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Abstract. For nonparametric regression models with fixed and random design, two classes of

estimators for the error variance have been introduced: second sample moments based on residuals

from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal

but require estimating the regression function; the latter are simple but have larger asymptotic

variance. For nonparametric regression models with random covariates, we introduce a class of

estimators for the error variance that are related to difference-based estimators: covariate-matched

U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal

estimators of the error variance. Our explicit construction of the weights uses a kernel estimator

for the covariate density.
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1. Introduction

Let X and ε be independent random variables, and Y = r(X) + ε for some unknown smooth
regression function r. Assume that ε has mean zero and finite fourth moment. Denote the dis-
tribution function of ε by F . We observe independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ) and
want to estimate the error variance σ2 =

∫
x2 dF (x).

If the regression function r were known, then the errors εi = Yi − r(Xi) were observable, and
we could estimate the error variance σ2 with the second sample moment

1
n

n∑
i=1

ε2
i .(1.1)
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Alternatively, we could use the sample variance based on the errors. The sample variance can be
written as the U-statistic

1
n(n− 1)

∑∑
i6=j

1
2

(εi − εj)2(1.2)

and is asymptotically equivalent to the second sample moment 1
n

∑n
i=1 ε

2
i .

We do not know the regression function. But the above two estimators of σ2 for known r each
suggest an estimator of σ2 for unknown r. The estimator for unknown r suggested by (1.1) is the
second sample moment based on residuals from a nonparametric fit,

1
n

n∑
i=1

(Yi − r̂(Xi))2,

where r̂ is an estimator of the regression function. For fixed design see Wahba (1978), Carter
and Eagleson (1992) and Carter, Eagleson and Silverman (1992), who use a spline estimator for
r, and Hall and Carroll (1989) and Hall and Marron (1990), who use a kernel estimator for r and
also treat random designs. Generalizations to heteroscedastic regression with random covariates
are studied in Neumann (1994), Stadtmüller and Tsybakov (1995) and Ruppert, Wand, Holst and
Hössjer (1997).

For random covariates, Hall and Marron (1990) prove that 1
n

∑n
i=1(Yi− r̂(Xi))2, with r̂ a kernel

estimator, has asymptotic variance

τ2 =
∫
x4 dF (x)− σ4.(1.3)

This is the asymptotic variance of 1
n

∑n
i=1 ε

2
i . Hence their estimator has minimal asymptotic vari-

ance. Müller, Schick and Wefelmeyer (2001) show that, more precisely, Hall and Marron’s estimator
is stochastically equivalent to 1

n

∑n
i=1 ε

2
i . This implies that the estimator is asymptotically normal

and efficient in the sense of Hájek and Le Cam: it is a least dispersed regular estimator and has
minimal asymptotic risk for all bounded bowl-shaped and symmetric loss functions.

Motivated by the U-statistic representation (1.2) of the sample variance, we introduce the
covariate-matched U-statistic

U =
1

n(n− 1)

∑∑
i6=j

1
2

(Yi − Yj)2 Wij ,(1.4)

where the random weights Wij will be based on the covariates only and will be chosen small or
zero if Xi and Xj are not close. Our estimator U is related to difference-based estimators for fixed
design Xi = i/n, for which Xi and Xj are close if the indices i and j are close. Rice (1984) and
Gasser, Sroka and Jennen-Steinmetz (1986) have introduced the estimators

σ̂2
R =

1
2(n− 1)

n∑
i=2

(Yi − Yi−1)2 and σ̂2
GSJ =

1
6(n− 2)

n∑
i=3

(Yi + Yi−2 − 2Yi−1)2.
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See also Buckley, Eagleson and Silverman (1988), Buckley and Eagleson (1989) and Ullah and
Zinde-Walsh (1992). Hall, Kay and Titterington (1990) consider higher-order estimators

1
n− r

n−m2∑
i=m1+1

( m2∑
j=−m1

djYi+j

)2
.

These estimators have asymptotic variances larger than τ2. For comparisons see Seifert, Gasser
and Wolf (1993) and Dette, Munk and Wagner (1998, 1999).

In Section 2 we determine properties of the weights Wij which guarantee that the covariate-
matched U-statistic U behaves asymptotically like the sample second moment based on the errors,
i.e., that it has the i.i.d. representation

U =
1
n

n∑
i=1

ε2
i + op(n−1/2).(1.5)

In particular, unlike the difference-based estimators mentioned above, our estimator U is efficient
for σ2.

In Section 3 we construct explicit weights Wij . They require kernel estimators for the covariate
density. This is the price we pay for efficiency. However, we do not need to estimate the regression
function, as required for the traditional residual-based efficient estimator. In particular, we get
by with weaker assumptions on the regression function: r is assumed Hölder with exponent larger
than 1/4; the corresponding result for 1

n

∑n
i=1(Yi− r̂(Xi))2 in Müller, Schick and Wefelmeyer (2001)

requires an exponent larger than 1/2.
In Section 4 we compare the small-sample behavior of our estimator with that of the estimators

σ̂2
R of Rice (1984) and σ̂2

GSJ of Gasser, Sroka and Jennen-Steinmetz (1986). Our results carry over
to fixed designs under appropriate conditions on the asymptotic behavior of the design. In this
case we have independent, but not identically distributed observations, and the proof of efficiency
must be rewritten. We refer to McNeney and Wellner (2000) for general results in this setting.

2. The asymptotic behavior of the covariate-matched U-statistic

In this section we study the asymptotic behavior of the covariate-matched U-statistic U intro-
duced in (1.4). We make the following assumptions on the error distribution and the weights.

Assumption 1. The error variable ε is centered and possesses a finite fourth moment:∫
x dF (x) = 0 and

∫
x4 dF (x) <∞.
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Assumption 2. The weights Wij depend on the covariates but not on the errors, and they are
non-negative, symmetric, and average to one:

Wij ≥ 0, i, j = 1, . . . , n, i 6= j;(2.1)

Wij = Wji, i, j = 1, . . . , n, i 6= j;(2.2)
1

n(n− 1)

∑∑
i6=j

Wij = 1.(2.3)

For later use we set

W i =
1

n− 1

∑
j:j 6=i

Wij , i = 1, . . . , n;

∆i =
1

n− 1

∑
j:j 6=i

(r(Xi)− r(Xj))Wij , i = 1, . . . , n.

The following theorem gives conditions under which U behaves asymptotically like the average
of the squared errors.

Theorem 1. Suppose that Assumptions 1 and 2 hold and that

1
n(n− 1)

∑∑
i6=j

W 2
ij = op(n);(2.4)

1
n

n∑
i=1

(W i − 1)2 = op(1);(2.5)

1
n

n∑
i=1

∆2
i = op(1);(2.6)

1
n(n− 1)

∑∑
i6=j

(r(Xi)− r(Xj))2Wij = op(n−1/2).(2.7)

Then

U =
1
n

n∑
i=1

ε2
i + op(n−1/2).

In particular, n1/2(U − σ2) converges in distribution to a normal random variable with mean zero
and variance τ2 =

∫
x4 dF (x)− σ4.
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Proof. We can write U as the sum U1 + U2 + U3 of the three U-statistics

U1 =
1

n(n− 1)

∑∑
i6=j

1
2

(εi − εj)2Wij ,

U2 =
1

n(n− 1)

∑∑
i6=j

(εi − εj)(r(Xi)− r(Xj))Wij ,

U3 =
1

n(n− 1)

∑∑
i6=j

1
2

(r(Xi)− r(Xj))2Wij .

We have U3 = op(n−1/2) by (2.7). Let us now show that U2 = op(n−1/2). Using the symmetry (2.2)
of the weights we can write

U2 =
2
n

n∑
i=1

εi∆i.

Thus, by assumption (2.6),

nE[U2
2 | X1, . . . , Xn] = 4σ2 1

n

n∑
i=1

∆2
i = op(1).

This implies the desired U2 = op(n−1/2).
Using again the symmetry of the weights, we obtain that

U1 =
1
n

n∑
i=1

ε2
iW i − S =

1
n

n∑
i=1

ε2
i + T − S,

where

S =
1

n(n− 1)

∑∑
i6=j

εiεjWij ,

T =
1
n

n∑
i=1

ε2
i (W i − 1) =

1
n

n∑
i=1

(ε2
i − σ2)(W i − 1),

with the last identity a consequence of assumption (2.3). By assumption (2.5) we have

nE[T 2 | X1, . . . , Xn] ≤
∫
x4 dF (x)

1
n

n∑
i=1

(W i − 1)2 = op(1).

This yields T = op(n−1/2). By assumption (2.4) we have

nE[S2 | X1, . . . , Xn] =
2σ4

n− 1
1

n(n− 1)

∑∑
i6=j

W 2
ij = op(1),

which yields S = op(n−1/2). Thus we have U1 = 1
n

∑n
i=1 ε

2
i + op(n−1/2). This completes the

proof. �
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Remark 1. We did not use requirement (2.1) in the above proof. However, it is natural to
impose this requirement as it guarantees that our estimator is non-negative. Inspection of the above
proof also shows that assumption (2.3) is only used to conclude the second identity for T . But it
is enough to have this identity only up to a term of order op(n−1/2). Thus we can relax (2.3) to

(2.8)
1

n(n− 1)

∑∑
i6=j

Wij = 1 + op(n−1/2).

The latter is implied by

(2.9) P
( 1
n(n− 1)

∑∑
i6=j

Wij = 1
)
→ 1.

Remark 2. In view of assumptions (2.1), a sufficient condition for (2.4) is (2.8) and

(2.10) max
i,j

Wij = op(n).

Indeed, we can bound the left-hand side of (2.4) by the product of the left-hand sides of (2.8) and
(2.10). A sufficient condition for (2.5) is

(2.11) max
i
|W i − 1| = op(1).

An application of the Cauchy–Schwarz inequality shows that (2.11) and (2.7) imply (2.6).

Remark 3. Suppose now that the regression function r is Hölder with constant H and exponent
β:

|r(s)− r(t)| ≤ H|s− t|β, s, t ∈ R.
In addition to Assumption 2 let the weights satisfy

(2.12) Wij = 0 if |Xi −Xj | > bn, i, j = 1, . . . , n, i 6= j,

for a bandwidth bn tending to zero. Then |∆i| ≤ HbβnW i, and (2.6) follows from this and (2.5). We
can also bound the left-hand side of (2.7) by H2b2βn and obtain (2.7) if n1/2b2βn → 0. However, to
satisfy the other properties such as (2.4) and (2.5), the bandwidth will need to satisfy nbn → ∞.
Thus, we will need at least β > 1/4 to obtain (2.7).

3. Construction of weights

In this section we construct weights Wij explicitly. We impose the following additional assump-
tions.

Assumption 3. The covariate X takes values in the interval [0, 1] and possesses a density g

whose restriction to [0, 1] is continuous and positive.

Assumption 4. The regression function r satisfies the Hölder condition

|r(s)− r(t)| ≤ H|s− t|β, s, t ∈ [0, 1],

for some finite constant H and some positive β with β ≤ 1.
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We shall now construct non-negative symmetric weights which fulfill the requirements (2.4) to
(2.7) and (2.8). For this let K be a bounded symmetric density with compact support [−1, 1], and
let bn be a bandwidth. Then our choice is

Wij =
1
2

(
1
ĝi

+
1
ĝj

)
Kn(Xi −Xj),(3.1)

where Kn(x) = K(x/bn)/bn and

ĝi =
1

n− 1

∑
j:j 6=i

Kn(Xi −Xj), i = 1, . . . , n.

Actually, these weights are not well defined on the event {mini ĝi = 0}. We shall see later that this
event has probability going to zero for our choice of bandwidth. Thus we can redefine the weights
on this event without affecting the asymptotics. For example, we may take the weights on this
event to correspond to a larger bandwidth for which all ĝi are positive.

We denote the estimator corresponding to the above weights by σ̂2, so that

σ̂2 =
1

n(n− 1)

∑∑
i6=j

1
2

(Yi − Yj)2 1
2

(
1
ĝi

+
1
ĝj

)
Kn(Xi −Xj).

Theorem 2. Suppose Assumptions 1, 3 and 4 hold. Let the bandwidth bn satisfy n1/2b2βn → 0
and nbn/ log n→∞. Then

σ̂2 =
1
n

n∑
i=1

ε2
i + op(n−1/2).

Proof. Clearly, our weights are non-negative and symmetric. Moreover, they average to one
except on the event {minj ĝj = 0}. But the probability of this event tends to zero, see (3.2) below.
Since we have (2.1), (2.2) and (2.9), we need only verify (2.4) to (2.7) for our weights (3.1). It
follows from Remark 3 and the choice of bandwidth that (2.6) and (2.7) hold. We are left to verify
(2.4) and (2.5). To this end let us define

gn(x) =
∫
Kn(x− t)g(t) dt =

∫
g(x− bnt)K(t) dt, x ∈ R.

The key to verifying the remaining two conditions (2.4) and (2.5) will be the fact that

V = max
i
|ĝi − gn(Xi)| = op(1).

But this can be established by applications of the Bernstein inequality (Serfling, 1980, p. 95, Lemma
A).

It follows from Assumption 3 that the density g is bounded and bounded away from zero on
[0, 1]. Thus there are constants 0 < a < A <∞ such that a ≤ g(x) ≤ A for all x ∈ [0, 1]. This lets
us conclude that 1

2a ≤ gn(x) ≤ A for all x ∈ [0, 1] if bn < 1/2. Thus we immediately obtain that

(3.2) N = max
i
ĝi = Op(1) and M = max

i

1
ĝi

= Op(1).



8 URSULA U. MÜLLER, ANTON SCHICK, AND WOLFGANG WEFELMEYER

From the latter and the properties of K and bn we obtain (2.10) and hence (2.4) as shown in
Remark 2. Easy calculations show that on the event {minj ĝj > 0},

|W i − 1| ≤ 1
n− 1

∑
j:j 6=i

∣∣∣ 1
ĝi
− 1
ĝj

∣∣∣Kn(Xi −Xj)

≤ M2 1
n− 1

∑
j:j 6=i
|ĝi − ĝj |Kn(Xi −Xj)

≤ M2 1
n− 1

∑
j:j 6=i
|gn(Xi)− gn(Xj)|Kn(Xi −Xj) + 2M2V N.

Thus (2.5) follows if we show that

B =
1
n

n∑
i=1

( 1
n− 1

∑
j:j 6=i
|gn(Xi)− gn(Xj)|Kn(Xi −Xj)

)2
= op(1).

Let wg denote the modulus of continuity of g restricted to [0, 1]:

wg(b) = sup
x,y∈[0,1],|x−y|≤b

|g(x)− g(y)|, b > 0.

For x, y ∈ (bn, 1− bn) with |y − x| < bn, we find that

|gn(x)− gn(y)| ≤
∫
|g(x− bnt)− g(y − bnt)|K(t) dt ≤ wg(bn).

By Assumption 3 we have wg(bn)→ 0. We can bound B by

1
n

n∑
i=1

1[Xi ∈ (2bn, 1− 2bn)](wg(bn)N)2 +
1
n

n∑
i=1

1[Xi 6∈ (2bn, 1− 2bn)](2AN)2.

It is now easy to see that B = op(1). �

4. Small sample behavior

In this section we shall take a brief look at the small sample behavior of our estimator and an
automatic bandwidth selection based on cross-validation. Our estimator σ̂2 is a U-statistics version
of the Rice estimator σ̂2

R. Gasser, Sroka and Jennen-Steinmetz (1986) show that their estimator
σ̂2
GSJ has less of a bias problem than σ̂2

R when the signal to noise ratio is large. We have performed
a small simulation study in which we compare our estimator with σ̂2

R and σ̂2
GSJ . To keep it simple,

we only look at the case of an equidistant design on [0, 1], with design points i/(n−1), i = 0, . . . , n,
and consider only normally distributed errors. We take n = 25 and choose the following three
regression functions.

r1(x) = 0.3 exp(−4(4x− 1)2) + 0.7 exp(−16(4x− 3)2),(4.1)

r2(x) = sin(5πx),(4.2)

r3(x) =
√
|(x− .2)(x− .7)|.(4.3)
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For our estimator we take the weights proposed in the previous section with K(x) = 3(1− x2)+/4
and several choices of bandwidths, namely b = .05, .10, .15, .20 and .25. Because of the equidistant
design our estimator with bandwidth b = .05 equals the Rice estimator σ̂2

R. We also look at a
version of our estimator with a data-driven bandwidth using a cross-validation principle. More
precisely, we choose a bandwidth from the five choices above that minimizes

n∑
i=1

(σ̂2 − σ̂2
i )

2,

where σ̂2
i is our the estimator constructed without the i-th pair (Xi, Yi).

Table 1. Relative MSE’s for r = r1 and selected values of σ.

σ b = .05 b = .10 b = .15 b = .20 b = .25 σ̂2
d σ̂2

GSJ

0.20 2.29 3.05 4.85 7.09 9.55 3.87 2.21
0.40 1.63 1.53 1.61 1.78 1.98 1.56 2.07
0.70 1.70 1.49 1.41 1.38 1.38 1.33 2.23
1.00 1.56 1.37 1.29 1.25 1.23 1.22 2.04
2.00 1.53 1.32 1.21 1.16 1.13 1.13 2.08
3.00 1.49 1.30 1.19 1.14 1.11 1.13 2.01
5.00 1.55 1.35 1.24 1.18 1.15 1.17 2.10
10.00 1.48 1.29 1.18 1.13 1.11 1.12 1.95

Table 2. Relative MSE’s for r = r2 and selected values of σ.

σ b = .05 b = .10 b = .15 b = .20 b = .25 σ̂2
d σ̂2

GSJ

0.20 93.41 238.79 588.09 1071.00 1600.35 381.73 4.07
0.40 7.85 17.26 40.14 71.69 106.22 26.32 2.27
0.70 2.33 3.28 5.87 9.50 13.49 5.07 2.11
1.00 1.77 1.89 2.56 3.54 4.61 2.47 2.05
1.25 1.65 1.60 1.83 2.23 2.69 1.82 2.06
1.50 1.55 1.44 1.53 1.73 1.98 1.52 1.97
2.00 1.62 1.44 1.40 1.45 1.54 1.35 2.12
3.00 1.50 1.31 1.24 1.23 1.25 1.18 1.97
5.00 1.52 1.32 1.21 1.18 1.17 1.16 2.06
10.00 1.57 1.37 1.26 1.21 1.18 1.19 2.13

Tables 1 to 3 report the relative mean square errors (RMSE) of these six versions of our
estimator and of the Gasser et al. (1986) estimator for selected values of σ. The RMSE is the
(simulated) MSE divided by τ2/n, the variance based on the asymptotic considerations, which is
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Table 3. Relative MSE’s for r = r3 and selected values of σ.

σ b = .05 b = .10 b = .15 b = .20 b = .25 σ̂2
d σ̂2

GSJ

0.10 1.87 2.10 3.12 4.95 7.41 3.08 2.16
0.20 1.64 1.45 1.44 1.59 1.80 1.46 2.21
0.40 1.63 1.42 1.31 1.28 1.29 1.24 2.16
0.70 1.55 1.36 1.25 1.20 1.18 1.18 2.10
1.00 1.53 1.33 1.22 1.16 1.13 1.13 2.04
2.00 1.59 1.37 1.24 1.19 1.16 1.17 2.12
5.00 1.52 1.31 1.20 1.15 1.12 1.13 2.06
10.00 1.57 1.37 1.26 1.21 1.17 1.18 2.13

2σ4/n for our normal errors. The first column in each table lists the selected values of σ. The
next five columns give the RMSE’s for our estimator with the indicated bandwidth. Since our
estimator with bandwidth b = .05 equals the Rice estimator, the second column in each table also
provides the RMSE’s of σ̂2

R. The seventh column (labeled σ̂2
d) in each table gives the RMSE’s of

our estimator with the data-driven bandwidth described above. The last column in each table gives
the RMSE’s of the estimator σ̂2

GSJ .
When the error variance is very small, our estimator has bias problems similar to the Rice

estimator σ̂2
R. In the more interesting case of an error variance that is not small, our estimator

is better than σ̂2
GSJ . This holds for quite small sample sizes, even though our estimator requires

estimating the covariate density.
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