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Abstract

We have shown elsewhere that the empirical estimator for the expectation of a
local function on a Markov field over a lattice is efficient if and only if the function
is a sum of functions each of which depends only on the values of the field on
a clique of sites. For countable state space, the estimation of such expectations
reduces to the estimation of probabilities of configurations over finite subsets of
the lattice. The corresponding empirical estimator is efficient if and only if the
set is a clique. If the set is not a clique, we can construct better estimators.
They are rational functions of empirical estimators for configurations over subsets
of the given set. The construction is based on a factorization of probabilities of
configurations which makes use of the splitting property of Markov fields.
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1 Introduction

We want to estimate the expectation of a function on a random field with known finite
range of interactions. The usual estimator is the empirical estimator. For consistency
see Burton and Steif (1995) and (1997) and Steif (1997); asymptotic normality follows
from the central limit theorem, see Künsch (1982), Bolthausen (1982) and Dedecker
(1998). The empirical estimator does not make use of the information about the range
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of interactions and is, in general, not efficient. We construct estimators using this
information. This use of structural information about the field can be regarded as a
semiparametric approach. Nevertheless, our improved estimator will be a function of
certain empirical estimators.

Asymptotic normality of empirical estimators uses central limit theorems for cen-
tered random variables. On the other hand, estimators for parametric families are often
obtained from estimating functions which are sums of conditionally centered random
variables. The coding estimator of Besag (1974a) uses the local characteristics of a ran-
dom field at a coding set, i.e., a set of sites which are conditionally independent given
the other sites; see also Besag (1974b). This amounts to using a partial likelihood. The
maximum pseudo-likelihood estimator of Besag (1975) and (1977) uses the local charac-
teristics at all sites. It is asymptotically normal under weak conditions; see Jensen and
Künsch (1994), Janžura and Lachout (1995) and Comets and Janžura (1998). For more
information on estimation in parametric models, including the maximum likelihood es-
timator, we refer to Janžura (1988), Comets and Gidas (1992), Gidas (1993), Guyon
(1995) and Janžura (1997).

Let Xi, i ∈ Zd, be a homogeneous random field on the d-dimensional square lattice,
with discrete state space E, and let µ denote its distribution. The expectation of a
function f can be written µ(f) =

∑
µ{a}f(a), where the sum extends over all configu-

rations a. The estimation of such an expectation reduces therefore to the estimation of
probabilities of configurations. Suppose we observe the field in a window [−n, n]d and
want to estimate a probability µ(aD) = µ(XD = aD), where D is some finite subset of
the lattice, and aD = (ai)i∈D is a point in ED. If nothing is known about µ, we will use
the empirical estimator

En(aD) =
1

|Dn|
|{j : D + j ⊂ [−n, n]d, XD+j = aD}|.

Here |Dn| is the number of shifts of D which are contained in the window [−n, n]d.
For Gibbs fields satisfying certain regularity conditions, Greenwood and Wefelmeyer

(1998) have shown that if µ has local interactions with known range, then the empirical
estimator En(aD) is efficient for µ(aD) if and only if D is a clique, i.e., a set such that
each two points are neighbors; see also Section 2.

Related results are known in the i.i.d. case and for Markov chains. If X1, . . . , Xn are
i.i.d. with unknown distribution π, then the empirical estimator

En(A) =
1

n
|{i : Xi ∈ A}|

is efficient for the probability π(A), but the empirical estimator

En(A×B) =
1

n− 1
|{i : Xi−1 ∈ A, Xi ∈ B}|
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is not efficient for π⊗π(A×B). Since π⊗π(A×B) = π(A)π(B), an efficient estimator
is the product of the two empirical estimators for π(A) and π(B), the von Mises statistic

En(A)En(B) =
1

n2
|{(i, j) : Xi ∈ A, Xj ∈ B}|;

see Levit (1974) and Koshevnik and Levit (1976). The result translates to random fields
with no interactions.

If X1, . . . , Xn are observations of a homogeneous Markov chain with unknown transi-
tion distribution Q(x, dy) and invariant distribution π(dx), the the empirical estimator
En(A) is again efficient for π(A); see Penev (1991) and Bickel (1993). Unlike the i.i.d.
case, the empirical estimator En(A × B) is efficient for π ⊗ Q(A × B); see Greenwood
and Wefelmeyer (1995). However, the empirical estimator

En(A×B × C) =
1

n− 2
|{i : Xi−2 ∈ A, Xi−1 ∈ B, Xi ∈ C}|

is not efficient for π ⊗Q⊗Q(A× B × C). If A, B, C are one-point sets {a}, {b}, {c},
then π⊗Q⊗Q({a}× {b}× {c}) = π({a})Q(a, {b})Q(b, {c}), and an efficient estimator
for this probability is

En({a})En({a} × {b})
En({b})

En({b} × {c})
En({c})

.

If we interpret the Markov chain as a one-dimensional random field, the sets {i − 1, i}
are the maximal cliques.

In this paper we address the question whether there is a similar way of improving
the empirical estimator En(aD) for nearest neighbor random fields of dimension d ≥ 2.

2 Construction of the estimator

Consider the d-dimensional square lattice Zd and a countable state space E. We restrict
attention to a stationary random field µ on EZd

with nearest neighbor interactions. The
Manhattan norm on Zd is defined by |i| =

∑d
k=1 |ik| for i ∈ Zd. Two points i, j ∈ Zd

are neighbors if |i− j| = 1. The neighborhood of 0 is the sphere ∂0 = {i : |i| = 1}. The
random field is µ determined by its local characteristic at 0, the conditional distribution
µ(a0|a−0) = µ(a0|a∂0).

We observe the random field in a large window [−n, n]d. We want to construct an
estimator for the probability of a configuration on a finite subset of the lattice. The
construction uses the following sets of sites: The sphere of radius 2k,

Sk = {i : |i| = 2k}.

The interior of Sk, the ball
Bk = {i : |i| < 2k}.
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The union of the hyperplanes parallel to the faces of the sphere, intersected with Bk,
the ‘cross’

Ck = {i ∈ Bk : i1 + · · ·+ ir − ir+1 − · · · − id = 0 for some r = 1, . . . , d}.

The faces of the sphere and the hyperplanes are orthogonal to one of the d vectors
(1, . . . , 1,−1, . . . ,−1) with r plus signs and d−r minus signs. It is convenient to consider
first a configuration on the set

Dm = Bm ∪ Sm = {i : |i| ≤ 2k}.

We also need the set of sites in Dm − (Cm ∪ Sm) with Manhattan norm divisible by 2k

but not by 2k+1,

Dmk = {i ∈ Dm − (Cm ∪ Sm) : 2k divides |i|, 2k+1 does not divide |i|}.

Let aDm be a configuration on Dm. We factor the probability µ(aDm) using the
splitting property of the nearest neighbor random field. Write a

µ(aDm) = µ(aSm)µ(aBm|aSm). (2.1)

The complement of the cross Cm in the ball Bm consists of 2d disjoint balls Bm−1 + i
with centers i ∈ Dm,m−1. The configurations aBm−1+i, i ∈ Dm,m−1, are conditionally
independent given Cm and Sm. Hence µ(aBm|aSm) factors, b

µ(aBm|aSm) = µ(aCm)µ(aBm|aSmaCm)

= µ(aCm)
∏

i∈Dm,m−1

µ(aBm−1+i|aSm−1+i). (2.2)

Using (2.1) and (2.2), and factoring each conditional probability µ(aBm−1+i|aSm−1+i) in
the same way, we arrive at

µ(aDm) = µ(aSm)µ(aCm|aSm)
m−1∏
k=0

∏
i∈Dmk

µ(aCk+i|aSk+i).

By definition of the conditional probabilities, this can be written fac

µ(aDm) = µ(aCmaSm)
m−1∏
k=0

∏
i∈Dmk

µ(aCk+iaSk+i)

µ(aSk+i)
. (2.3)

It was convenient to describe the factorization from the highest order, the largest set,
Dm. One can, alternatively, begin with the lowest order, the one-point sets. In this case,
the first step is

µ(aDm) = µ(aDm−Dm0aDm0)

= µ(aDm−Dm0)
∏

i∈Dm0

µ(ai|S0 + i)

= µ(aDm−Dm0)
∏

i∈Dm0

µ(ai|∂i).
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Here Dm0 is the set of odd sites in Dm, and Dm − Dm0 the set of even sites. For
parametric random fields, the coding estimator of Besag (1974a) and (1974b) is derived
from the last product, the product of local characteristics at the odd sites. The top-down
and bottom-up lattice partitions arise in the context of seismic models, see Newman,
Gabrielov, Durand, Phoenix and Turcotte (1994) and Saleur, Sammis and Sornette
(1996).

The empirical estimator for the probability of a configuration aD on a finite set
D ⊂ Zd is

En(aD) =
1

|Dn|
|{j : D + j ⊂ [−n, n]d, XD+j = aD}|,

where |Dn| is the number of shifts of D which are contained in [−n, n]d. Instead of using
En(aDm) to estimate µ(aDm), we suggest estimating the probabilities in the factorization
(2.3) by the corresponding empirical estimators, est

Tn(aD) = En(aCmaSm)
m−1∏
k=0

∏
i∈Dmk

En(aCk+iaSk+i)

En(aSk+i)
. (2.4)

Consider now an arbitrary finite set D ⊂ Zd and a configuration aD. Choose m
minimal so that D is contained in (a shift of) Dm. We have

µ(aD) =
∑

aDm−D

µ(aDm−DaD).

From (2.4) we obtain an estimator for µ(aD), estd

Tn(aD) =
∑

aDm−D

Tn(aDm−DaD). (2.5)

To simplify the exposition, we have restricted attention to nearest neighbor random
fields with respect to the Manhattan norm. The construction of the estimator (2.5) can
be modified for other types of local interaction. For example, for the norm |i| = max{ik :
k = 1, . . . , d}, the sphere ∂0 is a cube with faces parallel to the coordinate axes rather
than to the vectors (1, . . . , 1,−1, . . . ,−1), and the factorization is analogous to (2.3).
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