the following representation of the likelihood ratio between P, and P,,

dP,,/dP, = (ﬁ Ynh(Xi,Si)) II (1 - “t>

i=1 t<n t£T; I —a
exp [ [ (1= Yaalt,)) v¥(dt,dy).
We rewrite the likelihood ratio using the hazard measure

H(z,ds) = Qq(x,ds)/Qs (z,[s,00)) .
Let H¢(z,-) denote the continuous part of H(z,-). Then

ar = H(Xt_, {t — TNt,})a
Ve(dt x E) = H¢(X, ,dt— Ty, ).

Analogous relations hold for a?* and v¢,. Note that a?" = 1 iff a; = 1. By definition
(2.4) of @y the v-density of v, is

Vanltyy) = (1407 ha(Xi, X, 5)))
Qs (Xee, [t =T, ,00)) /Qonn (Xims [t = T, ,00)) -

14



Hence the likelihood ratio is

Nn
dPon/dPy = [ (1407 ?ha(Xio1, Xi, S)))

Q2 (Xiz1,[Si, 00)) / Qan (Xic1, [Si, 00))

th(Xt—v {t - TNtf }) - H(Xt—v {t - TNtf })
11 (1 - I H(X {0~ T, ) )

t<n t£T;

exp / (X, dt = T, ) = HE(Xm,dt = T, ).
0

We show that most of the factors other than 1 + n~'/?h, cancel. By the deterministic
version of the Doléans-Dade exponential formula given by Jacod (1975, Lemma (3.5)),

Q2 (z, (t,00)) = exp (—H (z,(0,%])) [ (1 — H(=,{s})) .

s<t

Furthermore,

QQ (‘Ta (ta OO)) = Q? (.I, [ta OO)) (1 - H(l‘, {t})) .
Corresponding relations hold for )5, and its hazard measure H,,;. Hence the likelihood
ratio is

N'n.
dPu/dP, = [ (1+n"?ha(Xior, X3, S5))

=1

Qonn (XNn, (n —Tn,, OO)) /Q2 (XNn, (n —Tn,, OO)) .

For finite state space, and when the sojourn time and next state are independent given
the present state, similar representations are in Moore and Pyke (1968) and Akritas and
Roussas (1980).

We show that the last displayed line tends to 1. Define R;(z,dy, s) by
Q(z,dy,ds) = Ry(z, dy, s)Qa(z, ds).
Set hno(z, s) = [ Ri(z,dy, s)h,(z,y,s). Then
Qonn(z,ds) = Qa(x, ds) (1 + 1 Y2h,(x, s)) :

Since h is bounded and h, — h in sup-norm, there exists d such that |ho,| < d for n
sufficiently large. Hence for measurable sets D C [0, 00),

Qomn(, D) = Qo(x,D)| = n V2 / QQ(x,ds)hng(x,s)l(seD)‘
< n7Y2dQy(x, D).

15



Therefore, the likelihood ratio has the approximation

dPnh/dPn = (ﬁ (1 + n_l/Zhn(Xi_l, XZ', SZ))> (1 + Opn(l)) .

i=1

If N,, were nonrandom, the right-hand term would be a representation for the likelihood
ratio of the Markov chain (X;, S;) observed for i = 0,... , N,,. Compare also Gill (1983)
and Andersen et al. (1993, p. 680). Since N,/n — (mm)~' a.s. by Lemma 1, the
assertion now follows by a similar expansion as for Markov chains; see Penev (1991).

O

Proof of Lemma 5. Greenwood and Wefelmeyer (1995b), following Kartashov (1985),
who uses other norms, obtain a perturbation expansion for invariant distributions: Uni-
formly for f, € Fy with || fo|| <1,

(4.1) (7' =) fo = m(Q) — Q1) Aofo + o(||Q) — Qull),

with Ag defined in (2.2).
We apply (4.1) for Q] = Q1nn. Define Ro(x,y,ds) by

Q(xa dy7 dS) = Ql (.T, dy)RZ(x’ Y, dS)
Set hn1(z,y) = [ Ro(z,y,ds)hy(x,y,s). Then
Quun(x, dy) = Qi (,dy) (141" hai (z,))

Since h is bounded and h,, — h in sup-norm, there exists d such that |h,| < d. Therefore,
|hni| < d for n sufficiently large, and

|Q1nn — Q1] < n~124.

Hence (4.1) implies uniformly for f, € Fy with || fo|| < 1,
(4.2) 02 (man — ) fo = 7Q1(hn1 Ao fo) + 0(1).
Let f € F. Use the definition of ), to write

’I’LI/Z (ﬂ-nhthf - WQf)
(4.3) = 7Qhnf +n"*(wn — T)QSf + (T — T)Qhn f-

We consider the three right-hand terms, beginning with the last. Since the sequence
|Qh f]| is bounded,

(4.4) (Tph — T)Qhn f — 0.
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Applying (4.2) for fo = Qf and using the definition of A,

(4.5) 0P —mQf = 7Q(hAQS) +7Q ((hn — ) AQf) + 0(1)
— mQ(hAQY).

Finally, using Qh = 0,

(4.6) TQhnf — 7Qhf = 7Q (h(f — Qf)) -
Applying (4.4)—(4.6) to (4.3),

02 (1w Qunf — 7Qf) = 7Q (h(f — QF)) + TQ(hAQS) = TQ(hAS).
This is the assertion. O
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