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Abstract. The density of a sum of independent random variables can be estimated by the

convolution of kernel estimators for the marginal densities. We show under mild conditions

that the resulting estimator is n1/2-consistent and converges in distribution in the spaces

C0(R) and L1 to a centered Gaussian process.
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1. Introduction

Smooth functionals of densities can often be estimated at the parametric rate n−1/2, even
though the density itself can be estimated only at the rate n−α/(2α+1), where α is the degree
of smoothness of the density. A natural approach to estimating such functionals is to plug
in a density estimator. Of particular interest in statistics are nonlinear integral functionals
of the density f and of its derivatives f (k). For quadratic functionals

∫
f (k)(x)2 dx see

Hall and Marron (1987) and Bickel and Ritov (1988). For generalizations
∫
φ(f(x), x) dx

and
∫
φ(f(x), . . . , f (k)(x), x) dx see Laurent (1996) and Birgé and Massart (1995). For

the Shannon entropy −
∫
f(x) log f(x) dx see Dudewicz and van der Meulen (1981). For

general results on plug-in estimators we refer to Donoho (1988), who also considers the
Fisher information

∫
f ′(x)2/f(x) dx, and to Goldstein and Messer (1992) and Goldstein

and Khas’minskii (1995). Almost sure i.i.d. representations are obtained by Eggermont
and LaRiccia (1999, 2001) and Mason (2003). Abramson and Goldstein (1991) study the
equidistribution functional 2

∫
f(x)g(x)/(f(x) + g(x)) dx of two densities.

Frees (1994) shows that the density of a symmetric function Y = h(X1, . . . , Xm) of
m > 1 independent and identically distributed random variables can be estimated at the
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parametric rate n−1/2 if this density and the conditional density of Y given X1 are suffi-
ciently smooth. His result generalizes to non-identically distributed random variables. This
covers in particular convolution densities f ∗ g(y) =

∫
f(y − x)g(x) dx. A special case is

the stationary density of a moving average process Yi = Xi − ϑXi−1 when ϑ is known.
Saavedra and Cao (2000) have shown that the variance of an appropriate plug-in estima-
tor of the stationary density at a fixed point y decreases as n−1, implying the parametric
rate. Saavedra and Cao (1999) obtain an analogous result for the more interesting case of
unknown ϑ. Then ϑ and the innovations Xi must be replaced by estimators. Schick and
Wefelmeyer (2004a) prove a stronger result, namely asymptotic normality (and efficiency).
Schick and Wefelmeyer (2004b) generalize these results further. They treat higher-order
moving average processes, and plug-in estimators of the stationary density as elements of
function spaces. A natural space for densities is L1. The key results of Schick and We-
felmeyer (2004b) are functional central limit theorems in the Banach spaces L1 and C0(R),
where C0(R) is the set of all continuous functions h from R to R that vanish at infinity
in the sense that sup|y|>M |h(y)| → 0 as M → ∞. Endowed with the sup-norm, C0(R)
becomes a separable Banach space. These results are the first non-local functional central
limit theorems for density estimators.

In this note we obtain functional central limit theorems for plug-in estimators of convolu-
tion densities. The setting is the following. Suppose we observe independent and identically
distributed random variables X1, . . . , Xn. Let u1, . . . , um be known measurable functions
such that ui(Xi) has a density fi. We are interested in estimating the density g of the sum
u1(X1) + · · ·+ um(Xm). This density is the convolution f1 ∗ · · · ∗ fm of f1, . . . , fm and can
be expressed as

g(y) =
∫
f1(y − y2 − · · · − ym)f2(y2) · · · fm(ym) dy2 · · · dym, y ∈ R.

An important special case is estimation of the density of a linear combination a1X1 + · · ·+
amXm, where the Xi have common density and a1, . . . , am are known non-zero constants.
If the constants are equal to one, then g is the m-fold convolution of the common density
f of the Xi.

An obvious approach to estimating g is to estimate fi by f̂i and then g by the plug-in
estimator ĝ = f̂1 ∗ · · · ∗ f̂m. We use the kernel estimators

f̂i(y) =
1
nbi

n∑
j=1

ki

(y − ui(Xj)
bi

)
, y ∈ R,

with kernels ki and bandwidths bi. In Section 2 we obtain the uniform i.i.d. representation

(1.1) sup
y∈R

∣∣∣ĝ(y)− g(y)−
m∑

i=1

1
n

n∑
j=1

(
gi(y − ui(Xj))− g(y)

)∣∣∣ = op(n−1/2)
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under smoothness of g and mild conditions on the kernels and the bandwidths. Here gi is
the density of u1(X1)+ · · ·+ui−1(Xi−1)+ui+1(Xi+1)+ · · ·+um(Xm). We then use (1.1) to
derive a functional limit theorem for n1/2(ĝ−g) in the Banach space C0(R). In Section 3 we
prove an analogous result in the Banach space L1. These two results imply corresponding
results in Lp for 1 < p <∞. In Section 4 we address computational aspects. We show that
our estimator can be written as a von Mises statistic and is asymptotically equivalent to a
U-statistic. We also address the choice of bandwidth. Simulations show that our estimator
works well even for small sample sizes.

2. Convergence in C0(R)

Let (Ω,F , P ) be a probability space and (S,B) a measurable space. A random element
in S is a measurable mapping from Ω into S. Let X,X1, . . . , Xn be independent and
identically distributed random elements in S. Let u1, . . . , um be measurable functions from
S to the real line R for some integer m > 1. Assume that ui(X) has a density fi for
i = 1, . . . ,m. We estimate fi by the kernel estimator f̂i introduced in Section 1.

Note that (1.1) can be written as

(2.1) ‖n1/2(ĝ − g)− (Hn,1 + · · ·+ Hn,m)‖∞ = op(1),

where

Hn,i(y) = n−1/2
n∑

j=1

(
gi(y − ui(Xj))− g(y)

)
= n−1/2

n∑
j=1

(
gi(y − ui(Xj))− E(gi(y − ui(Xj))

)
, y ∈ R.

Let Fi denote the distribution function of fi, let Fi denote the empirical distribution
function based on ui(X1), . . . , ui(Xn), and let ∆i = n1/2(Fi − Fi) denote the corresponding
empirical process. Then we can write

Hn,i(y) =
∫
gi(y − u) d∆i(u).

Suppose now that gi is absolutely continuous with integrable almost everywhere derivative
g′i. Using integration by parts and a change of variables, this allows us to express

Hn,i(y) =
∫

∆i(u)g′i(y − u) du =
∫

∆i(y − u)g′i(u) du = ∆i ∗ g′i(y).

We can use this representation to show that Hn,i has sample paths in C0(R). (Uniform)
continuity of the sample paths follows from the bound

(2.2) sup
|z−y|≤δ

|Hn,i(z)−Hn,i(y)| ≤ ‖∆i‖∞ sup
|z−y|≤δ

∫
|g′i(z − t)− g′i(y − t)| dt
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and the fact that, by integrability of g′i,

sup
|z−y|≤δ

∫
|g′i(z − t)− g′i(y − t)| dt→ 0 as δ ↓ 0;

see e.g. Theorem 9.5 in Rudin (1974) or Lemma 2 below. That the sample paths of Hn,i

vanish at infinity follows from properties of the empirical process ∆i and the bound

(2.3) sup
|y|>2M

|Hn,i(y)| ≤ sup
|t|>M

|∆i(t)|
∫
|u|≤M

|g′i(u)| du+ ‖∆i‖∞
∫
|u|>M

|g′i(u)| du, M > 0.

Let us now show that the above bounds also give tightness of the process Hn,i. To this end
let us first characterize compact subsets of C0(R).

Lemma 1. A closed subset H of C0(R) is compact if and only if

lim
δ↓0

sup
h∈H

sup
|z−y|≤δ

|h(z)− h(y)| = 0

and

lim
K→∞

sup
h∈H

sup
|z|≥K

|h(z)| = 0.

Proof. The conditions are necessary by Dini’s Theorem. To see that they are sufficient,
choose ε > 0. Now choose a K such that suph∈H sup|z|≥K |h(z)| < ε. In view of the
Arzelà-Ascoli Theorem, see e.g. Billingsley (1968), this and the first condition show that
the restrictions to [−K,K] of the functions in H form a compact subset of C([−K,K]).
Thus there are finitely many functions h1, . . . , hm in H such that min1≤i≤m sup|z|≤K |h(z)−
hi(z)| < ε for every h ∈ H. This shows that min1≤i≤m ‖h− hi‖∞ ≤ 3ε. This in turn shows
that H is totally bounded and hence compact. �

Now, by well-known properties of empirical processes, for every ε > 0, there are finite
constants N and M such that P (‖∆i‖∞ > N) < ε and P (sup|t|>M |∆i(t)| > ε) < ε. These
properties together with the bounds (2.2) and (2.3) give, in view of the above lemma,
that the process Hn,i is tight. It is now easy to check that Hn,1 + · · · + Hn,m converges in
distribution in the space C0(R) to a centered Gaussian process. Thus, if we show (2.1), then
we can conclude that n1/2(ĝ − g) converges in distribution to the same Gaussian process.

To obtain (2.1), we need smoothness of g, and appropriate kernels and bandwidths. For
r = 1, 2, . . . and α ∈ (0, 1], let Gr,α denote the set of all r-times differentiable functions whose
r-th derivatives are Hölder of order α, and let Kr,α denote the set of all uniformly continuous
and integrable functions k such that

∫
k(u) du = 1,

∫
usk(u) du = 0 for s = 1, . . . , r, and∫

|u|r+α|k(u)| du is finite. Let A be the set of integrable functions f for which there is an
integrable function f ′ such that f(y) =

∫ y
−∞ f ′(t)dt, t ∈ R. Such functions are absolutely

continuous functions with integrable almost everywhere derivative.



ROOT n CONSISTENT DENSITY ESTIMATORS 5

Theorem 1. Let g ∈ Gr,α for some r and α, and let g1, . . . , gm ∈ A. Let k1, . . . , km ∈
Kr,α. Assume the following rates on the bandwidths: n(min bi)2 →∞ and n(max bi)2(r+α) →
0. Then (2.1) holds. Moreover, the process Hn,1+· · ·+Hn,m and hence n1/2(ĝ−g) converges
in distribution in the space C0(R) to a centered Gaussian process with covariance function

(2.4) Γ(s, t) = Cov
( m∑

i=1

gi(s− ui(X)),
m∑

i=1

gi(t− ui(X))
)
, s, t ∈ R.

Proof. As a uniformly continuous integrable function, g belongs to C0(R). By as-
sumption, the kernels ki are uniformly continuous and integrable functions. Hence they
also belong to C0(R). Thus the kernel estimators f̂i are integrable elements of C0(R).
Hence ĝ = f̂1 ∗ · · · ∗ f̂m belongs to C0(R). Let f̄i(y) = Ef̂i(y). It is well-known that

(2.5) E‖f̂i − f̄i‖2
2 = E

∫
(f̂i(y)− f̄i(y))2 dy ≤

1
nbi

∫
k2

i (y) dy.

Note that k2
i is integrable since ki is bounded and integrable.

Since f̄i = fi ∗ ki,bi
with ki,bi

(y) = ki(y/bi)/bi, we have ḡ = f̄1 ∗ · · · ∗ f̄m = g ∗ k∗ with
k∗ = k1,b1 ∗ · · · ∗km,bm a member of Kr,α. Since g ∈ Gr,α, we obtain by a standard expansion
that, with C the Hölder constant of the r-th derivative of g,

‖ḡ − g‖∞ ≤ C

∫
|u|r+α|k∗(u)| du

≤ C

∫
. . .

∫
|u1 + · · ·+ um|r+α|k1,b1(u1)| du1 · · · |km,bm(um)| dum

= O((max bi)r+α).

For a subset A of {1, . . . ,m}, let γA = (∗i∈A(f̂i− f̄i)) ∗ (∗i6∈Af̄i), with the interpretation
that γ∅ = ḡ and γ{1,...,m} = ∗m

i=1(f̂i − f̄i). We have

(2.6) ĝ = ∗m
i=1f̂i = ∗m

i=1(f̄i + (f̂i − f̄i)) =
∑
A

γA =
m∑

r=0

Γr

with Γr =
∑

|A|=r γA. Note that Γ0 = γ∅ = ḡ and Γ1 =
∑m

i=1(f̂i− f̄i)∗ ḡi with ḡi = ∗j 6=if̄j =
gi ∗ (∗j 6=ikj,bj

). Thus we obtain∥∥∥ĝ − ḡ −
m∑

i=1

(f̂i − f̄i) ∗ ḡi

∥∥∥
∞
≤

m∑
r=2

‖Γr‖∞.

We have ‖a ∗ b‖∞ ≤ ‖a‖2‖b‖2 and ‖a ∗ b‖∞ ≤ ‖a‖∞‖b‖1. Hence for |A| ≥ 2 and i1, i2 ∈ A,

‖γA‖∞ ≤ ‖f̂i1 − f̄i1‖2‖f̂i2 − f̄i2‖2

∏
i∈A\{i1,i2}

‖f̂i − f̄i‖1

∏
i6∈A

‖f̄i‖1.
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From this bound and (2.5) we obtain that
m∑

r=2

‖Γr‖∞ = Op

( 1
nmin bi

)
.

Here we have also used that ‖f̂i − f̄i‖1 ≤ ‖f̂i‖1 + ‖f̄i‖1 and that ‖f̂i‖1 ≤ ‖ki,bi
‖1 = ‖ki‖1.

The desired result now follows if we show that

Di = ‖n1/2(f̂i − f̄i) ∗ ḡi −Hn,i‖∞ = op(1).

Let F̂i and F̄i denote the distribution functions of f̂i and f̄i. Then F̂i = Fi ∗ ki,bi
and

n1/2(f̂i − f̄i) ∗ ḡi = n1/2(F̂i − F̄i) ∗ ḡ′i = ∆i ∗ ki,bi
∗ ḡ′i = Hn,i ∗ k∗.

Thus we obtain the bound Di ≤ ‖Hn,i ∗ k∗ −Hn,i‖∞. For every y ∈ R, we have the bound

|Hn,i ∗ k∗(y)−Hn,i(y)| ≤
∫
|Hn,i(y − u)−Hn,i(y)||k∗(u)| du.

By distinguishing the cases |u| ≤ δ and |u| > δ we can bound the right-hand side by

sup|z−y|≤δ |Hn,i(z)−Hn,i(y)|
∫
|u|≤δ |k∗(u)| du+ 2‖Hn,i‖∞

∫
|u|>δ |k∗(u)| du

≤ sup|z−y|≤δ |Hn,i(z)−Hn,i(y)|‖k∗‖1 + 2‖Hn,i‖∞δ−r−α
∫
|u|r+α|k∗(u)| du.

Since
∫
|u|r+α|k∗(u)| du = O((max bi)r+α), we obtain from this bound and the tightness of

Hn,i that ‖Hn,i ∗k∗−Hn,i‖∞ = op(1). This implies Di = op(1) and completes the proof. �

Remark 1. The choice of bandwidths is possible only if the smoothness parameter r+α
is greater than one. In this case we can choose b1 = · · · = bm ∼ n−β with 1/(2(r + α)) <
β < 1/2.

Remark 2. Let us now give sufficient conditions for the required properties of g in
terms of the densities f1, . . . , fm. For this we will use that the convolution of a bounded
function with an integrable function is bounded and uniformly continuous.

(1) If all the densities are in A and one of them has a bounded almost everywhere
derivative, then g ∈ Gm−1,1 and g1, . . . , gm ∈ A, and we can choose b1 = · · · = bm ∼ n−β

with 1/(2m) < β < 1/2. In this case, the rate of the optimal bandwidth for a kernel
estimator of a single fi is n−1/3. This means that for large m we can use a considerably
over-smoothed estimator for fi.

(2) If at least two of the densities belong to A, and either one of their almost everywhere
derivatives or one of the remaining densities is bounded, then g1, . . . , gm ∈ A and g ∈ G1,1.
In this case we can choose b1 = · · · = bm ∼ n−β with 1/4 < β < 1/2. Note that if m > 2
then some of the densities f1, . . . , fm need not be smooth at all.
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3. Convergence in L1

We now give conditions under which n1/2(ĝ−g) converges in distribution in the space L1

to a centered Gaussian process. We assume again that g1, . . . , gm belong to A. We proceed
as in the previous section and show first that Hn,1 + · · ·+ Hn,m converges in distribution in
the space L1 to a centered Gaussian process.

Since g′i is integrable, Hn,i has integrable sample paths. Let us now show tightness of
this process in L1. For this we need the following characterization of compact sets in L1,
which is known as the Fréchet-Kolmogorov theorem, see Yosida (1980, p. 275).

Lemma 2. A closed subset H of L1 is compact if and only if

sup
h∈H

‖h‖1 <∞,

lim
δ↓0

sup
|t|<δ

sup
h∈H

∫
|h(x− t)− h(x)| dx = 0,

lim
K↑∞

sup
h∈H

∫
|x|>K

∫
|h(x)| dx = 0.

Suppose that the functions ψi = (1− Fi)1/2F
1/2
i are integrable. Note that ψ2

i (z) is the
second moment of ∆i(z). Thus

(3.1) E(‖∆i‖1) =
∫
E(|∆i(z)|) dz ≤

∫
ψi(z) dz <∞.

This shows that ∆i has almost surely integrable sample paths, and we may view ∆i as an
element of L1. We also find that

(3.2) E

∫
|z|≥K

|∆i(z)| dz ≤
∫
|z|≥K

ψi(z) dz → 0 as K →∞.

Moreover, for positive δ and finite K,

(3.3) ‖Hn,i‖1 ≤ ‖g′i‖1‖∆i‖1,

(3.4) sup
|t|<δ

∫
|Hn,i(z + t)−Hn,i(z)| dz ≤ sup

|t|≤δ

∫
|g′i(z + t)− g′i(z)| dz ‖∆i‖1,

(3.5)
∫
|z|>2K

|Hn,i(z)| dz ≤
∫
|y|>K

|∆i(y)| dy ‖g′i‖1 +
∫
|z|>K

|g′i(z)| dz ‖∆i‖1.

By the integrability of g′i,

(3.6) sup
|t|≤δ

∫
|g′i(z + t)− g′i(z)| dz → 0 as δ ↓ 0.
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Applying (3.1), (3.2), and (3.6) to (3.3)–(3.5) and using Lemma 2, we see that Hn,i is tight
in L1. Consequently, Hn,1+· · ·+Hn,m converges in distribution in the space L1 to a centered
Gaussian process with covariance function (2.4).

Since we are now working in L1, we need slightly different assumptions on g and
g1, . . . , gm. For r = 1, 2, . . . , let Gr denote the set of all r-times differentiable functions
whose r-th derivative belongs to A.

Theorem 2. Let (1 − F1)1/2F
1/2
1 , . . . , (1 − Fm)1/2F

1/2
m be integrable. Let g ∈ Gr for

some r, and let g1, . . . , gm ∈ A. Let k1, . . . , km ∈ Kr,1. Assume the following rates on the
bandwidths: n(min bi)2 →∞ and n(max bi)2(r+1) → 0. Then

‖n1/2(ĝ − g)− (Hn,1 + · · ·+ Hn,m)‖1 = op(1),

and n1/2(ĝ − g) converges in distribution in the space L1 to a centered Gaussian process
with covariance function given in (2.4).

Proof. We begin by proving the following auxiliary result: If F is a distribution func-
tion such that (1 − F )1/2F 1/2 is integrable, then

∫
|x|3/2 dF (x) is finite. Indeed, in this

case, ∫ ∞

0
x dF (x) =

∫ ∞

0
(1− F (x)) dx ≤

∫ ∞

0
(1− F (x))1/2 dx <∞.

Thus x(1 − F (x)) → 0 as x → ∞ and hence x(1 − F (x)) ≤ c for some for some c > 0 and
all x > 0. Hence∫ ∞

0
x3/2 dF (x) =

3
2

∫ ∞

0
x1/2(1− F (x)) dx ≤ 3c1/2

2

∫ ∞

0
(1− F (x))1/2 dx <∞.

A similar argument yields
∫ 0
−∞ |x|3/2 dF (x) <∞.

Now we proceed as in the proof of Theorem 1. We use the same notation. By the above
auxiliary result, fi has finite moments of order 3/2. Thus, by Lemma 2 of Devroye (1992),

‖f̂i − f̄i‖1 = O(n−1/2b
−1/2
i ).

Since g ∈ Gr, we obtain by a standard expansion that

‖ḡ − g‖1 ≤ ‖g(r+1)‖1

∫
|u|r+1|k∗(u)| du = O((max bi)r+1).

Using ‖a ∗ b‖1 ≤ ‖a‖1‖b‖1 we now get for subsets A of {1, . . . ,m} containing at least two
elements i1, i2 that

‖γA‖1 ≤ ‖f̂i1 − f̄i1‖1‖f̂i2 − f̄i2‖1

∏
i∈A\{i1,i2}

‖f̂i − f̄i‖1

∏
i6∈A

‖f̄i‖1.

From this bound and representation (2.6) we obtain∥∥∥ĝ − ḡ −
m∑

i=1

(f̂i − f̄i) ∗ ḡi

∥∥∥
1
≤

m∑
r=2

‖Γr‖1 = Op

(
1

nmin bi

)
.
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The desired result now follows if we show that

(3.7) ‖n1/2(f̂i − f̄i) ∗ gi −Hn,i‖1 = ‖Hn,i ∗ k∗ −Hn,i‖1 = op(1).

For this we bound the left-hand side by

sup|t|≤δ

∫
|Hn,i(y + t)−Hn,i(y)| dy

∫
|u|≤δ |k∗(u)| du+ 2‖Hn,i‖1

∫
|u|>δ |k∗(u)| du

≤ sup|t|≤δ

∫
|Hn,i(y + t)−Hn,i(y)| dy‖k∗‖1 + 2‖Hn,i‖1δ

r+1
∫
|u|r+1|k∗(u)| du.

From this and tightness of Hn,i in L1 it is easy to see that (3.7) holds. �

Remark 3. A sufficient condition for integrability of (1 − F )1/2F 1/2 is that F has a
finite moment of order greater than 2. This follows from the inequality∫

(1− F (x))1/2F (x)1/2 dx ≤
(∫

1
(1 + |x|1+α)

dx

∫
(1 + |x|1+α)(1− F (x))F (x) dx

)1/2

and the fact that the last integral is finite for small enough α > 0 by the moment assumption
on F .

4. Computational Aspects

Our estimator can be written as

ĝ(y) =
1
nm

n∑
j1=1

· · ·
n∑

jm=1

k∗(y − u1(Xj1)− · · · − um(Xjm)), y ∈ R,

where k∗ is the convolution of the kernels k1,b1 , . . . , km,bm . In the special case that b1 =
· · · = bm = b, we have k∗(x) = (k1 ∗ · · · ∗ km)(x/b)/b. Replacing k1 ∗ · · · ∗ km by a kernel K
and setting Kb(y) = K(y/b)/b we obtain the von Mises statistic

ĝv(y) =
1
nm

n∑
j1=1

· · ·
n∑

jm=1

Kb(y − u1(Xj1)− · · · − um(Xjm)), y ∈ R.

A closely related estimator is the U-statistic

ĝu(y) =
1

(n)m

∑
(j1,...,jm)∈In

m

Kb(y − u1(Xj1)− · · · − um(Xjm)), y ∈ R,

with In
m = {(j1, . . . , jm) ∈ {1, . . . , n}m : ji 6= jk if i 6= k}, and (n)m = n!/(n − m)! the

cardinality of In
m. This is a special case of the estimator considered by Frees (1994). If K

is bounded and integrable, then∫
|ĝv(y)− ĝu(y)| dy ≤ 2

nm − (n)m

nm

∫
|Kb(y)| dy = O(n−1)

and

sup
y∈R

|ĝv(y)− ĝu(y)| ≤ 2
nm − (n)m

nm
sup
y∈R

|Kb(y)| = O(b−1n−1).
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Thus the estimators ĝv and ĝu are asymptotically equivalent for the two norms considered
in the paper and for appropriate bandwidths. If K can be expressed as a convolution
K1 ∗ · · · ∗Km, then ĝv coincides with ĝ upon taking ki,bi

= Ki,b. Since Kr,α is closed under
convolutions, our results hold for these estimators ĝv and ĝu. Since ĝv and ĝu are easy to
compute, it is advantageous to work with these estimators and a simple kernel K that is
expressible as a convolution of m kernels in the desired class Kr,α. For example, for K1,1 we
can take K to be the standard normal density.

A possible way of selecting the bandwidth b is to minimize an estimator of the (scaled)
integrated mean square error (IMSE)∫

nE(ĝ(y)− g(y))2 dy.

The latter is approximately∫ (
nB2(y) +

m∑
i=1

Var gi(y − ui(Xi))
)
dy,

where
B(y) =

∫
g(y − bt)K(t) dt− g(y).

We can estimate B(y) by the von Mises statistic

B̂(y) =
1
nm

n∑
j1=1

· · ·
n∑

jm=1

K̃b(y − u1(Xj1)− · · · − um(Xjm)),

where K̃ is a kernel with
∫
K̃(t) dt = 0 and

∫
tjK̃(t) dt =

∫
tjK(t) dt for j = 1, . . . , s and

some s greater than or equal to the order of K. This suggests estimating the IMSE by∫ (
nB̂2(y) +

m∑
i=1

1
n

n∑
j=1

(ĝi(y − ui(Xj))− ĝ(y))2
)
dy,

where ĝi is the von Mises estimator of gi with kernel Kb, so that

ĝi(y − ui(Xj)) =
1

nm−1

∑
j:ji=j

Kb(y − u1(Xj1)− · · · − um(Xjm)),

where the summation extends over indices j = (j1, . . . , jm) such that ji = j. To avoid
calculating the above integral, we minimize instead

(4.1)
L∑

l=1

(
nB̂2(yl) +

m∑
i=1

1
n

n∑
j=1

(ĝi(yl − ui(Xj))− ĝ(yl))
2
)
,

where y1 < · · · < yL are points in R. This estimates the sum

(4.2)
L∑

l=1

nE(ĝ(yl)− g(yl))2.
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We have performed a small simulation study to test this approach. We treat the case
where the Xi are random variables with common density f , and take m = 2 and u1(x) =
u2(x) = x. Then g is f ∗f , the convolution of f with itself. In the simulations we treat three
densities f : the standard normal density: f(x) = φ(x) = (2π)−1/2 exp(−x2/2); a mixture of
normal densities: f(x) = (φ(x) + φ(x− 1))/2; and a Gamma density with shape parameter
2: f(x) = x exp(−x)1(0,∞)(x).

We considered two kernels, one of order two and the other of order four. As order two
kernel we took K = φ and matched it with K̃ given by K̃(x) = (x6 − 21x4 + 105x2 −
57)φ(x)/48 which shares the first six moments with K = φ. In this case we selected the
bandwidth as the minimizer of (4.1) over the grid 0.4, 0.6, 0.8, 1, 1.2. As order four
kernel we chose K(x) = (x4 − 14x2 + 27)φ(x)/16 and matched it with K̃ given by K̃(x) =
(−x8 + 36x6− 354x4 + 924x2− 297)φ(x)/384 which shares the first eight moments with K.
In this case we selected the bandwidth as the minimizer of (4.1) over the grid 0.5, 0.75, 1,
1.25, 1.5. Both kernels can be expressed as convolutions k ∗ k of kernels k with the same
order. For the order four kernel we can take k(x) = (3− x2)φ(x)/2.

In the following table we give the asymptotic value of (4.2), which is 4
∑L

l=1 Var f(yl −
X1), and the average of

∑L
l=1 n(ĝ(yl)− g(yl))2 over 1000 simulated samples of sizes n = 25

and n = 50 for both kernels. For the standard normal density we took the yl from the grid
−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2; for the mixture density from the grid −1, −0.5, 0, 0.5,
1, 1.5, 2, 2.5, 3; and for the Gamma density from the grid 1, 1.75, 2.5, 3.25, 4, 4.75, 5.5,
6.25, 7.

order two kernel order four kernel
density asympt. n=25 n= 50 n=25 n=50

normal 0.553 0.461 0.468 0.361 0.455
mixture 0.445 0.375 0.403 0.324 0.322
Gamma 0.471 0.332 0.386 0.292 0.329

The table shows that our choice of bandwidth works very well. Particularly for small
sample sizes, the scaled IMSE is considerably smaller than the asymptotic value of (4.2).
The order four kernel is noticeably better than the order two kernel. Simulations not
presented here show that the higher order kernel has the additional advantage that the
mean square error of the estimator is less sensitive to the choice of bandwidth in small
sample sizes.
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