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Abstract

We consider d-order Markov chains satisfying a conditional constraint
E(aϑ(Xi−1, Xi) | Xi−1) = 0, where Xi−1 = (Xi−1, . . . , Xi−d). These com-
prise quasi-likelihood models and nonlinear and conditionally heteroscedastic
autoregressive models with martingale innovations. Estimators for ϑ can be
obtained from estimating equations

∑n
i=1Wϑ(Xi−1)>aϑ(Xi−1, Xi) = 0. We

review different criteria for choosing good weights Wϑ(Xi−1). They usually
lead to weights that depend on unknown features of the transition distribution
and must be estimated. We compare the approach via estimating functions
with other ways of constructing estimators for ϑ, and discuss efficiency of the
estimators in the sense of Hájek and LeCam. Analogous comparisons may be
made for regression models.

Keywords: generalized quasi-likelihood, extended quasi-likelihood, ARCH model,

generalized method of moments, conditional least squares, influence function, gradi-

ent, variance bound.

1 Introduction

Let X1−p, . . . , Xn be observations from a homogeneous and geometrically ergodic d-

order Markov chain on some arbitrary state space. Write Xi−1 = (Xi−1, . . . , Xi−d),

and assume that the chain meets the conditional constraint

E(aϑ(Xi−1, Xi) | Xi−1) = 0, (1)

where aϑ(x, y) with x = (x1, . . . , xd) is a known k-dimensional vector of functions

involving an unknown p-dimensional parameter ϑ. We are interested in optimal

estimators of ϑ.

In Section 2 we derive an asymptotic lower bound for estimators of ϑ in the sense

of Hájek and Le Cam, and give a characterization of efficient estimators.

In Section 3 we consider estimating equations for ϑ of the form

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) = 0,
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with Wϑ(x) a k×p matrix of weights. The weights minimizing the asymptotic covari-

ance matrix depend, through conditional expectations of certain functions, on the

unknown transition distribution of the chain. Hence the optimal estimating function

cannot be used as it stands for estimating ϑ. We indicate that replacing the optimal

weights by appropriate estimators does not change the asymptotic covariance ma-

trix, and show that the resulting estimating function with estimated optimal weights

is efficient. We also introduce generalized quasi-likelihood estimating functions, re-

placing the optimal weights by parametric models for the conditional expectations.

These estimating functions are easier to calculate, but inefficient both for correctly

specified and for misspecified conditional expectations.

We discuss these findings in more specific situations. A particular class of exam-

ples of constraints (1) are quasi-likelihood models, with real state space and para-

metric models for the conditional means and variances,

E(Xi | Xi−1) = rϑ(Xi−1), (2)

E((Xi − rϑ(Xi))
2 | Xi−1) = vϑ(Xi−1). (3)

Then aϑ(x, y) = (y − rϑ(x), (y − rϑ(x))2 − vϑ(x))>.

Quasi-likelihood models can be written as

Xi = rϑ(Xi−1) + vϑ(Xi−1)1/2εi, (4)

with innovations εi that are martingale increments, E(εi | Xi−1) = 0, and that

satisfy E(ε2
i | Xi−1) = 1 for identifiability. The submodel with independent inno-

vations εi is called nonlinear and heteroscedastic p-order autoregressive model. We

indicate that the estimating function with (estimated) optimal weights is not effi-

cient in this submodel because it does not use the information that the innovations

are independent.

2 Efficiency

In this section we derive a characterization of efficient estimators of ϑ in the d-order

Markov chain model constrained by (1).

Consider first the nonparametric d-order Markov chain model, without constraint

(1). Write Q(x, dy) for the transition distribution of Xi given Xi−1 = x, and assume

that the chain is geometrically ergodic under Q. Let π(dx) be the stationary law of

Xi−1. Write (π ⊗ Q)(dx, dy) = π(dx)Q(x, dy) for the joint law of (Xi−1, Xi), and

Q(x, f) =
∫
Q(x, dy)f(x, y) for the conditional expectation of f(Xi−1, Xi) given

Xi−1 = x. Whenever the argument x is omitted, we find it convenient to use the

shorter notation Qf for Q(·, f).
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The nonparametric model is locally asymptotically normal in the following sense.

Introduce (Hellinger differentiable) perturbations

Qnh(x, dy)
.
= Q(x, dy)(1 + n−1/2h(x, y)),

with h in the tangent space

H = {h ∈ L2(π ⊗Q) : Q(x, h) = 0 for all x}.

Since h may take large negative values, we cannot simply define Qnh replacing
.
=

by an equality sign. There are three ways to take care of this problem: truncation

of h, transformation of the density, or, simplest, restriction to bounded h (which

are dense in H). The condition Q(x, h) = 0 is required for Qnh to be a transition

distribution. Write Pnh and Pn for the joint law of X1−p, . . . , Xn under Qnh and Q,

respectively. The log-likelihood ratio has the stochastic expansion

log
dPnh
dPn

= n−1/2
n∑
i=1

h(Xi−1, Xi)−
1

2
(π ⊗Q)(h2) + oPn(1).

For bounded h see Penev [37]. For general Hellinger differentiable perturbations, the

stochastic expansion may be obtained by modifying Höpfner [21]. See also Höpfner,

Jacod and Ladelli [23] and Höpfner [22]. By a martingale central limit theorem,

n−1/2∑n
i=1 h(Xi−1, Xi) is asymptotically normal with variance (π ⊗Q)(h2).

Now suppose that the model is constrained by (1). Relation (1) may be writ-

ten Q(x, aϑ) = 0. The perturbed transition distribution Qnh must also fulfill the

constraint, possibly with perturbed parameter, say ϑnu
.
= ϑ+ n−1/2u:

0 = Qnh(x, aϑnu)
.
= Q(x, aϑ) + n−1/2(Q(x, aϑh) +Q(x, ȧϑ)u). (5)

Hence the tangent space of the constrained model is the union, call it H∗, of the

affine spaces

Hu = {h ∈ H : Q(x, aϑh) = −Q(x, ȧϑ)u for all x}.

We recall the following definitions and results from Le Cam’s and Hájek’s theory

of efficient estimation. The standard reference for the i.i.d. case is Bickel, Klaassen,

Ritov and Wellner [1]; for Markov chains see also Wefelmeyer [42]. A p-dimensional

functional t(Q) is called differentiable at Q with gradient g if g ∈ Hp and

n1/2(t(Qnh)− t(Q))→ (π ⊗Q)(gh) for h ∈ H∗. (6)

The canonical gradient g∗ is the componentwise projection of g onto the tangent

space H∗. An estimator t̂ for t(Q) is called regular at Q with limit L if

n1/2(t̂− t(Qnh))⇒ L under Pnh for h ∈ H∗.
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The Convolution Theorem says that if t̂ is regular for t(Q) with limit L, then

L = (π ⊗Q)(g∗g
>
∗ )1/2N +M in distribution,

where N a p-dimensional standard normal random vector, and M a random vector

independent of N . This justifies calling a regular estimator efficient for t(Q) if its

limit is

L = (π ⊗Q)(g∗g
>
∗ )1/2N in distribution.

An estimator t̂ for t(Q) is called asymptotically linear at P with influence function

f if f ∈ Hp and

n1/2(t̂− t(Q)) = n−1/2
n∑
i=1

f(Xi−1, Xi) + oPn(1). (7)

Such an estimator is asymptotically normal with covariance matrix (π ⊗ Q)(ff>).

We have the following two characterizations.

1. An asymptotically linear estimator for t(Q) is regular if and only if its influence

function is a gradient for t(Q).

2. An estimator for t(Q) is (regular and) efficient if and only if it is asymptotically

linear with influence function equal to the canonical gradient of t(Q).

Now we apply these results to estimation of ϑ. Consider the parameter ϑ as a

functional of the transition distribution by setting t(Q) = ϑ if Q(x, aϑ) = 0. We

have

n1/2(t(Qnh)− t(Q))
.
= n1/2(ϑnu − ϑ) = u for h ∈ Hu.

Hence, by (6), the canonical gradient is characterized as the vector g∗ ∈ Hp
∗ such

that

(π ⊗Q)(g∗h) = u for h ∈ Hu.

We show that the canonical gradient is g∗ = J−1` with

`(x, y) = −Q(x, ȧ>ϑ )Q(x, aϑa
>
ϑ )−1aϑ(x, y),

J = (π ⊗Q)(``>) = π(Qȧ>ϑQ(aϑa
>
ϑ )−1Qȧϑ).

We have

Q(x, aϑ`
>) = −Q(x, ȧϑ).

Hence the j-th component `j of ` is in Hej , where ej denotes the j-th p-dimensional

unit vector. It follows that ` and hence J−1` is in Hp
∗ . Furthermore, for h ∈ Hu,

(π ⊗Q)(J−1` · h) = −π(Qȧ>ϑQ(aϑa
>
ϑ )−1Qȧϑ)−1 π(Qȧ>ϑQ(aϑa

>
ϑ )−1Q(aϑh)) = u.

This completes the proof that J−1` is the canonical gradient of ϑ. Using the above

characterization of efficient estimators, we arrive at the following result.
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Characterization. The canonical gradient of ϑ is g∗ = J−1`. Hence an estimator

ϑ̂ for ϑ is regular and efficient if and only if

n1/2(ϑ̂− ϑ) = J−1n−1/2
n∑
i=1

`(Xi−1, Xi) + oPn(1). (8)

Its asymptotic covariance matrix is J−1.

We see that ` and J play the roles of score function and Fisher information for

ϑ.

The characterization sketched in this section is analogous to that obtained in

Müller and Wefelmeyer [33] for the corresponding regression model, with i.i.d. ob-

servations (Xi, Yi) meeting the conditional constraint E(aϑ(Xi, Yi) | Xi) = 0. A

(different) derivation of the asymptotic variance bound J−1 is already sketched in

Chamberlain [3], with generalizations in [4]. Reviews are Newey [34] and [35]. Simi-

lar arguments as above are used in Müller and Wefelmeyer [32] for models with i.i.d.

observations Xi satisfying an unconditional constraint Eaϑ(Xi) = 0. Estimators of

the stationary law π in our model (1) are constructed in Schick and Wefelmeyer

[38].

3 Estimating functions

The characterization (8) of efficient estimators for ϑ suggests a construction as one-

step Newton–Raphson improvement of an initial, inefficient, estimator ϑ̄,

ϑ̂ = ϑ̄+ J̄−1 1

n

n∑
i=1

¯̀(Xi−1, Xi),

with appropriate estimators J̄ and ¯̀ for J and `. This construction does not take

advantage of the special feature of our model and is not recommended.

The conditional constraint (1) says that aϑ(Xi−1, Xi) is a martingale increment.

This suggests estimating ϑ by solutions ϑ̂ of martingale estimating equations

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) = 0, (9)

with Wϑ(x) a k× p-matrix of weights. The asymptotic distribution of ϑ̂ is obtained

from a Taylor expansion

0 =
n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) +
n∑
i=1

Wϑ(Xi−1)>ȧϑ(Xi−1, Xi)(ϑ̂− ϑ) + . . . ,
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with ȧϑ(x, y) the k× p-matrix of partial derivatives of aϑ(x, y) with respect to ϑ. If

(π ⊗Q)(W>
ϑ ȧϑ) is invertible, we obtain the stochastic approximation

n1/2(ϑ̂− ϑ) = −
( 1

n

n∑
i=1

Wϑ(Xi−1)>ȧϑ(Xi−1, Xi)
)−1

n−1/2
n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) + oPn(1). (10)

By ergodicity, we may replace the average in (10) by its mean (π ⊗Q)(W>
ϑ ȧϑ).

Then ϑ̂ is seen to be asymptotically linear (7) with influence function

f(x, y) = −(π ⊗Q)(W>
ϑ ȧϑ)−1Wϑ(x)>aϑ(x, y).

Hence ϑ̂ is asymptotically normal with covariance matrix

(π ⊗Q)(W>
ϑ ȧϑ)−1(π ⊗Q)(W>

ϑ aϑa
>
ϑWϑ)(π ⊗Q)(ȧϑW

>
ϑ )−1

= π(W>
ϑ Qȧϑ)−1π(W>

ϑ Q(aϑa
>
ϑ )Wϑ)π(Qȧ>ϑWϑ)−1. (11)

By the Cauchy–Schwarz inequality, the optimal weights are

Wϑ(x) = W ∗
ϑ(x) = Q(x, aϑa

>
ϑ )−1Q(x, ȧϑ). (12)

For these weights, the covariance matrix (11) is

π(Qȧ>ϑQ(aϑa
>
ϑ )−1Qȧϑ)−1.

This is the asymptotic variance bound J−1 obtained in Section 2.

Minimizing the matrix (11) is also suggested by the non-asymptotic optimality

criterion of Godambe [13] and Godambe and Heyde [15].

The average in (10) may also be replaced by 1
n

∑n
i=1 Wϑ(Xi−1)>Q(Xi−1, ȧϑ). The

asymptotic optimality criterion of Godambe and Heyde [15] suggests minimizing the

matrix ( n∑
i=1

Wϑ(Xi−1)>Q(Xi−1, ȧϑ)
)−1

n∑
i=1

Wϑ(Xi−1)>Q(Xi−1, aϑa
>
ϑ )Wϑ(Xi−1)

( n∑
i=1

Q(Xi−1, ȧϑ)>Wϑ(Xi−1)
)−1

. (13)

This leads to the same optimal weights. We refer to Heyde [20] for uses of this

criterion.

The optimal weights depend, through Q(Xi−1, aϑa
>
ϑ ) and Q(Xi−1, ȧϑ), on the

unknown transition distribution of the Markov chain. Hence the corresponding
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optimal estimating function cannot be used as it stands for estimating ϑ. We will

call such an estimating function undetermined.

Generalized method of moments. The martingale estimating equation (9)

results in an estimator that is asymptotically equivalent to the GMM estimator

obtained from the generalized method of moments, the minimizer ϑ̂ of

n∑
i=1

aϑ(Xi−1, Xi)
>Wϑ(Xi−1)Mn

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi), (14)

where Mn is a random p × p matrix converging to a deterministic matrix M , say.

To prove the asymptotic equivalence, we write the GMM estimator as solution of

an estimating equation. Taking partial derivatives with respect to ϑ, we see that ϑ̂

solves
n∑
i=1

ȧϑ̂(Xi−1, Xi)
>Wϑ(Xi−1)Mn

n∑
i=1

Wϑ(Xi−1)>aϑ̂(Xi−1, Xi) = 0.

A Taylor expansion gives

0 =
n∑
i=1

ȧϑ(Xi−1, Xi)
>Wϑ(Xi−1)Mn

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi)

+
n∑
i=1

ȧϑ(Xi−1, Xi)
>Wϑ(Xi−1)Mn

n∑
i=1

Wϑ(Xi−1)>ȧϑ(Xi−1, Xi)(ϑ̂− ϑ) + . . . .

If M and (π ⊗Q)(W>
ϑ ȧϑ) are invertible, we obtain

n1/2(ϑ̂− ϑ) = −
(
(π ⊗Q)(ȧ>ϑWϑ) ·M · (π ⊗Q)(W>

ϑ ȧϑ)
)−1

(π ⊗Q)(ȧ>ϑWϑ) ·M · n−1/2
n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) + oPn(1)

= −(π ⊗Q)(W>
ϑ ȧϑ)−1n−1/2

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi) + oPn(1).

Hence the GMM estimator has the same influence function as the estimator obtained

from estimating equation (9). The optimal weights are therefore again given by (12).

The generalized method of moments was developed by Hansen [17] and [18]. The

optimal weights for this method were first obtained by Newey [35]. For reviews see

Newey and McFadden [36] and Wooldridge [43]. Note that the influence function of

the GMM estimator does not involve the matrix M . Hence the random matrix Mn

in (14) plays no role.

Generalized quasi-likelihood. One way of dealing with the problem of unde-

termined estimating functions is to specify parametric models for the conditional

expectations involved in the optimal weights:

Σϑ(x) = Q(x, aϑa
>
ϑ ) and Aϑ(x) = Q(x, ȧϑ).
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This leads to the estimating equation

n∑
i=1

Aϑ(Xi−1)>Σϑ(Xi−1)−1aϑ(Xi−1, Xi) = 0. (15)

We call the estimating function on the left (score function of the) generalized quasi-

likelihood.

If Σϑ and Aϑ are correctly specified, we can find new estimating functions besides

(9) by using, besides aϑ(Xi−1, Xi), further martingale increments

aϑ(Xi−1, Xi)aϑ(Xi−1, Xi)
> − Σϑ(Xi−1) and ȧϑ(Xi−1, Xi)− Aϑ(Xi−1).

Hence the generalized quasi-likelihood is inefficient, in general. If Σϑ and Aϑ are

misspecified, then the generalized quasi-likelihood still gives a consistent estimator,

but is again inefficient, in general, now in model (1), since the weights will be

different from the optimal ones.

We note that since Q(x, aϑa
>
ϑ ) is k × k and symmetric, and Q(x, ȧϑ) is k × p,

the generalized quasi-likelihood requires modeling up to 1
2
k(k+ 1) + kp functions in

addition to the k components of aϑ.

We can summarize the above discussion in the following statement.

Dichotomy. The estimating equation (9) with optimal weights (12) is undeter-

mined; the generalized quasi-likelihood (15) is inefficient.

Another, more satisfactory way of dealing with the problem of undetermined

optimal weights is to replace them with estimators. It is not difficult to see that

the stochastic approximation (10) remains valid if we replace the weights Wϑ(Xi−1)

by appropriate estimators. The reason is that the weights are predictable. This

argument is well known. For heteroscedastic linear models Yij = ϑ>xi + H(xi)εij

and Yij = ϑ>xi + H(ϑ>xi)εij with unknown function H see Carroll [2]. For quasi-

likelihood models (2) and (3) see Wefelmeyer [40] and [41]. For nonparametric

regression models Yi = g(ϑ>xi) + v(g(ϑ>xi))
1/2εi with unknown function v and

unknown or known function g see Chiou and Müller [6] and [7]. We arrive at the

following result.

Estimated weights. If Ŵ ∗
ϑ(x) is an appropriate estimator for

W ∗
ϑ(x) = Q(x, aϑa

>
ϑ )−1Q(x, ȧϑ),

then an efficient estimator for ϑ is obtained from the estimating equation with esti-

mated optimal weights,

n∑
i=1

Ŵ ∗
ϑ(x)>aϑ(Xi−1, Xi) = 0.

8



Müller and Wefelmeyer [33] obtain an analogous result for the corresponding

regression model, with i.i.d. observations (Xi, Yi) satisfying E(aϑ(Xi, Yi) | Xi) = 0.

Let us briefly sketch two specific methods of estimating the optimal weights W ∗
ϑ(x).

Kernel estimators and penalized empirical variance. The optimal weights

W ∗
ϑ(x) involve conditional expectations. One way of estimating them is to use

kernel estimators Σ̂ϑ(x) and Âϑ(x) for Q(x, aϑa
>
ϑ ) and Q(x, ȧϑ). Such estimators

require fairly large sample sizes. A different approach is developed by Li [28] and

[29], exploiting ideas of Lindsay [30]. Li considers i.i.d. observations (Xi, Yi) with

E(Yi | Xi) = µ(ϑ>Xi) and E((Yi−µ(ϑ>Xi))
2 | Xi) = ν(ϑ>Xi). For our constrained

model (1), the approach consists in determining, for fixed ϑ, weights Ŵ ∗
ϑ(x) that

minimize the appropriately penalized empirical version of the covariance matrix (11),

( 1

n

n∑
i=1

Wϑ(Xi−1)>ȧϑ(Xi−1, Xi)
)−1

( 1

n

n∑
i=1

Wϑ(Xi−1)>aϑ(Xi−1, Xi)aϑ(Xi−1, Xi)
>Wϑ(Xi−1) + λI

)
( 1

n

n∑
i=1

ȧϑ(Xi−1, Xi)
>Wϑ(Xi−1)

)−1
.

In the following we illustrate the above remarks on optimal estimating functions

with five examples.

Quasi-likelihood. Suppose the state space is real, and we have a parametric

model for the conditional mean of the Markov chain,

E(Xi | Xi−1) = rϑ(Xi−1). (16)

This is a conditional constraint with aϑ(x, y) = y − rϑ(x).

A simple estimator for ϑ is the conditional least squares estimator, the minimizer

ϑ̂ of
n∑
i=1

(Xi − rϑ(Xi−1))2.

See Klimko and Nelson [26] and Tjøstheim [39]. Taking partial derivatives with

respect to ϑ, we see that ϑ̂ solves

n∑
i=1

ṙϑ(Xi−1)>(Xi − rϑ(Xi−1)) = 0.

Here ṙϑ(x) is the row vector of partial derivatives with respect to ϑ.

The martingale estimating equations (9) corresponding to model (16) are

n∑
i=1

Wϑ(Xi−1)>(Xi − rϑ(Xi−1)) = 0,
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with Wϑ a p × 1 vector of weights. Here Q(x, ȧϑ) = −ṙϑ(x) does not involve the

(unknown) transition distribution Q. The optimal weights (12) are

W ∗
ϑ(x) = −

( ∫
Q(x, dy)(y − rϑ(x))2

)−1
ṙϑ(x).

An efficient estimator for ϑ is obtained from the estimating function

n∑
i=1

ṙϑ(Xi−1)>v̂ϑ(Xi−1)−1(Xi − rϑ(Xi−1)) = 0, (17)

with v̂ϑ(x) an appropriate estimator of the conditional variance
∫
Q(x, dy)(y −

rϑ(x))2; see Wefelmeyer [41]. The quasi-likelihood estimator replaces v̂ϑ(x) by a

parametric model

vϑ(x) =
∫
Q(x, dy)(y − rϑ(x))2. (18)

We have seen that it does not use the information about ϑ in the additional speci-

fication (18).

Extended quasi-likelihood. Suppose the state space is real, and we have para-

metric models (16) and (18) for the conditional mean and variance of the Markov

chain. Then aϑ(x, y) = (y − rϑ(x), (y − rϑ(x))2 − vϑ(x))>. Hence

Q(x, ȧϑ) = −

 ṙϑ(x)

v̇ϑ(x)

 ,
Q(x, aϑa

>
ϑ ) =

 vϑ(x) µ3(x)

µ3(x) µ4(x)− vϑ(x)2

 ,
where µj(x) =

∫
Q(x, dy)(y − rϑ(x))j, j = 3, 4, are the third and fourth centered

conditional moments of the chain. An efficient estimator for ϑ is obtained from the

corresponding estimating equation with estimated optimal weights; see Wefelmeyer

[40]. It requires estimators for µ3(x) and µ4(x). The extended quasi-likelihood esti-

mator replaces these moments by parametric models; again it does not use the infor-

mation about ϑ in the additional specifications. For the extended quasi-likelihood

estimator in the case when µ3(x) = 0, see Crowder [8] and [9], Godambe [14], and

Godambe and Thompson [16]; for the general case see Heyde [19] and [20].

Nonlinear autoregression. A submodel of the Markov chain model with para-

metric specification (16) of the conditional mean is the nonlinear d-order autore-

gressive model

Xi = rϑ(Xi−1) + εi,

where the innovations are i.i.d. with density f having mean 0 and variance σ2, say.

Then Q(x, dy) = f(y − rϑ(x))dy. The conditional variance
∫
Q(x, dy)(y − rϑ(x))2
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reduces to σ2, and the optimal estimating equation (17) simplifies to the equation

defining the conditional least squares estimator,

n∑
i=1

ṙϑ(Xi−1)>(Xi − rϑ(Xi−1)) = 0.

This estimating equation does not require estimators for the weights. It is not effi-

cient because it does not use the information that the innovations are i.i.d. Efficient

estimators for ϑ are constructed in Hwang and Basawa [24], Jeganathan [25], Drost,

Klaassen and Werker [11], and Koul and Schick [27].

Nonlinear and heteroscedastic autoregression. A submodel of the quasi-

likelihood model (16) and (18) is the nonlinear and heteroscedastic d-order autore-

gressive model

Xi = rϑ(Xi−1) + vϑ(Xi−1)1/2εi,

where the innovations are i.i.d. with density f having mean 0 and variance 1. Then

Q(x, dy) =
1

vϑ(x)1/2
f
(y − rϑ(x)

vϑ(x)1/2

)
dy,

Q(x, aϑa
>
ϑ ) =

 vϑ(x) vϑ(x)3/2µ3

vϑ(x)3/2µ3 vϑ(x)2(µ4 − 1)

 ,
where µ3 and µ4 are the third and fourth (centered) moments of the innovation

distribution. The optimal weights are therefore easy to estimate: simply replace µj

by the empirical estimator

µ̂jϑ =
1

n

n∑
i=1

(Xi − rϑ(Xi−1))j, j = 3, 4.

Then the estimating equation with estimated optimal weights is

n∑
i=1

(ṙϑ(Xi−1)>, v̇ϑ(Xi−1)>)

 vϑ(Xi−1) vϑ(Xi−1)3/2µ̂3ϑ

vϑ(Xi−1)3/2µ̂3ϑ vϑ(Xi−1)2(µ̂4ϑ − 1)

−1

 Xi − rϑ(Xi−1)

(Xi − rϑ(Xi−1))2 − vϑ(Xi−1)

 = 0. (19)

Again this estimator is not efficient. See Drost, Klaassen and Werker [11] for efficient

estimators of ϑ.

ARCH. A special case of the heteroscedastic d-order autoregressive model is the

ARCH(d) model

Xi = vϑ(Xi−1)1/2εi with vϑ(x) = ϑ0 +
d∑
j=1

ϑjx
2
j ,

11



with (d + 1)-dimensional parameter ϑ = (ϑ0, . . . , ϑd). The innovations are again

assumed i.i.d. with mean 0 and variance 1. It is convenient to introduce Yi−1 =

(1, X2
i−1, . . . , X

2
i−d). Then vϑ(Xi−1) = ϑ>Yi−1. The optimal estimating equation

(19) reduces to
n∑
i=1

(ϑ>Yi−1)−2Yi−1(X2
i − ϑ>Yi−1) = 0.

Since the weights (ϑ>Yi−1)−2 depend on ϑ, we cannot solve the equation explicitly.

However, as seen above, we may replace the weights by estimators without changing

the influence function of the solution of the estimating equation. A simple estimator

for ϑ is the conditional least squares estimator

ϑ =
( n∑
i=1

Yi−1Y
>
i−1

)−1
n∑
i=1

X2
i−1Yi−1.

The solution of the estimating equation with estimated optimal weights is

ϑ̂ =
( n∑
i=1

(ϑ
>
Yi−1)−2Yi−1Y

>
i−1

)−1
n∑
i=1

(ϑ
>
Yi−1)−2X2

i−1Yi−1.

For a direct derivation see Chandra and Taniguchi [5]. The estimator is not efficient.

For efficient estimators see Engle and Gonzáles-Rivera [12], Linton [31], and Drost

and Klaassen [10].
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