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Abstract

We prove a stochastic expansion for a residual-based estimator of the error dis-
tribution function in a partly linear regression model. It implies a functional central
limit theorem. As special cases we cover nonparametric, nonlinear and linear regres-
sion models.

1 Introduction
We consider the partly linear regression model

Y = ϑ>U + %(X) + ε,

where the errorε is independent of the covariate pair(U,X) and the parameterϑ is
k-dimensional. We make the following assumptions.

(F) The error ε has mean zero, a finite moment of order β > 8/3, and a density f which
is Hölder with exponent ξ > 1/3.

(G) The distribution G of X is quasi-uniformon [0, 1] in the sense that G([0, 1]) = 1
and G has a density g that is bounded and bounded away from zero on [0, 1].

(H) The covariate vector U satisfies E[|U |2] < ∞, the matrix E[(U−µ(X))(U−µ(X)>]
is positive definite, µ is continuous and τg is bounded, where µ(X) = E(U |X) and
τ(X) = E(|U |2|X).

(R) The function % is twice continuously differentiable.

Our goal is to estimate the distribution functionF of ε based onn independent copies
(Uj , Xj , Yj) of (U,X, Y ). Our estimator ofF will be the empirical distribution function
based on residuals. To obtain residuals we need estimators ofϑ and%. Under the above
assumptions, there existn1/2-consistent estimators ofϑ; see e.g. Schick (1996). Given
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such an estimator̂ϑ of ϑ, we estimate% by a local linear smoother̂% as follows. For a
fixedx in [0, 1], the estimator̂%(x) is the first component of the minimizer(β̂0, β̂1) of

n∑
j=1

(
Yj − ϑ̂>Uj − β0 − β1

Xj − x

cn

)2

w
(Xj − x

cn

)
, (1.1)

wherecn is a bandwidth andw is a kernel with the following properties.

(W) The kernel w is a three times continuously differentiable symmetric density with
compact support [−1, 1].

We then form the residuals

ε̂j = Yj − ϑ̂>Uj − %̂(Xj), j = 1, . . . , n,

and use as estimator ofF the empirical distribution function of these residuals,

F̂(t) =
1
n

n∑
j=1

1[ε̂j ≤ t], t ∈ R.

We denote the empirical distribution function based on the errors by

F(t) =
1
n

n∑
j=1

1[εj ≤ t], t ∈ R.

We can now state our main result.

Theorem 1.1 Assume that (F), (G), (H), (R) and (W) hold andcn ∼ (n log n)−1/4. Let
ϑ̂ be an1/2-consistent estimator ofϑ. Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2). (1.2)

Under our assumptions (G) and (R), the optimal choice of bandwidth for estimating
% is of ordern−1/5. Our proof requires an undersmoothed estimator of% with a bias that
is of ordero(n−1/2). This is guaranteed by the choice of bandwidth in the theorem.

The nonparametric regression modelY = %(X) + ε is a special case of the partly
linear regression corresponding toϑ = 0. Takingϑ̂ = 0, the above theorem carries over
to this model, giving (1.2) without condition (H).

Our approach is motivated by Akritas and Van Keilegom (2001) who consider the
heteroscedastic nonparametric regression modelY = %(X) + s(X)ε. In our model,
s(X) = 1 and%(X) = E(Y |X), which corresponds to their functionJ being 1. Their
assumption (A2) would then imply thatε is quasi-uniform on some finite interval. We
get by with considerably weaker conditions.

Kiwitt, Nagel and Neumeyer (2005) treat the nonparametric regression modelY =
%(X) + ε with additional linear constraints on the error distributionF . They rely on
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the results and assumptions of Akritas and Van Keilegom and use a kernel estimator for
%. The kernel estimator requires stronger assumptions on the design densityg than our
linear smoother.

In the nonparametric regression model, our estimatorF̂(t) has the influence function
1[ε ≤ t] − F (t) + f(t)ε and is therefore efficient by M̈uller, Schick and Wefelmeyer
(2004). Since this is also the influence function ofF̂(t) in the larger partly linear model,
F̂(t) is also efficient there.

The linear regression modelY = ϑ>U + ε corresponds to the case% = 0. In this
model one can takêεj = Yj − ϑ̂>Uj with ϑ̂ the least squares estimator ofϑ and obtains
the following result.

Theorem 1.2 Assume thatF has mean zero, finite variance and a uniformly continuous
densityf , and the matrixE[UU>] is positive definite. Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t) (ϑ̂− ϑ)>E[U ]
∣∣∣ = op(n−1/2).

This was first proved by Koul (1969) for fixed design. See also Koul (2002) and, for
increasing dimension, Mammen (1996). Theorem 1.2 follows from Theorem 2.3 about
nonlinear regression.

Our paper is organized as follows. In Section 2 we adapt a result of Akritas and Van
Keilegom (2001) on uniform stochastic expansions of residual-based empirical distribu-
tion functions to our setting. In Section 3 we prove Theorem 1.1. Technical details about
kernel type estimators are in Section 4.

2 General results
Let ε be a random variable with distribution functionF , and letZ be a random vector
with distributionQ independent ofε. Let D be a non-negative function inL2(Q), and
let D be a set of measurable functionsa such that|a| ≤ D and0 ∈ D. We now give
conditions on the classD that imply that the classH = {ha,t : a ∈ D, t ∈ R} is
F ⊗Q-Donsker, where

ha,t(ε, Z) = 1[ε− a(Z) ≤ t], a ∈ D, t ∈ R.

For this we endowD with theL1(Q)-pseudo-norm. By anη-bracket for(D, L1(Q)) we
mean a set[a, a] = [a ∈ D : a ≤ a ≤ a} wherea anda belong toL1(Q) and satisfy∫
|a − a| dQ ≤ η. Recall that thebracketing numberN[ ](η,D, L1(Q)) is the smallest

integerm for which there arem η-brackets[a1, a1], . . . , [am, am] which coverD in the
sense that the union of the brackets containsD.

Theorem 2.1 Assume thatF has a finite second moment and a bounded density and
that the bracketing numbers satisfy∫ 1

0

√
log N[ ](η2,D, L1(Q)) dη < ∞. (2.1)

ThenH is F ⊗Q-Donsker.
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Proof: Let F+ denote the distribution function ofε + D(Z) andF− the distribution
function ofε −D(Z). Since these random variables have finite second moments by the
assumptions onF andD, we see thatF−(t) ≤ C2/t2 for negativet and(1− F+(t)) ≤
C2/t2 for positivet, whereC is some positive constantC. Note thatH has envelope1.
We shall show that ∫ ∞

0

√
log N[ ](η,H, L2(F ⊗Q)) dη < ∞. (2.2)

The desired result then follows from Ossiander (1987), see also van der Vaart and Well-
ner (1996, Theorem 2.5.6). LetL denote the Lipschitz constant ofF . Let [a, a] be an
η2/(2L)-bracket for(D, L1(Q)) anda ∈ [a, a]. We may assume that|a| ≤ D and
|a| ≤ D. Letu < v be real numbers such thatv−u ≤ η2/(2L). Then, fort ∈ [u, v], we
have

1[ε− a(Z) ≤ u] ≤ 1[ε− a(Z) ≤ t] ≤ 1[ε− a(Z) ≤ v]

and

E[(1[ε− a(Z) ≤ u]− 1[ε− a(Z) ≤ v])2] = E[F (v + a(Z))− F (u + a(Z))]
≤ L(v − u + E[a(Z)− a(Z)])

≤ η2;

for t ≤ −C/η, we have

0 ≤ 1[ε− a(Z) ≤ t] ≤ 1[ε−D(Z) ≤ −C/η]

and
E[1[ε−D(Z) ≤ −C/η]2] ≤ F−(−C/η) ≤ η2;

and, fort ≥ C/η, we have

1[ε + D(Z) ≤ C/η] ≤ 1[ε− a(Z) ≤ t] ≤ 1

and
E[(1− 1[ε + D(Z) ≤ C/η])2] ≤ 1− F+(C/η) ≤ η2.

This shows that the bracketing numbersN[ ](η,H, L2(F ⊗Q)) are bounded by

Kη−3N[ ](η2/(2L),D, L1(Q))

for all 0 < η ≤ 1 and some constantK and are bounded by1 for η ≥ 1 (take the bracket
[0, 1]). Since

√
x + y ≤

√
x +

√
y for non-negativex andy and since

∫ 1

0

√
log(η−3) dη

is finite, we see that (2.1) implies the desired (2.2). 2

Now consider a regression model

Y = r(Z) + ε

and independent copies(Yj , Zj) of (Y, Z). For an estimator̂r of r define the residuals
ε̂j = Yj − r̂(Zj). As before we set

F̂(t) =
1
n

n∑
j=1

1[ε̂j ≤ t] and F(t) =
1
n

n∑
j=1

1[εj ≤ t], t ∈ R.
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Theorem 2.2 LetD be as in the previous theorem. LetF have a finite second moment
and a densityf that is Hölder with exponentξ ∈ (0, 1]. Assume that there is an̂a such
that

P (â ∈ D) → 1, (2.3)∫
|â|1+ξ dQ = op(n−1/2), (2.4)

sup
z
|r̂(z)− r(z)− â(z)| = op(n−1/2). (2.5)

Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)
∫

â dQ
∣∣∣ = op(n−1/2).

Proof: Without loss of generality we may assumeâ isD-valued; otherwise replacêa by
â1[â ∈ D]. Let

F̃(t) =
1
n

n∑
j=1

1[εj − â(Zj) ≤ t] and Fa(t) =
∫

F (t + a(z)) dQ(z).

Then we can write

F̂(t)− F(t)− f(t)
∫

â dQ = T1(t) + T2(t) + T3(t),

where
T1(t) = F̂(t)− F̃(t),

T2(t) = F̃(t)− Fâ(t)− F(t) + F (t),

T3(t) = Fâ(t)− F (t)− f(t)
∫

â dQ.

Sincef is Hölder, say with constantΛ, we obtain that

|T3(t)| ≤
∫
|F (t + â(z))− F (t)− f(t)â(z)| dQ(z)

≤ Λ
∫
|â|1+ξ dQ = op(n−1/2).

To deal withT1 andT2, we introduce the empirical process

νn(a, t) =
1√
n

n∑
j=1

(1[εj − a(Zj) ≤ t]− Fa(t))

=
1√
n

n∑
j=1

(ha,t(εj , Zj)− E[ha,t(ε, Z)]), a ∈ D, t ∈ R,

associated with the Donsker classH. Then we have the identity

n1/2T2(t) = νn(â, t)− νn(0, t)
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and the bound

|n1/2T1(t)| ≤ n1/2(F̃ (t + Rn)− F̃ (t−Rn))

≤ |νn(â, t + Rn)− νn(â, t−Rn)|+ n1/2(Fâ(t + Rn)− Fâ(t−Rn)),

whereRn denotes the left-hand side of (2.5). Sincef is Hölder,f is also bounded and
the functionsFa are Lipschitz with Lipschitz constant‖f‖∞. Thus we have

n1/2(Fâ(t + Rn)− Fâ(t−Rn)) ≤ 2‖f‖∞n1/2Rn = op(1). (2.6)

Moreover, fors, t ∈ R anda, b ∈ D,

E[(ha,s(ε, Z)− hb,t(ε, Z))2] ≤ E[|F (s + a(Z))− F (t + b(Z))|]
≤ ‖f‖∞

(
|s− t|+ E[|a(Z)− b(Z)|]

)
.

In view of this and the stochastic equi-continuity of the empirical process, for everyη > 0
there is aδ > 0 such that, withP ∗ denoting outer measure,

sup
n

P ∗
(

sup
t∈R,a∈D,

R
|a| dQ<δ

|νn(a, t)− νn(0, t)| > η
)

< η,

sup
n

P ∗
(

sup
a∈D,s,t∈R,|s−t|<δ

|νn(a, s)− νn(a, t)| > η
)

< η.

The first of these statements and (2.4) implysupt |T2(t)| = op(n−1/2), while the second,
(2.5) and (2.6) implysupt |T1(t)| = op(n−1/2). 2

Theorem 2.2 was formulated with semiparametric regression in mind. In parametric
regression models one typically has∫

|â| dQ = Op(n−1/2) (2.7)

in which case the Ḧolder condition onf can be relaxed to uniform continuity, as is easily
seen by inspecting the proof. To state this result, we look at the parametric regression
modelY = rϑ(Z)+ε with regression functionrϑ indexed by ak-dimensional parameter
ϑ and differentiable in the parameter in the following sense.

(D) There is function ṙϑ into Rk such that |ṙϑ| ∈ L2(Q) and

sup
z
|rϑ+t(z)− rϑ(z)− t>ṙϑ(z)| = o(|t|).

Given an1/2-consistent estimator̂ϑ of ϑ, assumptions (2.3), (2.7) and (2.5) are met with
r̂ = rϑ̂ andâ = (ϑ̂− ϑ)>ṙϑ, and withD = {t>ṙϑ : |t| ≤ 1}. Since

N[ ](η,D, L1(Q)) ≤ Mη−k

for some constantM , the entropy condition (2.1) holds. Thus we have the following
result for parametric regression.



Estimating the error distribution function 7

Theorem 2.3 Assume that (D) holds and̂r = rϑ̂ with ϑ̂ a n1/2-consistent estimator of
ϑ. LetF have a finite second moment and a uniformly continuous densityf . Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)(ϑ̂− ϑ)>
∫

ṙϑ dQ
∣∣∣ = op(n−1/2).

A special case is the linear regression model, for whichrϑ(z) = ϑ>z. In this model,
assumption (D) is trivially satisfied witḣrϑ(z) = z, and an1/2-consistent estimator ofϑ
is given by the least squares estimator, providedE[ε] = 0, E[ε2] is finite and the matrix
E[ZZ>] is positive definite.

3 Partly linear regression
To prove our main result, Theorem 1.1, we apply Theorem 2.2 with the choicesZ =
(U,X) andr(Z) = ϑ>U + %(X). We takeD to be the class of functions

a(u, x) = b>(u− µ(x)) + c(x)

with b ∈ [−1, 1]k andc belonging to a classC of functions to be introduced next. Let
1 < α ≤ 2. For a functionh defined on[0, 1] set

‖h‖ = sup
0≤x≤1

|h(x)|.

If h is also differentiable on[0, 1], let

‖h‖α = ‖h‖+ ‖h′‖+ sup
0≤x<y≤1

|h′(x)− h′(y)|
|x− y|α−1

.

We takeC = Cα
1 ([0, 1]), the set of all such functionsh with ‖h‖α ≤ 1. By Corollary

2.7.2 in van der Vaart and Wellner (1996), there is a constantK such that

log N[ ](η2, Cα
1 ([0, 1]), L1(G)) ≤ Kη−2/α, η ≤ 1. (3.1)

Note that

N[ ](η,D, L1(Q)) ≤ N[ ](η,D0, L1(Q))N[ ](η, Cα
1 ([0, 1]), L1(G)),

where
D0 = {(u, x) 7→ b>(u− µ(x)) : b ∈ [−1, 1]k}.

SinceN[ ](η,D0, L1(Q)) ≤ Mη−k for some constantM , the desired entropy condition
(2.1) follows from (3.1) andα > 1.

Lemma 3.2 below yields (2.5) with

â(u, x) = (ϑ̂− ϑ)>(u− µ(x)) + ĉ(x)
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andĉ defined in (3.11). By then1/2-consistency of̂ϑ, we have (2.3) ifP (ĉ ∈ Cα
1 ([0, 1]))

tends to one. Sufficient conditions for the latter are given in Lemma 3.1 for arbitraryĉ
and verified in Lemma 3.3 for the choiceĉ in (3.11). By the definition ofµ, we have∫

â2 dQ = (ϑ̂− ϑ)>E[(U − µ(X))(U − µ(X))>](ϑ̂− ϑ) +
∫

ĉ2 dG. (3.2)

In view of the inequality∫
|â|1+ξ dQ ≤

( ∫
â2 dQ

)(1+ξ)/2

,

relation (2.4) follows from then1/2-consistency of̂ϑ, Lemma 3.4, and the choice of
bandwidth. Thus the assumptions of Theorem 2.2 hold and we obtain

sup
t∈R

∣∣∣F̂(t)− F (t)− f(t)
∫

â dQ
∣∣∣ = op(n−1/2).

By the definition ofµ and Lemma 3.5,∫
â dQ =

∫
ĉ dG =

1
n

n∑
j=1

εj + op(n−1/2).

Sincef is Hölder and hence bounded, the desired expansion (1.2) follows.
We now give sufficient conditions for an estimatorĉ to belong to the classCα

1 ([0, 1]).

Lemma 3.1 LetG be such thatG([0, 1]) = 1. Let ĉ be twice continuously differentiable
on [0, 1] and satisfy‖ĉ‖ = op(1), ‖ĉ′‖ = Op(n−β1) and‖ĉ′′‖ = Op(nβ2) for constants
β1 andβ2 in (0, 1). Let1 < α < 1 + β1 ∧ (1− β2). ThenP (ĉ ∈ Cα

1 ([0, 1]) → 1.

Proof: We need to show thatP (‖ĉ‖α > 1) → 0. In view of ‖ĉ‖ = op(1), ‖ĉ′‖ = op(1)
and the definition of‖h‖α, it is enough to show that

sup
0≤x<y≤1

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

= op(1).

Since‖ĉ′‖ = Op(n−β1), we have

sup
y−x>1/n

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

≤ 2nα−1‖ĉ′‖ = Op(nα−1−β1);

since‖ĉ′′‖ = Op(nβ2), we have

sup
0<y−x≤1/n

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

≤ ‖ĉ′′‖ sup
0<y−x≤1/n

|x− y|2−α = Op(nβ2+α−2).

The desired result follows as the exponentsα− 1− β1 andα + β2 − 2 are negative.2
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Recall that̂%(x) is the first component of the minimizer(β̂0, β̂1) of (1.1). This mini-
mizer obeys the normal equations[

p̂0(x) p̂1(x)
p̂1(x) p̂2(x)

] [
β̂0

β̂1

]
=

[
q̂0(x)
q̂1(x)

]
,

where, fori = 0, 1, . . . and withwi(y) = yiw(y),

p̂i(x) =
1

ncn

n∑
j=1

wi

(Xj − x

cn

)
,

q̂i(x) =
1

ncn

n∑
j=1

(Yj − ϑ̂>Uj)wi

(Xj − x

cn

)
.

To describê%(x) we set

p̄i(x) = E[p̂i(x)] =
∫

1
cn

wi

(u− x

cn

)
g(u) du =

∫
wi(y)g(x + cny) dy.

For the rest of this section we assume without further mention that the bandwidthcn

satisfiescn → 0 andc−1
n n−1 log n → 0 and make additional assumptions as needed.

This allows one to obtain versions of Theorem 1.1 for more general choices of bandwidth.
We also assume (without loss of generality) thatcn < 1/2. Under (G) and (W) we have

‖p̂i − p̄i‖ = Op

(( log n

ncn

)1/2)
, (3.3)

‖p̄i‖ ≤ ‖p̄0‖ ≤ ‖g‖ < ∞. (3.4)

The former follows from Corollary 4.2 applied withv = wi, Tj = T = 1, β = ∞ and
δ = 0. By (G) there is anη > 0 such thatg(x) ≥ η for 0 ≤ x ≤ 1. Thus, for suchx,

g(x + cny) ≥ η 1
[−x

cn
≤ y ≤ 1− x

cn

]
and therefore

p̄0(x)p̄2(x)− p̄2
1(x) = p̄0(x)

∫ (
y − p̄1(x)

p̄0(x)

)2

g(x + cny)w(y) dy

is bounded below by

η2

4

∫ (1−x)/cn

−x/cn

2w(y) dy

∫ (1−x)/cn

−x/cn

(
y − p̄1(x)

p̄0(x)

)2

2w(y) dy.

Since we assumedcn < 1/2, the range of integration always includes one of the intervals
[−1, 0] and[0, 1], and2w restricted to either interval is a density. This and the symmetry
of w imply

p̄0(x)p̄2(x)− p̄2
1(x) ≥ η2σ2

4
(3.5)
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with σ2 the variance of2w restricted to[0, 1]. It follows from (3.3) – (3.5) that

P
(

inf
0≤x≤1

(p̂0(x)p̂2(x)− p̂2
1(x)) ≥ η2σ2

8

)
→ 1.

Hence, with probability tending to one, we can write

%̂ =
q̂0p̂2 − q̂1p̂1

p̂0p̂2 − p̂2
1

.

For i = 1, 2, let

ŝi =
p̂i

p̂2p̂0 − p̂2
1

and s̄i =
p̄i

p̄2p̄0 − p̄2
1

.

It follows from (3.4) and (3.5) that

‖s̄i‖ ≤
4‖g‖
η2σ2

< ∞, (3.6)

and from (3.3) – (3.5) that

‖ŝi − s̄i‖ = Op

(( log n

ncn

)1/2)
. (3.7)

Let

Ai(x) =
1

ncn

n∑
j=1

εjwi

(Xj − x

cn

)
,

Bi(x) =
1

ncn

n∑
j=1

Ujwi

(Xj − x

cn

)
,

Ci(x) =
1

ncn

n∑
j=1

(
%(Xj)− %(x)− %′(x)(Xj − x)

)
wi

(Xj − x

cn

)
.

Using the identitieŝqi = Ai − (ϑ̂ − ϑ)>Bi + Ci + %p̂i + cn%′p̂i+1, p̂0ŝ2 − p̂1ŝ1 = 1
andp̂1ŝ2 − p̂2ŝ1 = 0, we can write, with probability tending to one,

%̂− % = (A0 − (ϑ̂− ϑ)>B0 + C0 + %p̂0 + cn%′p̂1)ŝ2

− (A1 − (ϑ̂− ϑ)>B1 + C1 + %p̂1 + cn%′p̂2)ŝ1 − %

= A0ŝ2 −A1ŝ1 − (ϑ̂− ϑ)>(B0ŝ2 −B1ŝ1) + C0ŝ2 − C1ŝ1.

Note that under (R) and in view of (3.3) and (3.4) we have

‖Ci‖ ≤ c2
n‖%′′‖‖p̂0‖ = Op(c2

n), i = 0, 1. (3.8)

Applying Corollary 4.3 withv = wi andTj = e>Uj with e ∈ Rk, and utilizing (H), we
obtain

‖e>(Bi − p̄iµ)‖ = op(1), i = 0, 1,
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if c−1
n n−δ log n is bounded for some0 < δ < 1/2. Hence, using (3.4), (3.6), (3.7),

boundedness ofµ on [0, 1], and the identitȳp0s̄2 − p̄1s̄1 = 1, we find that

‖e>(B0ŝ2 −B1ŝ1 − µ)‖ = op(1). (3.9)

Applying Corollary 4.2 withv = wi, Tj = εj andδ = 0, we have

‖Ai‖ = Op

(( log n

ncn

)1/2)
, i = 0, 1, (3.10)

if F has a finite moment of orderβ > 2 andc−1
n n−1+2/β log n is bounded. Applying

(3.6)–(3.10) to the above representation of%̂− %, and setting

ĉ = A0s̄2 −A1s̄1, (3.11)

we obtain the following result.

Lemma 3.2 Assume that (H), (G), (R) and (W) hold and thatF has a finite moment
of order β > 8/3. Let nc4

n → 0 and c−1
n n−δ log n → 0 be bounded for someδ in

(1/4, 1/2) ∩ (1/4, 1− 2/β]. Let ϑ̂ ben1/2-consistent. Then (2.5) holds with

â(u, x) = (ϑ̂− ϑ)>(u− µ(x)) + ĉ(x).

The conditionβ > 8/3 implies 1 − 2/β > 1/4 and ensures the existence of a
sequence of bandwidths with the required properties. For example, we can pickcn ∼
n−γ with 1/4 < γ < (1− 2/β) ∧ (1/2).

Condition (W) implies thatwi, w′
i andw′′

i are integrable and Lipschitz. Hence, by

Corollary 4.2, applied withv = w
(j)
i andTj = εj , we obtain, forj = 0, 1, 2,

‖A(j)
0 ‖+ ‖A(j)

1 ‖ = c−j
n Op

(( log n

ncn

)1/2)
providedF has a finite moment of orderβ > 2 and c−1

n n−1+2/β log n is bounded.
Furthermore, sinceg is bounded, we have

‖p̄(j)
0 ‖+ ‖p̄(j)

1 ‖+ ‖p̄(j)
2 ‖ = O(c−j

n ).

Thus, in view of (3.4) and (3.5),

‖s̄(j)
1 ‖+ ‖s̄(j)

2 ‖ = O(c−j
n ).

The above rates show that

‖ĉ(j)‖ = c−j
n Op

(( log n

ncn

)1/2)
, j = 0, 1, 2.

Thus, if c−1
n = O(nγ) with γ < 1/3, then the assumptions of Lemma 3.1 hold for all

β1, β2 with 0 < 2β1 < 1− 3γ andβ2 ≤ 1/3. Thus we have the following result for̂c as
defined in (3.11).
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Lemma 3.3 Assume that (G) and (W) hold,F has a finite moment of orderβ > 2, and
c−1
n = O(nγ) for someγ < 1/3. ThenP (ĉ ∈ Cα

1 ([0, 1])) → 1 for someα > 1.

Direct calculation show thatE[A2
i (x)] ≤ E[ε2]‖g‖‖w‖∞/(ncn). This and the

boundedness of̄s1 ands̄2 yield the following result for̂c as defined in (3.11).

Lemma 3.4 Assume that (G) and (W) hold andF has a finite second moment. Then∫
ĉ2 dG = Op

( 1
ncn

)
.

Finally, we have the following result.

Lemma 3.5 Assume that (G) and (W) hold. Then∫
ĉ dG =

1
n

n∑
j=1

εj + op(n−1/2). (3.12)

Proof: Using p̄0s̄2 − p̄1s̄1 = 1, we find that the integral in (3.12) equals

J =
1

ncn

n∑
j=1

εj

∫ (
w0

(Xj − x

cn

)
s̄2(x)− w1

(Xj − x

cn

)
s̄1(x)

)
dG(x)

=
1
n

n∑
j=1

εj

(
p̄0(Xj)s̄2(Xj)− p̄1(Xj)s̄1(Xj)−∆0(Xj) + ∆1(Xj)

)
=

1
n

n∑
j=1

εj

(
1−∆0(Xj) + ∆1(Xj)

)
with

∆0(Xj) =
∫

1
cn

w0

(Xj − x

cn

)
(s̄2(Xj)− s̄2(x)) dG(x)

=
∫

w0(y)(s̄2(Xj)− s̄2(Xj − cny))g(Xj − cny) dy;

∆1(Xj) =
∫

1
cn

w1

(Xj − x

cn

)
(s̄1(Xj)− s̄1(x)) dG(x)

=
∫

w1(y)(s̄1(Xj)− s̄1(Xj − cny))g(Xj − cny) dy.

Thus the assertion (3.12) follows if
∫

(∆0 − ∆1)2 dG = op(1). Sincew and g are
bounded, this is implied by∫∫

In

(s̄i(x)− s̄i(x− cny))2 dx dy → 0, i = 1, 2,
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with In = {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1, 0 ≤ x − cny ≤ 1}. In view of (3.4) and
(3.5), the latter is implied by∫∫

In

(p̄i(x)− p̄i(x− cny))2 dx dy → 0, i = 0, 1, 2.

These three integrals can be bounded by a multiple of

sup
|t|≤cn

∫
(g(x + t)− g(x))2 dx,

which converges to zero by continuity of shifts inL2; see Theorem 9.5 in Rudin (1974).
2

4 Auxiliary results
Throughout this section letZ,Z1, Z2, . . . be independent and identically distributedm-
dimensional random vectors, and, for eachx in R, let hnx be a bounded measurable
function fromRm into R.

Proposition 4.1 Let Bn be a sequence of positive numbers such thatBn = O(nα) for
someα > 0. Assume that

sup
|x|≤Bn

‖hnx‖∞ = O
( n

log n

)
, (4.1)

sup
|x|≤Bn

E[h2
nx(Z)] = O

( n

log n

)
, (4.2)

and, for positive numbersκ1, κ2 andA,

‖hny − hnx‖∞ ≤ Anκ2 |y − x|κ1 , |x|, |y| ≤ Bn, |y − x| ≤ 1. (4.3)

Then

sup
|x|≤Bn

∣∣∣ 1
n

n∑
j=1

hnx(Zj)− E[hnx(Z)]
∣∣∣ = Op(1). (4.4)

Proof: Let Hn(x) denote the expression inside the absolute value in (4.4). We use an
inequality of Hoeffding (1963): Ifξ1, . . . , ξn are independent random variables that have
mean zero and varianceσ2 and are bounded byM , then forη > 0,

P
(∣∣∣ 1

n

n∑
j=1

ξj

∣∣∣ ≥ η
)
≤ 2 exp

(
− nη2

2σ2 + (2/3)Mη

)
.

Applying this inequality withξj = hnx(Zj)− E[hnx(Z)], we obtain forη > 0:

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− nη2

2E[h2
nx(Z)] + 2η‖hnx‖∞

)
.
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Thus there is a positive numbera such that for allη > 0,

sup
|x|≤Bn

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− η2

1 ∨ η
a log n

)
.

Now letxnk = −Bn + 2kBnn−m for k = 0, 1, . . . , nm, with m an integer greater than
α + κ2/κ1. The above yields for large enoughη > 0,

P
(

max
k=0,...,nm

|Hn(xnk)| > η
)
≤

nm∑
k=0

P (|Hn(xnk)| > η) = o(1).

This shows that
Hn,1 = max

k=0,...,nm
|Hn(xnk)| = Op(1).

It follows from (4.3) that

Hn,2 = max
k=0,...,nm

sup
|x−xnk|≤Bnn−m

|Hn(x)−Hn(xnk)|

= O(Bκ1
n n−mκ1nκ2) = Op(1).

In view of the inequality

sup
|x|≤Bn

|Hn(x)| ≤ Hn,1 + Hn,2

we have the desired result (4.4). 2

In the following corollary we interpret1/β as zero ifβ is infinity.

Corollary 4.2 Assume that the functionv is integrable and Ḧolder with positive expo-
nentκ, the random variableX has a bounded densityg, the random variableT is in
Lβ for some2 ≤ β ≤ ∞, andτg is bounded, whereτ(X) = E(T 2|X). Let cn → 0
andc−1

n n−1−δ+2/β log n be bounded for someδ ≥ 0. Then, for i.i.d. copies(Tj , Xj) of
(T,X), we have

sup
0≤x≤1

∣∣∣ 1
ncn

n∑
j=1

(
Tjv

(Xj − x

cn

)
− E

[
Tv

(X − x

cn

)])∣∣∣ = Op(ζ−1/2
n )

with ζn = n1−δcn/ log n.

Proof: SetK = 2‖T‖Lβ
. Define

Rnj(x) = ζ1/2
n Tj1[|Tj | ≤ Kn1/β ]

1
cn

v
(Xj − x

cn

)
,

Snj(x) = ζ1/2
n Tj1[|Tj | > Kn1/β ]

1
cn

v
(Xj − x

cn

)
.
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It suffices to show that

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

(Rnj(x)− E[Rnj(x)])
∣∣∣ = Op(1) (4.5)

and

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

(Snj(x)− E[Snj(x)])
∣∣∣ = op(1). (4.6)

Statement (4.6) is true forβ = ∞ as thenSnj(x) = 0. Forβ < ∞ we have

P
(

max
1≤j≤n

|Tj | > Kn1/β
)
≤

n∑
j=1

P (|Tj | > Kn1/β)

≤ K−βE[|T |β1[|T | > Kn1/β ]] → 0

and thus

P
(

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

Snj(x)
∣∣∣ > 0

)
≤ P

(
max

1≤j≤n
|Tj | > Kn1/β

)
→ 0.

The assumptions onv imply thatv is bounded. Hence we also have

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

E[Snj(x)]
∣∣∣ ≤ n(1−δ)/2c−1/2

n (log n)−1/2‖v‖∞E[|T |1[|T | > Kn1/β ]]

≤ ‖v‖∞E[|T |β ]n(1−δ)/2c−1/2
n (log n)−1/2(Kn1/β)1−β

= O(n−(1+δ)/2+1/βc−1/2
n (log n)−1/2) = o(1).

This shows that (4.6) holds forβ < ∞ as well.
To show (4.5) we apply the previous proposition withBn = 1 andhnx(Tj , Xj) =

Rnj(x). We have

sup
0≤x≤1

‖hnx‖∞ ≤ K‖v‖∞n(1−δ)/2+1/βc−1/2
n (log n)−1/2 = O

( n

log n

)
.

Furthermore,

sup
0≤x≤1

E[h2
nx(T,X)] ≤ n1−δ

cn log n
E

[
τ(X)v2

(X − x

cn

)]
=

n1−δ

log n

∫
v2(y)τ(x + cny)g(x + cny) dy

≤ n1−δ

log n
‖τg‖∞

∫
v2(y) dy.

Sincev is Hölder with exponentκ, we obtain, withΛ denoting the Ḧolder constant,

‖hny − hnx‖∞ ≤
(n1−δcn

log n

)1/2

n1/βc−1−κ
n Λ|y − x|κ ≤ Cn1+κ+1/β |y − x|κ.

Thus the assumptions of the proposition hold, and we obtain (4.5). 2
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Corollary 4.3 Assume that the functionv is Hölder with positive exponentκ and has
compact support, the random variableX has a bounded densityg, the random variable
T has a finite second moment,µ is uniformly continuous andτg is bounded, where
µ(X) = E(T |X) andτ(X) = E(T 2|X). Letcn → 0 andc−1

n n−δ log n be bounded for
some0 < δ < 1/2. Then, for i.i.d. copies(Tj , Xj) of (T,X), we have

sup
0≤x≤1

∣∣∣ 1
ncn

n∑
j=1

Tjv
(Xj − x

cn

)
− µ(x)

∫
v(y)g(x + cny) dy

∣∣∣ = op(1).

Proof: Write

1
cn

E
[
Tv

(X − x

cn

)]
=

∫
µ(x + cny)v(y)g(x + cny) dy

and note that
∫
|v(y)|g(x + cny) dy ≤ ‖g‖

∫
|v(y)| dy. The desired result now follows

from the uniform continuity ofµ and Corollary 4.2 applied withβ = 2. 2
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