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Abstract

We prove a stochastic expansion for a residual-based estimator of the error dis-
tribution function in a partly linear regression model. It implies a functional central
limit theorem. As special cases we cover nonparametric, nonlinear and linear regres-
sion models.

1 Introduction

We consider the partly linear regression model
Y =9"U+o(X)+e¢,

where the erroe is independent of the covariate paily, X) and the parametef is
k-dimensional. We make the following assumptions.

(F) The error € has mean zero, a finite moment of order 3 > 8/3, and a density f which
is Holder with exponent £ > 1/3.

(G) The distribution G of X is quasi-uniformon [0, 1] in the sense that G([0,1]) = 1
and G has a density g that is bounded and bounded away from zero on [0, 1].

(H) The covariate vector U satisties E[|U|?] < oo, the matrix E[(U—u(X))(U—u(X)T]
is positive definite, p is continuous and T¢ is bounded, where ;(X) = E(U|X) and
7(X) = E(|UP|X).

(R) The function g is twice continuously differentiable.

Our goal is to estimate the distribution functiéiof ¢ based om independent copies
(U;,X;,Y;) of (U, X,Y). Our estimator of” will be the empirical distribution function
based on residuals. To obtain residuals we need estimatdramd 0. Under the above

assumptions, there exist/2-consistent estimators of; see e.g. Schick (1996). Given
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such an estimata# of 9, we estimate by alocal linear smoothep as follows. For a
fixedz in [0, 1], the estimatop(x) is the first component of the minimizép,, 5;) of

n

S (%90 o ) (), (1)

n Cn

j=1
wherec,, is a bandwidth ana is a kernel with the following properties.

(W) The kernel w is a three times continuously differentiable symmetric density with
compact support [—1, 1].

We then form the residuals
E =Y —0'U; —6(X;), j=1,...,m,
and use as estimator &éf the empirical distribution function of these residuals,

. 1 <&
F(t) = — 1[é; <t teR.
(t) n]z:; [€; <t], €

We denote the empirical distribution function based on the errors by

1 n

F(t) = EZl[aj <t], teR.

We can now state our main result.

Theorem 1.1 Assume that (F), (G), (H), (R) and (W) hold and~ (nlogn)~'/%. Let
U be an'/2-consistent estimator @f. Then

sup [B(0) = F(t) — 1(1) = 3 &5 = op(n~1/2). (12)

teR n

j=1

Under our assumptions (G) and (R), the optimal choice of bandwidth for estimating
ois of ordern—1/5. Our proof requires an undersmoothed estimatarwith a bias that
is of ordero(n~'/2). This is guaranteed by the choice of bandwidth in the theorem.

The nonparametric regression modél= o(X) + ¢ is a special case of the partly
linear regression correspondingito= 0. Takingd) = 0, the above theorem carries over
to this model, giving (1.2) without condition (H).

Our approach is motivated by Akritas and Van Keilegom (2001) who consider the
heteroscedastic nonparametric regression modet o(X) + s(X)e. In our model,
s(X) =1lando(X) = E(Y|X), which corresponds to their functiohbeing 1. Their
assumption (A2) would then imply thatis quasi-uniform on some finite interval. We
get by with considerably weaker conditions.

Kiwitt, Nagel and Neumeyer (2005) treat the nonparametric regression riodel
0(X) + ¢ with additional linear constraints on the error distributibn They rely on
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the results and assumptions of Akritas and Van Keilegom and use a kernel estimator for
0. The kernel estimator requires stronger assumptions on the design detisity our
linear smoother.
In the nonparametric regression model, our estimfoy has the influence function
1le < t] — F(t) + f(t)e and is therefore efficient by Mler, Schick and Wefelmeyer
(2004). Since this is also the influence functiorfFQf) in the larger partly linear model,
I7(t) is also efficient there.
The linear regression mod&l = 9" U + ¢ corresponds to the cage= 0. In this
model one can tak&; = Y; — 97 U; with 9 the least squares estimatoriband obtains
the following result.

Theorem 1.2 Assume that’ has mean zero, finite variance and a uniformly continuous
densityf, and the matrixe[UU '] is positive definite. Then

sup |F(t) — F(t) — f(t) (0 — 9) T E[U]| = 0p(n~"/?),
teR

This was first proved by Koul (1969) for fixed design. See also Koul (2002) and, for
increasing dimension, Mammen (1996). Theorem 1.2 follows from Theorem 2.3 about
nonlinear regression.

Our paper is organized as follows. In Section 2 we adapt a result of Akritas and Van
Keilegom (2001) on uniform stochastic expansions of residual-based empirical distribu-
tion functions to our setting. In Section 3 we prove Theorem 1.1. Technical details about
kernel type estimators are in Section 4.

2 General results

Let ¢ be a random variable with distribution functidf, and letZ be a random vector
with distribution@ independent of. Let D be a non-negative function ih2(Q), and
let D be a set of measurable functiomsuch thata| < D and0 € D. We now give
conditions on the clas® that imply that the clas${ = {h,: : a € D,t € R} is
F ® Q-Donsker, where

hot(e,Z)=1e —a(Z) <t], a€D,teR.

For this we endovD with the L; (Q)-pseudo-norm. By an-bracket for(D, L1 (Q)) we
mean a sefu,a] = [a € D : a < a < a} whereg anda belong toL; (Q) and satisfy
[la —a] dQ < n. Recall that théoracketing numbeV; (7, D, L1(Q)) is the smallest
integerm for which there aren n-bracketda,,a],...,[a,,, @n] Which coverD in the
sense that the union of the brackets contd@ns

Theorem 2.1 Assume thaf" has a finite second moment and a bounded density and
that the bracketing numbers satisfy

1
/0 \/log Ny (0%, D, L1(Q)) d < oo. 2.1)

ThenH is F' ® Q-Donsker.
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Proof: Let F denote the distribution function af + D(Z) and F_ the distribution
function ofe — D(Z). Since these random variables have finite second moments by the
assumptions o’ and D, we see that”_(¢) < C?/t? for negativet and(1 — F, (¢)) <

C? /t? for positivet, whereC' is some positive constant. Note thatH has envelopé.

We shall show that

/OOO \/log N (0, H, La(F & Q) dn < o, 2.2)

The desired result then follows from Ossiander (1987), see also van der Vaart and Well-
ner (1996, Theorem 2.5.6). Létdenote the Lipschitz constant éf. Let [a,a] be an
n*/(2L)-bracket for(D, L;(Q)) anda € [a,a]. We may assume thas| < D and
la] < D. Letu < v be real numbers such that- u < n?/(2L). Then, fort € [u,v], we
have
1fe —a(Z) < u < 1 —a(Z) < 1] < 1fe —a(Z) < ]

and

Bl(1le - a(Z) < u] = 1[e = a(Z) < v])*] = E[F(v +a(2)) - F(u+ a(Z))]

[
L(v —u+ Efa(2) - a(2)])

for ¢t < —C/n, we have

0<1fe—a(Z) <t] <1[e— D(Z) < —C/1]
and

Ellfe - D(Z) < ~C/n)’] < F_(~C/n) < n*;
and, fort > C'/n, we have

1e+D(2) < C/n) <1 —a(Z) <] <1
and
E[(1-1[e+D(Z) < C/n))*) <1 - FL(C/n) <1

This shows that the bracketing numbéfs (n, 1, Lo(F ® Q)) are bounded by

K0~ Nj(n*/(2L), D, L1(Q))
forall 0 < n < 1 and some constaiif and are bounded hyfor n > 1 (take the bracket

[0, 1]). Since\/z +y < /= + ,/y for non-negativer andy and smcefO Vlog(n=3) dn

is finite, we see that (2.1) implies the desired (2.2).

Now consider a regression model
Y=r(Z)+¢
and independent copi€¥’;, Z,) of (Y, Z). For an estimatof of  define the residuals
£; =Y; —7(Z;). As before we set

R 1 n n

IE‘(t):ﬁZl[éjgt] and F(t):%ZI[sjgt], teR.
j=1 j=1
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Theorem 2.2 LetD be as in the previous theorem. LEthave a finite second moment
and a densityf that is Holder with exponenf € (0, 1]. Assume that there is ansuch
that

P(a€D)—1, (2.3)
/ 81+ dQ = 0,(n~2), (2.9)
sup #(2) — r(2) — a(2)| = 0p(n~1/?), (2.5)

Then
sup [F(t) — F(t) ff(t)/ddQ‘ = 0p(n"1/?2).

teR

Proof: Without loss of generality we may assui@és D-valued; otherwise replaceby
alla € D). Let

1 n

By = = Y 1 —alZ) <4 and Fa(t):/F(t+a(z))dQ(z).

Then we can write

(1) - F(t) - £(1) / 6.dQ = Ty(t) + Ta(t) + T (1),
where
Ty(t) = F(t) — Fa(t) — F(t) + F(t),

Ty(t) = Fa(t) — F(t) — f(t) / a.dQ.

Sincef is Holder, say with constant, we obtain that
120 < [P+ a(:) - F(©) - F(1a(2)] Q)
< A/ 1] dQ = o, (n~1/2).

To deal withT} andT>, we introduce the empirical process

(1) = == >"(1le; — al(Z) < 1] - Fu(0)

1 n
-7 > (hai(ej, Zj) = Elhau(, Z)])), a€DteR,
j=1

associated with the Donsker clags Then we have the identity

2Ty (t) = vy (a,t) — v (0, 1)
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and the bound
[nY2Ty(t)] < n*/?(F(t+ R,) — F(t — Ry))
< (b, t + Rp) — vn(at — Ry)| +n'/?(Fa(t + Ry) — Fa(t — Ry,)),

whereR,, denotes the left-hand side of (2.5). Sintés Holder, f is also bounded and
the functionsF;, are Lipschitz with Lipschitz constatjif|| ... Thus we have

nY2(Fy(t + Ry) — Fa(t — Ry)) < 2| flleen'/? Ry, = 0,(1). (2.6)
Moreover, fors,t € R anda,b € D,

E((ha,s(e,Z) = hus(e, 2))%] < E[F(s + a(Z)) = F(t + b(Z))]]
< | flloe(Is =t + Ella(2) — b(Z)]]).

In view of this and the stochastic equi-continuity of the empirical process, for gverg
there is & > 0 such that, withP* denoting outer measure,

sup P*( sup |Un (a,t) — vn(0,1)] > 77) <mn,
n teR,a€D, [ |a| dQ<S

sup P*( sup [vn(a, s) — vy (a,t)| > 77) <.
n a€D,s,teR,|s—t|<d

The first of these statements and (2.4) imply, |T5(t)| = o,(n~'/2), while the second,
(2.5) and (2.6) implyup, [T ()| = 0,(n"1/2). O

Theorem 2.2 was formulated with semiparametric regression in mind. In parametric
regression models one typically has

[ 1ald@ = 0,617 2.7)

in which case the Blder condition onf can be relaxed to uniform continuity, as is easily
seen by inspecting the proof. To state this result, we look at the parametric regression
modelY = ry(Z)+ ¢ with regression functiony indexed by &-dimensional parameter

1 and differentiable in the parameter in the following sense.

(D) There is function 79 into R¥ such that |7-9| € L2(Q) and

SUp [ry-44(2) — 1o (2) — ti9(2)| = ofJt])-

Given an1/2-con§istent estimatat of ¥, assumptions (2.3), (2.7) and (2.5) are met with
#=rganda = (Y — V) 7y, and withD = {¢ "7y : |t| < 1}. Since

Nij(n, D, L1(Q)) < Mn~*

for some constand/, the entropy condition (2.1) holds. Thus we have the following
result for parametric regression.
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Theorem 2.3 Assume that (D) holds antd= r; with ¥ an'/2-consistent estimator of
J. Let F' have a finite second moment and a uniformly continuous defisitiaen

sup |F(t) — F(t) = f(£)() - 9)" /7"«9 aQ| = op(n~11?).

teR

A special case is the linear regression model, for whigt) = 9" 2. In this model,
assumption (D) is trivially satisfied withy (z) = z, and an'/2-consistent estimator af
is given by the least squares estimator, provifiéd = 0, E[¢?] is finite and the matrix
E[ZZT]is positive definite.

3 Partly linear regression

To prove our main result, Theorem 1.1, we apply Theorem 2.2 with the chgices
(U, X) andr(Z) = 97U + o(X). We takeD to be the class of functions

alu,2) = b7 (u — () + ()

with b € [—1,1]* andc belonging to a clas€ of functions to be introduced next. Let
1 < ae < 2. For a function: defined o0, 1] set

[kl = sup [h(z)].
0<z<1
If his also differentiable of0, 1], let

[ () = B (y)]
1Blla = IRl + 1B/ + sup  —=r—rmr

o<z<y<i T —y|*!

We takeC = C{([0,1]), the set of all such functions with ||2||, < 1. By Corollary
2.7.2 in van der Vaart and Wellner (1996), there is a congtaatich that

log N j(n?, C([0,1]), Li(G)) < Kn~%/*, n<1. (3.1)
Note that

Niy(n, D, L1(Q)) < Nij(n, Do, L1(Q)) Ny (n, CT([0,1]), L1(G)),

where
Do = {(u, ) = b (u—p(x)) : b€ [-1, 1]},
SinceN|(n, Do, L1(Q)) < Mn~* for some constant/, the desired entropy condition

(2.1) follows from (3.1) andy > 1.
Lemma 3.2 below yields (2.5) with

a(u,x) = (9 = 9) " (u— p(@)) + é(x)



8 Miiller - Schick - Wefelmeyer

andé defined in (3.11). By the!/2-consistency of), we have (2.3) iP(¢ € C([0, 1]))
tends to one. Sufficient conditions for the latter are given in Lemma 3.1 for arbitrary
and verified in Lemma 3.3 for the choiéen (3.11). By the definition of:, we have

/ 02 dQ = (0 — ) TE[(U — p(X))(U - u(X)) T - 0) + / 2da. (32)

In view of the inequality

/|d|1+§ dQ < (/d2 dQ)(H&W’

relation (2.4) follows from the:!/2-consistency of), Lemma 3.4, and the choice of
bandwidth. Thus the assumptions of Theorem 2.2 hold and we obtain

sup
teR

F(t) — F(t) — f(1) /&dQ‘ = 0,(n"1/2),

By the definition ofy, and Lemma 3.5,

N P e —1/2
/adQ—/ch— n;q—&—op(n ).

Sincef is Holder and hence bounded, the desired expansion (1.2) follows.
We now give sufficient conditions for an estimatdp belong to the class{ ([0, 1]).

Lemma 3.1 LetG be such thatz([0, 1]) = 1. Leté be twice continuously differentiable
on [0, 1] and satisfy||¢|| = 0,(1), [|¢'|| = O,(n=P1) and||¢”|| = O,(n”?) for constants
B1andfy in (0,1). Letl < a < 1+ f1 A (1 — B2). ThenP(¢ € C9([0,1]) — 1.

Proof: We need to show tha®(||¢[|, > 1) — 0. In view of ||¢|| = o,(1), [|¢'|| = 0,(1)
and the definition of|h|| ., it is enough to show that

A o
wp @ -20)
0<z<y<l1 ‘x - y|

= o0,(1).

Sincel||¢/|| = O,(n="1), we have

A Y
sup M < Qna—luéln _ Op(na—l—[h);

y—xz>1/n ‘x7y|a71

since||¢”|| = O,(n??), we have

d(x)—¢(y R _ _
sup | ( ) a_(1)| < ”c//” sup |$ o y|2 a _ Op(nﬁera 2)'
O<y—z<1/n |$ - iU| O<y—z<1/n

The desired result follows as the exponemts 1 — 8; anda + 82 — 2 are negative.O
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Recall thatj(z) is the first component of the minimizéf,, 51 ) of (1.1). This mini-
mizer obeys the normal equations

e ] = a6

where, fori = 0, 1,... and withw; (y) = y‘w(y),

() =~ S = 0T (),

To describep(x) we set

i) = Elpi(e)] = [ -

Cn

u—x

)g(u) du = /wi(y)g(x + cny) dy.
For the rest of this section we assume without further mention that the bandwidth
satisfiesc, — 0 andc,'n"!logn — 0 and make additional assumptions as needed.
This allows one to obtain versions of Theorem 1.1 for more general choices of bandwidth.
We also assume (without loss of generality) thatc 1/2. Under (G) and (W) we have

N log ny\ 1/2
5~ pill = 0p((5o) ) 3:3)
12:]l < [Ipoll < llgll < oo. (3.4)

The former follows from Corollary 4.2 applied with= w;, T; =T = 1, 8 = oo and
0 = 0. By (G) there is am > 0 such thayy(z) > n for 0 < z < 1. Thus, for suchr,

—X
g(x+cny)2n1[7 <y<

n cn

and therefore

is bounded below by

2 (1—z)/cn

WZ 2w(y) dy /

—x/cn —x/cn

(1—z)/cn

(y - 28)2%@) dy.

Since we assumeg, < 1/2, the range of integration always includes one of the intervals
[—1,0] and[0, 1], and2w restricted to either interval is a density. This and the symmetry
of w imply

2 2

Po(@)pa(e) - (@) 2 7 (3.5)
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with o2 the variance ofw restricted tdo, 1]. It follows from (3.3) — (3.5) that

P(,nf Go(@)pa(e) - 7(@)) 2 1) = 1.

Hence, with probability tending to one, we can write

. GoP2 — q1p1
0= —F——F 5 -
Pop2 — Py
Fori=1,2, let
§i:% and gi:%-

P2Po — P1 Pb2po — P71

It follows from (3.4) and (3.5) that
1 = Ayl
I5:]| < g < 00, (3.6)

and from (3.3) — (3.5) that

R B log n\1/2

Hsi—siu_op((mﬂ) ). 3.7)
Let

1 « X;—x
Al = ) Wq ’
)= 1 o)
R~ X,z
Bi(z) = W;ijz( . ).
]:
. 1 ~ ’ Xj — T
Cie) = i 22 (o) = efe) = /@)X, — ) (Z).

Using the identitiesj; = A; — (0 — 0)T B; + Ci + 0pi + ¢n0'Piv1, Poda — P18 = 1
andp; $; — P28 = 0, we can write, with probability tending to one,
0= 0= (Ao~ (9 =) Bo + Co + 0po + cat'p1)5:
— (A1 — (9 —0) By + C1 + 0p1 + cad'Pa)s1 — 0
= Agdy — A181 — (0 — 9) T (Body — B161) + Coda — Cré1.
Note that under (R) and in view of (3.3) and (3.4) we have

ICill < calle"llllboll = Opler),  i=0,1. (3.8)

n

Applying Corollary 4.3 withv = w; and7; = e " U; with e € R*, and utilizing (H), we
obtain
le™(Bi — pip)|| = 0p(1),  i=0,1,
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if ¢;'n~%logn is bounded for somé < § < 1/2. Hence, using (3.4), (3.6), (3.7),
boundedness gf on [0, 1], and the identityy 52 — p151 = 1, we find that

le™ (Bosz — Bidy — p)|| = op(1). (3.9)
Applying Corollary 4.2 withv = w;, T; = €; andd = 0, we have
1/2
[ =Op((12%:) ). =01, (3.10)
if F has a finite moment of ordet > 2 andc;, 'n~'*2/81ogn is bounded. Applying
(3.6)—(3.10) to the above representatiorpof o, and setting
é= Ag52 — A5, (3.11)
we obtain the following result.

Lemma 3.2 Assume that (H), (G), (R) and (W) hold and thathas a finite moment
of order 3 > 8/3. Letnct — 0andc,'n°logn — 0 be bounded for somé in
(1/4,1/2) N (1/4,1 — 2/3]. Letd ben'/?-consistent. Then (2.5) holds with

a(u,x) = (0 = 9) " (u - p(2)) + &(x).

The conditiong > 8/3 implies1 — 2/8 > 1/4 and ensures the existence of a
sequence of bandwidths with the required properties. For example, we can,pick
n Y withl1/4 <~ < (1-2/8)A(1/2).

Condition (W) implies thatv;, w; andw! are integrable and Lipschitz. Hence, by
Corollary 4.2, applied withy = wfj) and7}; = ¢;, we obtain, forj = 0, 1,2,

149 + 149 = 20, ((B2) )

ney,

provided F' has a finite moment of ordet > 2 andc;,, 'n='+2/#logn is bounded.
Furthermore, sincg is bounded, we have

1S + 159 + 155 = O (7).
Thus, in view of (3.4) and (3.5),
159 + 115571 = O(c, ).
The above rates show that

) , 1 1/2
[ =0, ((Z22) 7). j=0,1,2

ncy,

Thus, ifc,; = O(nY) with v < 1/3, then the assumptions of Lemma 3.1 hold for all
b1, B2 With 0 < 26, < 1 — 3y andgs < 1/3. Thus we have the following result féras
defined in (3.11).
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Lemma 3.3 Assume that (G) and (W) hold; has a finite moment of ordet > 2, and
et = 0(n") for somey < 1/3. ThenP(¢ € C¢([0,1])) — 1 for somex > 1.

n

Direct calculation show thal[A?(z)] < FE[?]||g]/|w|ls/(nc,). This and the
boundedness ¢f; ands, yield the following result foz as defined in (3.11).

Lemma 3.4 Assume that (G) and (W) hold ar#dhas a finite second moment. Then
1
~2 _
/c dG = O,,(—ncn).
Finally, we have the following result.

Lemma 3.5 Assume that (G) and (W) hold. Then

o LN~ —1/2
/ch = Zsj +op(n™ 7). (3.12)

Jj=1

Proof: Usingpgs2 — p151 = 1, we find that the integral in (3.12) equals

J= nlcnznjaj/(wo(ch_x)SQ(x)—wl(ch_x)sl(a?)) 4G ()

mn n

with ¥
80(%5) = [ uo(FL2) (sa(Xy) - s2(2) dG(a)
— [ wol0) 520 = 520X, — ca))aX; — cot) s
8X5) = [ S (P ) m10) - s1(e) dGo)

= /wl(y)(gl(Xj) —51(Xj — cny))9(Xj — cny) dy.

Thus the assertion (3.12) follows f(Ay — A1)?dG = o0,(1). Sincew andg are
bounded, this is implied by

// (5;(x) — 5i(x — cpy))?drdy — 0, i=1,2,
I
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with I, = {(z,y) : 0 <2 <1,-1 <y <1,0<x—c,y < 1}. Inview of (3.4) and
(3.5), the latter is implied by

/ / (5i(2) — Pil — cy)P dady — 0, i=0,1,2.
I,

These three integrals can be bounded by a multiple of

sup / 9z +1) — g(x))? de,

[t|<cn

which converges to zero by continuity of shiftsin; see Theorem 9.5 in Rudin (1974).
O

4 Auxiliary results

Throughout this section I, Z,, Z5, . .. be independent and identically distributed
dimensional random vectors, and, for eacln R, let h,,, be a bounded measurable
function fromR™ into R.

Proposition 4.1 Let B,, be a sequence of positive numbers such fiat= O(n*) for
somex > 0. Assume that

n
su hnalleo = O , 4.1
el = 05, (4.1)
sup E[h2. (Z2)] = 0 ), 4.2
s Bl (2)] =O0( ) (4.2)
and, for positive numbers,, k2 and A,
1rny = Anglloo < ARy —z|™, |z, |ly| < B, |y—z| <1. (4.3)
Then
1 n
sup |- 3" hna(Z) = Elhna(2)]] = Op(1). (4.4)

|x|§Bn n j=1

Proof: Let H,(x) denote the expression inside the absolute value in (4.4). We use an
inequality of Hoeffding (1963): I, . .., ¢, are independent random variables that have
mean zero and variane€ and are bounded hy/, then forn > 0,

) -
P(\;;@‘\Z”) <2050 (= 5o a7am)

Applying this inequality Withé; = h,,.(Z;) — E[hn.(Z)], we obtain fom > 0:

2

n
P([Hp ()] =2 n) < 2exp (  2B[R2,(Z)] + 2n|\hm|\oo)'
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Thus there is a positive numbersuch that for all; > 0,

2

sup P(|Hp(z)| >n) < Qexp<f U alogn).
|2|<Bn 1vn
Now letx,, = — B, + 2kB,n~™ for k = 0,1,...,n™, with m an integer greater than

« + ko /k1. The above yields for large enough> 0,

P(k max  |Hp ()| > 7,) <" P(|Hu(x)| > 1) = o(1).

=0,...,n™

This shows that

It follows from (4.3) that

Hpo= ,_nax sup |Hp(z) — Hp(zn1)|

=0,..., nm |I7In,k|§Bnn7"L

= O(Bjin~ ™ 1n"?) = 0,(1).
In view of the inequality

sup [Hy(7)] < Hn1 + Hn,2
|z|<Bn

we have the desired result (4.4). O
In the following corollary we interpret/g as zero ifg is infinity.

Corollary 4.2 Assume that the functionis integrable and Hlder with positive expo-
nentx, the random variableX has a bounded density the random variable is in
L for some2 < 8 < oo, andrg is bounded, where(X) = E(T?X). Letc, — 0
andc;, 'n=1=*+2/#logn be bounded for some> 0. Then, for i.i.d. copie$T}, X;) of
(T, X), we have

a3 (10 (52) [ () =i

nc
0<z<1 n i n

with ¢, = n' ¢, /logn.

Proof: SetK = 2||T||.,. Define

Roy@) = T T | < Knt/) Lo (R0,

n Cn

1 R
Suy(2) = CYPTAT | > Kn'/%) o170,

Cn
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It suffices to show that

sup 3 (R (@) B[Ry (@) = Op(1) (4.5)
and .
sup |23 (Suy(e) — ElSs (@) = op(0) 6

Statement (4.6) is true fgt = oo as thenS,,;(x) = 0. For 5 < co we have

) /B ) /B
P(lréljagxnﬁ]\ > Kn ) < ;P(|T]| > Kn'/P)
J:
< K PE[TP1[|T| > Kn'/P]] -0
and thus

sup |— Snj( ‘>O)<P< max |15 >Kn1/ﬁ)ﬂ0
<O<:1:El Z j 1<g<n| |

The assumptions ovnmply thatv is bounded. Hence we also have

02, *ZE wi (@)]] < 0092 2 (log ) 2 vl EITILIT| > Knt/?)

< ol BITPInt =0 e 12 (log ) =42 (Kn /7)1 =F
_ O(n—(1+5)/2+1/5cgl/2(10gn)—1/2) _ 0(1)

This shows that (4.6) holds fgt < oo as well.
To show (4.5) we apply the previous proposition with = 1 andh,,, (7}, X;) =
R, ;(x). We have

_ _ n
SUp [l < Koo~/ e 2 logm) 2 = 01 ).
0<z< ogn

Furthermore,

OiliglE[hfw(T, X)] < cjlognE[T(X)U2<XC; x)]

nl—é

_ 2
= fogn /v (Y)7(x + cny)g(x + cny) dy

1-0

I7glc / o2 (y) dy.

Sincev is Holder with exponent, we obtain, withA denoting the l8lder constant,

<
~ logn

1-96

nl=%¢,\1/2 i
thy i hnx”oo < (Wnn) nl/ﬁcnl KA|y _ CE|K < Cn1+n+1/ﬁ|y _ LL"H.

Thus the assumptions of the proposition hold, and we obtain (4.5). O
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Corollary 4.3 Assume that the functionm is Holder with positive exponent and has
compact support, the random variahlé has a bounded density the random variable
T has a finite second moment,is uniformly continuous andg is bounded, where
w(X) = E(T|X)and7(X) = E(T?|X). Letc, — 0andc; 'n~°logn be bounded for
somed < ¢ < 1/2. Then, fori.i.d. copie$T}, X;) of (T, X'), we have

sup | — iij(Xj — m) ac) /v(y)g(w + cny) dy| = 0p(1).

0<z<1 1 NCy Cn

Proof: Write

1 X -z
aE[TU( . )} = /u(m + eny)o(y)g(@ + cny) dy
and note thay [v(y)|g(z + cny) dy < |9l [ |v(y)| dy. The desired result now follows
from the uniform continuity of. and Corollary 4.2 applied witfy = 2. O
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