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We prove a Bahadur representation for a residual-based estimator
of the innovation distribution function in a nonparametric autoregres-
sive model. The residuals are based on a local linear smoother for the
autoregression function. Our result implies a functional central limit
theorem for the residual-based estimator.

1. Introduction. Regression models are described by their regression
function and their error distribution, and possibly by their covariate distri-
bution. The object of primary statistical interest is the regression function.
Estimators of the error distribution function are however also of interest,
in particular for tests about the regression function and for prediction in-
tervals about future observations. There is a large literature on estimat-
ing error distribution functions, but it is nearly exclusively concerned with
cases in which the regression function is parametric, in particular with lin-
ear regression. We refer to Koul (1969, 1970, 2002), Durbin (1973), Loynes
(1980), Shorack (1984), and for increasing dimension to Portnoy (1986) and
Mammen (1996). Analogous results exist for autoregressive time series with
parametric autoregression function, and for related time series models. For
AR(p) models see Boldin (1982), Koul (1991), Koul and Ossiander (1994).
For ARMA, ARCH and GARCH models we refer to Boldin (1998), Lee and
Taniguchi (2005), Kawczak, Kulperger and Yu (2005), Koul and Ling (2006),
Berkes and Horváth (2002). See also Chapters 7 and 8 in Koul (2002). Em-
pirical distribution functions of powers of residuals are studied by Horváth,
Kokoszka and Teyssière (2001), Berkes and Horváth (2003), Kulperger and
Yu (2005).

In these papers, the (auto-)regression function (and volatility) depends on
a finite-dimensional parameter, which can be estimated at the root-n rate.
If this function is nonparametric, different arguments are needed to obtain a
stochastic expansion and hence the root-n rate and asymptotic normality for
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the residual-based empirical distribution function. For heteroscedastic non-
parametric regression, Akritas and Van Keilegom (2001) give a functional
central limit theorem for a residual-based empirical distribution function;
see also Kiwitt, Nagel and Neumeyer (2005). A related result is in Cheng
(2005) who uses separate parts of the sample for estimating the regression
function and the error distribution function. Müller, Schick and Wefelmeyer
(2007) consider the partly linear regression model Y = ϑ>U +%(X)+ε with
error ε independent of the covariate pair (U,X). They use a local linear
smoother for the regression function % and get by with weaker assumptions
on the error distribution and the covariate distribution. In these results, the
distribution of the covariate X is assumed to have bounded support.

We expect the results for nonparametric regression to have counterparts
in nonparametric autoregression. Indeed, Grama and Neumann (2006) show
that nonparametric autoregression is (locally) asymptotically equivalent, in
the sense of Le Cam’s deficiency distance, to certain nonparametric regres-
sion models. Below we study a stationary and ergodic nonparametric au-
toregressive model

Xt = r(Xt−1) + εt, t ∈ Z,

with independent and identically distributed innovations εt, t ∈ Z. We ob-
tain a stochastic expansion (“Bahadur representation”) and a functional
central limit theorem for a residual-based empirical distribution function,
using a local linear smoother for the function r. We assume that the innova-
tions εt have mean zero, finite variance σ2 and a distribution function F with
positive density f . Compared to regression, two technical difficulties arise.
One is that the observations are dependent. Another is that for regression
we could assume that X is bounded, but the analogous assumption for the
process Xt is ruled out by our requirement that f is positive.

We want to estimate F based on observations X0, X1, . . . , Xn of the au-
toregressive process. For this we need an estimator r̂ of r. Then we can form
the residuals ε̂j = Xj − r̂(Xj−1), j = 1, . . . , n. Typically, the performance of
the estimator r̂(x) will be poor for large values of x. For this reason we shall
use only the residuals ε̂j for which Xj−1 falls into an interval In = [an, bn]
where −an and bn tend to infinity slowly. We achieve this by using random
weights

w̄j =
wnj∑n
i=1wni

, j = 1, . . . , n,

with wnj = wn(Xj−1) based on a Lipschitz-continuous weight function wn

that vanishes off In, is 1 on [an + γ, bn − γ] for some fixed small positive γ
and is linear on the intervals [an, an + γ] and [bn− γ, bn]. Our estimator will
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be of the form

F̂(t) =
n∑

j=1

w̄j1[ε̂j ≤ t], t ∈ R.

We shall compare this estimator with the empirical distribution function
based on the true innovations,

F(t) =
1
n

n∑
j=1

1[εj ≤ t], t ∈ R.

We take r̂ to be a local linear smoother. Recall that, for a fixed x ∈ R,
the local linear smoother r̂ satisfies r̂(x) = β̂0, where (β̂0, β̂1) denotes a
minimizer of

n∑
j=1

(
Xj − β0 − β1

Xj−1 − x

cn

)2
K

(Xj−1 − x

cn

)
.

Here cn is a bandwidth and K is a kernel.
We impose the following conditions on the density f and the regression

function r.

(F) The density f is positive, has mean zero and a finite moment of order
greater than 8/3, and is Hölder with exponent ξ greater than 1/3.

(R) The function r has a bounded second derivative and satisfies the
growth condition |r(x)| ≤ c|x|+ d for some c < 1 and d <∞.

Assumption (F) without positivity of f was already used in Müller, Schick
and Wefelmeyer (2007). Positivity of f plays a role in guaranteeing ergod-
icity of the process. Indeed, together with the growth condition on r it
guarantees geometric ergodicity of the autoregressive model. The growth
condition could be replaced by any other condition on r that implies geo-
metric ergodicity. Sufficient conditions for geometric ergodicity of nonlinear
autoregressive models are in Bhattacharya and Lee (1995a,b) and An and
Huang (1996).

The above assumptions also guarantee the existence of a stationary den-
sity g that satisfies

(1.1) g(y) =
∫
f(y − r(x))g(x) dx, y ∈ R.

Thus positivity and the Hölder property of f carry over to g and guarantee
that the latter is bounded and bounded away from zero on each compact
subset of R. This conforms with the customary assumption in nonparametric
regression, namely that the covariate density is bounded and bounded away
from zero on its compact support; see Müller, Schick and Wefelmeyer (2007).

We impose the following conditions on the kernel K and the intervals In.
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(K) The kernel K is a three times continuously differentiable density with
mean zero and support [−1, 1].

(I) The interval In = [an, bn] is such that−an and bn tend to infinity slowly
enough so that log n infx∈In g(x) stays bounded away from zero.

Assumption (I) is used to obtain uniform rates of convergence for r̂ on
the intervals In. This is analogous to Hansen (2008) who proves uniform
convergence rates for kernel estimators based on dependent data. Finally, in
view of the inequality

inf
x∈In

g(x)(bn − an) ≤
∫ bn

an

g(x) dx ≤ 1,

it follows from (I) that bn − an = O(log n).

Theorem 1. Suppose (F), (R), (K) and (I) hold and cn ∼ (n log n)−1/4.
Then

sup
t∈R

∣∣∣ F̂(t)− F(t)− f(t)
1
n

n∑
j=1

εj
∣∣∣ = op(n−1/2).

In view of the differentiability assumptions on r, an optimal choice of
bandwidth for r̂ would be proportional to n−1/5. Thus the present choice of
bandwidth results in an undersmoothed estimator of r. Undersmoothing is
needed in our proofs to guarantee that the bias is asymptotically negligible
which amounts to the requirement nc4n → 0 on the bandwidth. The choice of
bandwidth in the theorem is made to accomplish this and to make the band-
width basically as large as possible. Actually, the choice cn ∼ n−1/4 log−γ n
works for any positive γ. We have taken γ = 1/4 for notational simplicity.

We set X = X0 and ε = ε1. By Theorem 1,

sup
t∈R

∣∣∣ F̂(t)− F (t)− 1
n

n∑
j=1

(
1[εj ≤ t]− F (t) + f(t)εj

)∣∣∣ = op(n−1/2).

The terms 1[εj ≤ t] − F (t) + f(t)εj in this Bahadur representation of
F̂(t)− F (t) are martingale increments, and the density f is bounded under
assumption (F). Hence by Corollary 7.7.1 of Koul (2002), the residual-based
empirical process n1/2(F̂− F ) converges weakly in D[−∞,∞] to a centered
Gaussian process with covariance function

(s, t) 7→ F (s ∧ t)− F (s)F (t) + f(s)c(t) + f(t)c(s) + f(s)f(t)σ2,

where
c(t) =

∫ t

−∞
xf(x) dx
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is the mean of ε1[ε ≤ t].
Paradoxically, the asymptotic variance

F (t)(1− F (t)) + 2f(t)c(t) + f2(t)σ2

of the residual-based weighted empirical distribution function F̂(t) can be
smaller than the asymptotic variance F (t)(1− F (t)) of the empirical distri-
bution function F(t) based on the unobserved innovations. The explanation
is that F(t) does not make use of the assumption that the innovations have
mean zero, while the linear smoother r̂ used for the residuals exploits this
information (as do other nonparametric estimators for the autoregression
function). For nonparametric regression, a similar observation is made in
Müller, Schick and Wefelmeyer (2004).

The estimator F̂(t) is efficient. Efficiency can be proved similarly as for
nonparametric regression in Müller, Schick and Wefelmeyer (2004).

A result along the lines of Theorem 1 can be proved for higher lag non-
parametric regression. This requires additional smoothness of the underlying
regression function r of several variables and the use of appropriate multi-
variate local polynomial smoothers. We will pursue this somewhere else.

Note that the conclusions of Theorem 1 remain valid if we replace the
endpoints of In by data-driven versions which take only finitely many values
with high probability. This can be achieved by choosing In = [an, bn] at
random from a collection In = {[a, b] : a < b, a, b ∈ Gn} of intervals with
Gn = {kη : k = 0, 1,−1, 2,−2, . . . , |ηk| ≤ C log n} for some small positive η
and some constant C. For this let

ĝ(x) =
1
ncn

n∑
j=1

K
(Xj − x

cn

)
, x ∈ R,

be a kernel density estimator of g. Under the assumptions of Theorem 1 we
have

sup
|x|≤C log n

|ĝ(x)− g(x)| = op(n−1/12);

see (3.1) and (3.2) below with i = 0. Now we can choose In as the interval
with largest length among the intervals I in In with log n infx∈I ĝ(x) > η.

The remainder of the paper is organized as follows. Section 2 describes
some possible applications of Theorem 1. A proof of this theorem is presented
in Section 3. Technical details needed in the proof are provided in Sections
4 and 5.
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2. Applications. In this section we describe some applications of resi-
dual-based empirical distribution functions. These applications have versions
in nonparametric regression and have been extensively studied there.

Quantile functions. By Proposition 1 of Gill (1989) on compact differ-
entiability of quantile functions we obtain from Theorem 1 the following
uniform stochastic expansion for the residual-based empirical quantile func-
tion. For 0 < α < β < 1,

sup
α≤u≤β

∣∣∣ F̂−1(u)− F−1(u) +
1
n

n∑
j=1

(1[εj ≤ F−1(u)]− u

f(F−1(u))
+ εj

)∣∣∣ = op(n−1/2).

Prediction intervals. A predictor for Xn+1 is r̂(Xn). By the above result
on the quantile function, the probability that Xn+1 lies in the prediction
interval [r̂(Xn) + F̂−1(α/2), r̂(Xn) + F̂−1(1−α/2)] converges to 1−α. For a
related result in nonparametric (and heteroscedastic) regression see Akritas
and Van Keilegom (2001).

Goodness-of-fit tests for the innovation distribution. In order to test
for a specific form of the innovation distribution function F , we can use e.g.
the Kolmogorov–Smirnov statistic

n1/2 sup
t∈R

|F̂(t)− F (t)|

or the Cramér–von Mises statistic

n

∫
(F̂(t)− F (t))2dF̂(t).

Similarly, tests for parametric models Fϑ can be based e.g. on

n1/2 sup
t∈R

|F̂(t)− Fϑ̂(t)|

or
n

∫
(F̂(t)− Fϑ̂(t))2dF̂(t)

for some estimator ϑ̂, for example the residual-based maximum likelihood
estimator.

Goodness-of-fit tests for the autoregression function. Suppose we
want to test the null hypothesis that we have a parametric form r = rϑ for
the autoregression function. Let ϑ̂ denote the least squares estimator for ϑ,
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i.e. a minimizer of
∑n

j=1(Xj − rϑ(Xj−1))2. Let ε̂0j = Xj − rϑ̂(Xj−1) denote
the residuals under the null hypothesis, and let F̂0(t) = (1/n)

∑n
j=1 1[ε̂0j ≤ t]

denote the corresponding empirical distribution function. We can then base
a test for the null hypothesis on the Kolmogorov–Smirnov statistic

n1/2 sup
t∈R

|F̂(t)− F̂0(t)|

or the Cramér–von Mises statistic

n

∫
(F̂(t)− F̂0(t))2dF̂(t).

For a related approach in (heteroscedastic) regression see Van Keilegom,
González Manteiga and Sánchez Sellero (2007).

For other applications of residual-based empirical distribution functions
we refer to Neumeyer and Dette (2005), Pardo-Fernández, Van Keilegom
and González-Manteiga (2007), Dette, Neumeyer and Van Keilegom (2007),
Einmahl and Van Keilegom (2007).

3. Proof of Theorem 1. In this section we give the proof of our the-
orem. We will make repeated use of the following exponential inequality for
martingales in Freedman (1975).

Lemma 1. Let Y1, . . . , Yn be a sequence of martingale increments (with
respect to a filtration F0, . . . ,Fn) bounded by c. Set Sn =

∑n
j=1 Yj and Tn =∑n

j=1E(Y 2
j |Fj−1). Then for positive s and t one has

P (Sn ≥ s, Tn ≤ t) ≤ exp
(
− s2

2sc+ 2t

)
.

Throughout we assume that the assumptions of Theorem 1 are met. These
imply that the innovation density f is bounded:

‖f‖∞ = sup
t∈R

f(t) <∞.

The stationary density g of our nonparametric autoregression model can and
will be be chosen to satisfy (1.1) and is hence positive, bounded and Hölder
with exponent ξ. For a continuous function h on R and an interval I we let

‖h‖I = sup
x∈I

|h(x)|.
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We begin by studying the behavior of the local linear smoother on the
interval In. To this end we introduce for a non-negative integer i the function
Ki by Ki(u) = uiK(u) and the random functions p̂i and q̂i by

p̂i(x) =
1
ncn

n∑
j=1

Ki

(Xj−1 − x

cn

)
, x ∈ R,

and

q̂i(x) =
1
ncn

n∑
j=1

XjKi

(Xj−1 − x

cn

)
, x ∈ R.

It is easy to check that on the event {p̂2(x)p̂0(x) − p̂2
1(x) > 0} we have the

identity

r̂(x) =
p̂2(x)q̂0(x)− p̂1(x)q̂1(x)

p̂2p̂0(x)− p̂2
1(x)

.

By the properties of f and K, we obtain from Lemmas 3 and 4 in Section 4
and the choice of bandwidth that

(3.1) sup
x∈In

∣∣∣p̂i(x)− E[p̂i(x)]
∣∣∣ = Op(n−1/3), i = 0, 1, 2, . . . .

Let us now set

λi =
∫
Ki(u) du =

∫
uiK(u) du, i = 0, 1, 2, . . . .

Since the density g is Hölder with exponent ξ and the kernel K has compact
support, we obtain in view of the identity

p̄i(x) = E[p̂i(x)] =
∫
g(x− cnu)uiK(u) du, x ∈ R,

that

(3.2) sup
x∈R

∣∣∣E[p̂i(x)]− λig(x)
∣∣∣ = O(cξn), i = 0, 1, 2, . . . .

It follows from (I), (3.1) and (3.2) that

(3.3) ‖p̂i/g − λi‖In + ‖p̄i/g − λi‖In = op(n−1/12), i = 0, 1, 2, . . . .

As K is a density with mean zero, we have λ0 = 1, λ1 = 0 and λ2 > 0 and
obtain

‖p̂2p̂0 − p̂2
1 − λ2g

2‖In = op(n−1/12).
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Since log n infx∈In g(x) is bounded away from zero and λ2 is positive, there
exists an α > 0 such that

(3.4) P
(

log2 n inf
x∈In

∣∣∣p̂2(x)p̂0(x)− p̂2
1(x)

∣∣∣ > α
)
→ 1.

We can write q̂i = Ai +Bi, where

Ai(x) =
1
ncn

n∑
j=1

εjKi

(Xj−1 − x

cn

)
, x ∈ R,

and

Bi(x) =
1
ncn

n∑
j=1

r(Xj−1)Ki

(Xj−1 − x

cn

)
, x ∈ R.

Since r has a bounded second derivative, a Taylor expansion shows that

(3.5) ‖(Bi − rp̂i − r′cnp̂i+1)/g‖In ≤ sup
x∈R

|r′′(x)|c2n‖p̂0/g‖In = Op(c2n).

It follows from Lemma 5 in Section 4 that

(3.6) ‖Ai‖In = Op(n−3/8 log5/8 n), i = 0, 1.

Relations (3.1) to (3.6) imply that

∆̂ = r̂ − r = û+ v̂,

where

(3.7) v̂(x) =
p̄2(x)A0(x)− p̄1(x)A1(x)

p̄2(x)p̄0(x)− p̄2
1(x)

, x ∈ R,

and

(3.8) ‖û‖In = Op((n log n)−1/2).

Since K is three times continuously differentiable, so are p̄i and Ai. From
Lemma 5 in Section 4 we derive the following rates for the derivatives of Ai,

‖A(ν)
i ‖In = O(c−ν

n n−3/8 log5/8 n), ν = 0, 1, 2.

As K ′
i integrates to zero, we can write

cnp̄
′
i(x) =

∫
g(x− cnu)K ′

i(u) du =
∫

(g(x− cnu)− g(x))K ′
i(u) du
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and obtain ‖cnp̄′i/g‖In = O(cξn log n) by (I) and the Hölder property of g.
Similarly one verifies ‖c2np̄′′i /g‖In = O(cξn log n). By (3.3) we have ‖p̄i/g‖In =
O(1). We derive that si = p̄2−i/(p̄2p̄0 − p̄2

1) satisfies

‖si‖In = O(log n), ‖cns′i‖In = o(1) and ‖c2ns′′i ‖In = o(1), i = 0, 1.

As v̂ = s0A0 − s1A1, we conclude that

‖v̂‖In = op(n−3/8 log2 n),(3.9)

‖v̂′‖In = op(n−1/8 log2 n),(3.10)

‖v̂′′‖In = op(n1/8 log3 n).(3.11)

Moreover, it follows from Lemma 6 that

(3.12)
1
n

n∑
j=1

wnj v̂(Xj−1) =
1
n

n∑
j=1

εj + op(n−1/2).

Let Fw denote the weighted empirical distribution function based on the
unobserved innovations, defined by

Fw(t) =
n∑

j=1

w̄j1[εj ≤ t], t ∈ R.

It is easy to check that

sup
t∈R

|Fw(t)− F(t)| = op(n−1/2)

and

W̄ =
1
n

n∑
j=1

wnj = 1 + op(1).

We have the identity

W̄
(
F̂(t)− Fw(t)

)
= H(t, ∆̂)−H(t, 0) +B(t, ∆̂),

where

B(t,∆) =
1
n

n∑
j=1

wnj
(
F (t+ ∆(Xj−1))− F (t)

)
and

H(t,∆) =
1
n

n∑
j=1

wnj

(
1[εj ≤ t+ ∆(Xj−1)]− F (t+ ∆(Xj−1))

)
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for t in R and ∆ in C(R), the set of continuous functions from R to R. As
f is Hölder of order ξ greater than 1/3, we derive

sup
t∈R

∣∣∣B(t, ∆̂)− f(t)
1
n

n∑
j=1

wnj∆̂(Xj−1)
∣∣∣ ≤ 1

n

n∑
j=1

wnjL|∆̂(Xj−1)|1+ξ,

where L is the Hölder constant of f . In view of this, relations (3.8), (3.9)
and (3.12) yield

sup
t∈R

∣∣∣B(t, ∆̂)− f(t)
1
n

n∑
j=1

εj
∣∣∣ = op(n−1/2).

Thus we are left to show that

sup
t∈R

∣∣∣H(t, ∆̂)−H(t, 0)
∣∣∣ = op(n−1/2).

Since the innovations have a finite second moment, we have

max
1≤j≤n

|εj | = op(n1/2).

Since ‖∆̂‖In = op(1), the probability of the event{
max

1≤j≤n
|εj | ≤ n1/2 − 1

}
∩ {‖∆̂‖In < 1}

tends to one. On this event we have

sup
|t|>n1/2

|H(t, ∆̂)−H(t, 0)| = sup
|t|>n1/2

B(t, ∆̂)

≤ 2F (1− n1/2) + 2(1− F (n1/2 − 1)).

Since F has a finite second moment, we have F (t) = o(t−2) as t→ −∞ and
1− F (t) = o(t−2) as t→∞. This shows that

sup
|t|>n1/2

|H(t, ∆̂)−H(t, 0)| = op(n−1).

Now fix a δ in the interval (1/3, 1/2). For an interval I, let C1+δ
1 (I) be

the set of differentiable functions h on R that satisfy ‖h‖I,δ ≤ 1 where

‖h‖I,δ = ‖h‖I + ‖h′‖I + sup
x,y∈I,x6=y

|h′(x)− h′(y)|
|y − x|δ

.
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It follows from (3.9)–(3.11) that v̂ belongs to C1+δ
1 (In) with probability

tending to 1. Indeed from (3.10) we obtain

sup
x,y∈In,|y−x|>n−1/4

|v̂′(x)− v̂′(y)|
|y − x|δ

≤ 2nδ/4‖v̂′‖In = op(n−1/8+δ/4 log2 n),

and from (3.11) we obtain

sup
x,y∈In,|y−x|≤n−1/4

|v̂′(x)− v̂′(y)|
|y − x|δ

≤ n−(1−δ)/4‖v̂′′‖I = op(n−1/8+δ/4 log3 n).

Since −1/8+δ/4 < 0 by choice of δ, the above and relations (3.9) and (3.10)
yield that

(3.13) ‖v̂‖In,δ = op(1).

Now let Dn = {u+ v : u ∈ Un, v ∈ Vn}, where

Un = {h ∈ C(R) : ‖h‖In ≤ n−1/2 log−1/4 n},
Vn = {h ∈ C1+δ

1 (In) : ‖h‖In ≤ n−3/8 log2 n}.

By (3.8), û belongs to Un with probability tending to one; by (3.9) and
(3.13), v̂ belongs to Vn with probability tending to one. This shows that ∆̂
belongs to Dn with probability tending to one. In view of this we are left to
show

(3.14) sup
|t|≤n1/2,∆∈Dn

|H(t,∆)−H(t, 0)| = op(n−1/2).

To this end set ηn = n−1/2 log−1/4 n. Let t1, . . . , tMn be an ηn-net of
[−n1/2, n1/2], and let v1, . . . , vNn denote an ηn-net for Vn for the pseudo-
norm ‖ · ‖In . We can choose the former net such that

(3.15) Mn ≤ 2 + n log1/4 n,

while we can take the latter net such that

(3.16) Nn ≤ exp
(
K∗(2 + bn − an)(n log1/2 n)1/(2+2δ)

)
for some constant K∗; see Theorem 2.7.1 in van der Vaart and Wellner
(1996). Note also that v1, . . . , vNn is an 2ηn-net for Dn. We have

sup
|t|≤n1/2,∆∈Dn

|H(t,∆)−H(t, 0)| ≤ max
i,l

|H(ti, vl)−H(ti, 0)|+ max
i,l

Di,l,
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where

Di,l = sup
|t−ti|≤ηn,‖∆−vl‖In≤2ηn

(
|H(t,∆)−H(ti, vl)|+ |H(t, 0)−H(ti, 0)|

)
.

For |t− ti| ≤ ηn and ‖∆− vl‖In ≤ 2ηn we have

1[y ≤ ti − 3ηn + vl(x)] ≤ 1[y ≤ t+ ∆(x)] ≤ 1[y ≤ ti + 3ηn + vl(x)]

and
F (ti − 3ηn + vl(x)) ≤ F (t+ ∆(x)) ≤ F (ti + 3ηn + vl(x))

for all y ∈ R and x ∈ In and thus obtain

|H(t,∆)−H(ti, vl)| ≤ H(ti + 3ηn, vl)−H(ti − 3ηn, vl) + 2Ri,l

with

Ri,l =
1
n

n∑
j=1

wnj

(
F (ti + 3ηn + vl(Xj−1))− F (ti − 3ηn + vl(Xj−1))

)
≤ 6‖f‖∞ηn.

Similarly, we derive the bound

|H(t, 0)−H(ti, 0)| ≤ H(ti + ηn, 0)−H(ti − ηn, 0) + 4‖f‖∞ηn.

Thus we have the following bound:

sup
|t|≤n1/2,∆∈Dn

|H(t,∆)−H(t, 0)| ≤ T1 + T2 + T3 + 16‖f‖∞ηn,

where
T1 = max

i,l
|H(ti, vl)−H(ti, 0)|,

T2 = max
i,l

H(ti + 3ηn, vl)−H(ti − 3ηn, vl),

T3 = max
i,l

H(ti + ηn, 0)−H(ti − ηn, 0).

To continue we need the following lemma which follows from a simple ap-
plication of Freedman’s inequality.

Lemma 2. Let s, t be real numbers and u and v be continuous functions.
Then, for every β > 0 and every α ≥ |t− s|+ ‖u− v‖In, we have

P (|H(s, u)−H(t, v)| > βn−1/2) ≤ 2 exp
(
− β2n

4βn1/2 + 2nα‖f‖∞

)
.
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Proof. We apply Lemma 1 with

Yj = wnj

(
1[εj ≤ s+ u(Xj−1)]− 1[εj ≤ t+ v(Xj−1)]

− F (s+ u(Xj−1)) + F (t+ v(Xj−1))
)
.

We have |Yj | ≤ 2, E(Yj |X0, . . . , Xj−1) = 0 and

Vn =
n∑

j=1

E(Y 2
j |X0, . . . , Xj−1) ≤

n∑
j=1

wnj

∣∣F (s+ u(Xj−1)− F (t+ v(Xj−1)
∣∣

≤ n‖f‖∞(|t− s|+ ‖u− v‖In) ≤ nα‖f‖∞.

Since

P (|H(s, u)−H(t, v)| > βn−1/2) = P
(∣∣∣ n∑

j=1

Yj

∣∣∣ > βn1/2, Vn ≤ n‖f‖∞α
)
,

the desired result follows from an application of Lemma 1.

Note that ‖vl‖In ≤ n−3/8 log2 n+ ηn. Thus we obtain from Lemma 2 that

P (T1 > βn−1/2) ≤
∑
i,l

P (|H(ti, vl)−H(ti, 0)| > βn−1/2)

≤ 2MnNn exp
(
− β2n

4βn1/2 + 2n‖f‖∞(n−3/8 log2 n+ ηn)

)
.

Similarly,

P (T2 > βn−1/2) ≤ 2MnNn exp
(
− β2n

4βn1/2 + 12n‖f‖∞ηn

)
and

P (T3 > βn−1/2) ≤ 2MnNn exp
(
− β2n

4βn1/2 + 4n‖f‖∞ηn

)
.

As 1/(2 + 2δ) < 3/8, we obtain from the above and from relations (3.15)
and (3.16) and the fact that bn − an = O(log n) that

P (Ti > βn−1/2) → 0, i = 1, 2, 3, β > 0.

This completes the proof of (3.14) and hence the proof of Theorem 1.
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4. Technical details. Let v be a measurable function and cn a sequence
of bandwidths. Let t1, t2, . . . be measurable functions which are bounded by
the same constant B. In this section we study the behavior of the processes

(4.1) T̂n(x) =
1
ncn

n∑
j=1

tn(Xj)v
(Xj − x

cn

)
, x ∈ R,

and

(4.2) Un(x) =
1
ncn

n∑
j=1

εjv
(Xj−1 − x

cn

)
, x ∈ R,

on the interval In. For this we will use the following result.

Proposition 1. For each x in R, let hnx be a bounded and measurable
function from R2 into R such that

(4.3) E(hnx(X0, X1)|X0) = 0.

Suppose there are positive numbers κ1, κ2 and C such that

sup
x∈In

|hnx(X0, X1)| ≤ C/ log n,(4.4)

P
(

sup
x∈In

n∑
j=1

E(h2
nx(Xj−1, Xj)|Xj−1) > C/ log n

)
→ 0,(4.5)

|hny(X0, X1)− hnx(X0, X1)| ≤ Cnκ2 |y − x|κ1 , x, y ∈ R.(4.6)

Then there is a constant A such that

(4.7) P
(

sup
x∈In

∣∣∣ n∑
j=1

hnx(Xj−1, Xj)
∣∣∣ > A

)
→ 0.

Proof. Let us set Dj(x) = hnx(Xj−1, Xj). Then Mn(x) =
∑n

j=1Dj(x)
is a sum of martingale differences with |Dj(x)| ≤ C/ log n. Set Wn(x) =∑n

j=1E(D2
j (x)|Xj−1). It follows from Lemma 1 that

P
(
|Mn(x)| ≥ η, Wn(x) ≤ C

log n

)
≤ 2 exp

(
− η2 log n

2(1 + η)C

)
, η > 0.

Now let xnk = an + k(bn − an)n−m for k = 0, 1, . . . , nm, with m an integer
greater than (1 + κ2)/κ1. We have

sup
x∈In

|Mn(x)| ≤ max
k=0,...,nm

|Mn(xnk)|+Qn,
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where, in view of (4.6),

Qn = max
k=0,...,nm

sup
|x−xnk|≤(bn−an)n−m

|Mn(x)−Mn(xnk)|

≤ Cn1+κ2(bn − an)κ1n−mκ1 → 0.

Now consider the events

An =
{

max
k=0,...,nm

|Mn(xnk)| > 1 + 2(m+ 2)C
}

and
Bn =

{
sup
x∈In

Wn(x) ≤ C

log n

}
.

The above yields, with η = 1 + 2(m+ 2)C,

P (An) ≤ P (Bc
n) + P (An ∩Bn)

≤ P (Bc
n) +

nm∑
k=0

P
(
|Mn(xnk)| > η, Wn(xnk) ≤

C

log n

)
≤ P (Bc

n) + 2(1 + nm) exp
(
− (η − 1) log n

2C

)
= o(1).

Thus the desired result (4.7) holds with A = 2 + 2C(m+ 2).

Let us now compare T̂n with T̃n, where

T̃n(x) =
1
ncn

n∑
j=1

E
(
tn(Xj)v

(Xj − x

cn

)∣∣∣Xj−1

)
, x ∈ R.

Lemma 3. Suppose f is bounded and v is integrable and Lipschitz. Let
cn → 0 and ncn/ log n→∞. Then

sup
x∈In

|T̂n(x)− T̃n(x)| = Op

(( log n
ncn

)1/2)
.

Proof. We apply Proposition 1 with

hnx(X0, X1) =
1
sn

(
tn(X1)v

(X1 − x

cn

)
− E

(
tn(X1)v

(X1 − x

cn

)∣∣∣X0

))
where sn = (ncn log n)1/2. Assumption (4.3) holds by construction. In order
to show (4.4) note that the assumptions on v imply that v is bounded and
square-integrable. We have

sup
x∈In

|hnx(X0, X1)| ≤
2B‖v||∞√
ncn log n

.
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This is of the desired order O(1/ log n) since log n/(ncn) → 0 by assumption.
Next, we have

n∑
j=1

E(h2
nx(Xj , Xj−1)|Xj−1) ≤

B2

s2n

n∑
j=1

E
(
v2

(Xj − x

cn

)∣∣∣Xj−1

)
, x ∈ R.

This yields the desired (4.5) in view of n/s2n = 1/(cn log n), stationarity, and
the bound

1
cn
E

(
v2

(X1 − x

cn

)∣∣∣X0

)
=

∫ 1
cn
v2

(y + r(X0)− x

cn

)
f(y) dy

=
∫
v2(u)f(x− r(X0) + cnu) du

≤ ‖f‖∞
∫
v2(u) du.

Finally, relation (4.6) follows with κ1 = κ2 = 1 from the bound

|hny(X0, X1)− hnx(X0, X1)| ≤
2B
sn

sup
z∈R

∣∣∣v(z − y

cn

)
− v

(z − x

cn

)∣∣∣
≤ 2BΛ
sncn

|y − x|,

where Λ is the Lipschitz constant of v, and the fact that ncnsn →∞.

Lemma 4. Suppose f is bounded and v is integrable and has a bounded
derivative v′ such that the integral V =

∫
(1+ |u|)|v′(u)| du is finite. Suppose

the functions t0 = f, t1, t2, . . . satisfy

|tm(y)− tm(x)| ≤ Hm|y − x|ξ0 , x, y ∈ R,m = 0, 1, 2 . . . ,

for some exponent ξ0, 0 ≤ ξ0 ≤ 1. Then

sup
x∈In

|T̃n(x)− E(T̃n(x))| = Op((H0 +Hn)(bn − an)n−1/2cξ0−1
n ).

Proof. For s ∈ R, let us define the function φn,s by

φn,s(x) = tn(x)f(x− s), x ∈ R.

By the properties of f and tn, the functions φn,s are bounded by B‖f‖∞
and Hölder with exponent ξ0 and constant Λn = BH0 + ‖f‖∞Hn,

(4.8) |φn,s(x)− φn,s(y)| ≤ Λn|x− y|ξ0 .
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It is easy to see that

T̃n(x) =
1
n

n∑
j=1

ψn,r(Xj−1)(x), x ∈ R,

where

ψn,s(x) =
∫ 1
cn
v
(y − x

cn

)
φn,s(y) dy =

∫
φn,s(x+ cnu)v(u) du, x ∈ R.

By the properties of v, the functions ψn,s are bounded by B‖f‖∞‖v‖1 and
differentiable with derivatives

ψ′n,s(x) = − 1
cn

∫
φn,s(x+ cnu)v′(u) du, x ∈ R.

In view of
∫
v′(u) du = 0 we obtain

ψ′n,s(x) = − 1
cn

∫
(φn,s(x+ cnu)− φn,s(x))v′(u) du, x ∈ R.

Thus (4.8) implies that

|ψ′n,s(x)| ≤ Λnc
ξ0−1
n

∫
|u|ξ0 |v′(u)| du, x ∈ R.

Hence the functions ψn,s are Lipschitz with constant Ln = V Λnc
ξ0−1
n .

Since the autoregressive process is geometrically ergodic, there is a con-
stant D such that

Var
(
n−1/2

n∑
j=1

h(Xj)
)
≤ D‖h‖2

∞

for every bounded measurable function h. Since

|ψn,r(y)(s)− ψn,r(y)(t))| ≤ Ln|s− t|, s, t, y ∈ R,

we obtain that

(4.9) Var
(
n1/2(T̃n(s)− T̃n(t))

)
≤ DL2

n(s− t)2, s, t ∈ In.

Thus it follows from Theorem 12.3 in Billingsley (1968) that the sequence
of C([0, 1])-valued processes

n1/2

Ln(bn − an)

(
T̃n(an + (bn − an)x)− E[T̃n(an + (bn − an)x)]

)
, 0 ≤ x ≤ 1,

is tight. This is the desired result.
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Lemma 5. Suppose the function v is as in Lemma 4. Let f be bounded
and have a finite moment of order β > 2. Let cn → 0, n1/2cn/ log n → ∞
and c−1

n n−1+2/β log n be bounded. Then

sup
x∈In

|Un(x)| = Op

(( log n
ncn

)1/2)
.

Proof. Let sn = (ncn log n)1/2. Define

Rnj(x) =
1
sn

(
εj1[|εj | ≤ n1/β ]− E[εj1[|εj | ≤ n1/β ]]

)
v
(Xj−1 − x

cn

)
,

Snj(x) =
1
sn
εj1[|εj | > n1/β ]v

(Xj−1 − x

cn

)
,

S̄nj(x) =
1
sn
E[εj1[|εj | > n1/β ]]v

(Xj−1 − x

cn

)
.

Since ε has mean zero, it suffices to show that

sup
x∈In

∣∣∣ n∑
j=1

Rnj(x)
∣∣∣ = Op(1),(4.10)

sup
x∈In

∣∣∣ n∑
j=1

Snj(x)
∣∣∣ = op(1),(4.11)

sup
x∈In

∣∣∣ n∑
j=1

S̄nj(x)
∣∣∣ = op(1).(4.12)

We have

P
(

max
1≤j≤n

|εj | > n1/β
)
≤

n∑
j=1

P (|εj | > n1/β) ≤ E[|ε|β1[|ε| > n1/β ]] → 0

and thus

P
(

sup
x∈In

∣∣∣ n∑
j=1

Snj(x)
∣∣∣ > 0

)
≤ P

(
max

1≤j≤n
|εj | > n1/β

)
→ 0.

The assumptions on v imply that v is bounded, say by B. Hence we also
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have

sup
x∈In

∣∣∣ n∑
j=1

S̄nj(x)
∣∣∣ ≤ nB

sn
E[ε1[|ε| > n1/β ]]

≤ E[|ε|β1[|ε| > n1/β ]]
nB

snn(β−1)/β

= o(n1/βs−1
n ) = o

((
n−1+2/βc−1

n log−1 n
)1/2)

= o
( 1
log n

)
.

To show (4.10) we apply Proposition 1 with hnx(Xj−1, Xj) = Rnj(x). We
have

sup
x∈In

|hnx(X0, X1)| ≤
2Bn1/β

sn
= O

( 1
log n

)
.

Next, for x in R, we have

(4.13)
n∑

j=1

E(h2
nx(Xj−1, Xj)|Xj−1) ≤

σ2

log n
Hn(x)

with

Hn(x) =
1
ncn

n∑
j=1

v2
(Xj−1 − x

cn

)
.

Note that v2 inherits the properties imposed on v. Thus Lemmas 3 and 4,
applied with v2 in place of v and with ξ0 = 0, yield

sup
x∈In

|Hn(x)− E[Hn(x)]| = op(1).

Finally,

E[Hn(x)] ≤ ‖f‖∞
∫
v2(u) du, x ∈ R.

This shows that P (supx∈In
Hn(x) > C) → 0 for large enough C. This yields

(4.5) in view of (4.13).
Since v is Lipschitz for some constant Λ, we obtain

|hny(X0, X1)− hnx(X0, X1)| ≤
2Λn1/β

sncn
|y − x| ≤ Cn|y − x|.

Thus the assumptions of the Proposition 1 hold, and we obtain (4.10).
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5. Proof of (3.12). In this section we provide the proof of (3.12). More
precisely, we prove the following lemma.

Lemma 6. Suppose (F), (R), (K) and (I) hold and cn ∼ (n log n)−1/4.
Then (3.12) holds.

Proof. Let us set

si(x) =
p̄2−i(x)

p̄2(x)p̄0(x)− p̄2
1(x)

, x ∈ R, i = 0, 1.

Then we can write v̂ = s0A0−s1A1. Changing the order of summation leads
to the identity

1
n

n∑
j=1

wnj v̂(Xj−1) =
1
n

n∑
k=1

εkĥ(Xk−1)

with ĥ = ĥ0 − ĥ1, where for i = 0, 1 and x ∈ R,

ĥi(x) =
1
ncn

n∑
j=1

wn(Xj−1)si(Xj−1)Ki

(x−Xj−1

cn

)
.

Let h̄n(x) = E[ĥ(x)]. We calculate

h̄n(x) =
∫
wn(x− cnu)g(x− cnu)

(
s0(x− cnu)− us1(x− cnu)

)
K(u) du.

It follows from (3.3) that

sup
x∈In

|g(x)s0(x)− 1| = o(n−1/12) and sup
x∈In

|g(x)s1(x)| = o(n−1/12).

Using these properties it is easy to verify that E[(h̄n(X)−1)2] → 0. Therefore

1
n

n∑
k=1

εk
(
h̄n(Xk−1)− 1

)
= op(n−1/2).

Indeed a martingale argument shows that the second moment of the left-
hand side is bounded by E[ε2]E[(h̄n(X)− 1)2]/n.

Thus we are left to show that

(5.1)
1
n

n∑
k=1

εk
(
ĥ(Xk−1)− h̄n(Xk−1)

)
= op(n−1/2).

Abbreviate ĥ − h̄n by ĥ∗. Note that ĥ∗(x) = 0 for x outside the interval
Jn = [an − cn, bn + cn] and that wns0/ log n and wns1/ log n are uniformly
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bounded and Hölder with exponent ξ > 1/3 and constant Hn = O(log n).
Applying Lemmas 3 and 4 with In replaced by Jn, with tn = wnsi/ log n
and with the choices v = Ki, v = K ′

i and v = K ′′
i for i = 0, 1, we obtain

‖ĥ∗‖∞ = op(n−1/3), ‖ĥ′∗‖∞ = op(n−1/12) and ‖ĥ′′∗‖∞ = op(n1/6).

By (F), f has a finite moment of order β > 8/3. Hence we obtain maxk |εk| =
op(n−1/β) and µn = E[ε1[|ε| ≤ n1/β ]] = Op(n−(β−1)/β) = op(n−1/2) as shown
in the proof of Lemma 5. Thus the desired (5.1) follows if we show that

(5.2)
1
n

n∑
k=1

εn,kĥ∗(Xk−1) = op(n−1/2),

where εn,k = εk1[|εk| ≤ n1/β ]−µn. To this end let us first show that P (ĥ∗ ∈
Hn) → 1, where Hn is the set of all differentiable functions h on R which
vanish off Jn and satisfy

‖h‖∞ ≤ n−1/3 and ‖h‖∞ + ‖h′‖∞ + sup
y 6=x

|h′(x)− h′(y)|
|x− y|1/3

≤ 1.

Indeed, by the properties of ĥ∗ we obtain

sup
|y−x|>n−1/4

|ĥ′∗(x)− ĥ′∗(y)|
|y − x|1/3

≤ 2n1/12‖ĥ′∗‖∞ = op(1)

and

sup
|y−x|≤n−1/4

|ĥ′∗(x)− ĥ′∗(y)|
|y − x|1/3

≤ n−1/6‖ĥ′′∗‖∞ = op(1).

Thus (5.2) follows if we show that

(5.3) S∗n = sup
h∈Hn

|Sn(h)| = op(n−1/2),

where

Sn(h) =
1
n

n∑
k=1

εn,kh(Xk−1).

Let ηn = (n log n)−1/2. Let h1, . . . , hNn denote an ηn-net of Hn. Then we
have the bound

S∗n ≤ max
1≤ν≤Nn

|Sn(hν)|+
1
n

n∑
k=1

|εn,k|ηn = max
1≤ν≤Nn

|Sn(hν)|+ op(n−1/2).
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If ‖h‖∞ ≤ n−1/3, we derive from Lemma 1 that

P (|Sn(h)| > sn−1/2) ≤ 2 exp
(
− s2n

4n1/βn−1/3sn1/2 + 2σ2nn−2/3

)
≤ 2 exp

(
− s2n11/24

4s+ 2σ2

)
, s > 0.

In the last step we used the fact that β > 8/3. In view of Theorem 2.7.1 in
van der Vaart and Wellner (1996), we can take

(5.4) Nn ≤ exp
(
K∗(2 + 2cn + bn − an)(n log n)3/8

)
for some constant K∗. Thus we obtain

P
(

max
1≤ν≤Nn

|Sn(hν)| > sn−1/2
)
≤ 2Nn exp

(
− s2n11/24

4s+ 2σ2

)
→ 0, s > 0.

This completes the proof of (5.3).

REFERENCES

[1] An, H. Z. and Huang, F. C. (1996). The geometrical ergodicity of nonlinear autore-
gressive models. Statist. Sinica 6, 943–956.

[2] Akritas, M. G. and Van Keilegom, I. (2001). Non-parametric estimation of the resid-
ual distribution. Scand. J. Statist. 28, 549–567.
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[38] Van Keilegom, I., González Manteiga, W. and Sánchez Sellero, C. (2007). Goodness-

of-fit tests in parametric regression based on the estimation of the error distribution.
To appear in: Test.

Ursula U. Müller
Department of Statistics
Texas A&M University
College Station, TX 77843-3143
USA
e-mail: uschi@stat.tamu.edu
url: http://www.stat.tamu.edu/∼uschi/

Anton Schick
Department of Mathematical Sciences
Binghamton University
Binghamton, NY 13902-6000
USA
e-mail: anton@math.binghamton.edu
url: math.binghamton.edu/anton/

Wolfgang Wefelmeyer
Mathematical Institute
University of Cologne
Weyertal 86-90
50931 Cologne
Germany
e-mail: wefelm@math.uni-koeln.de
url: www.mi.uni-koeln.de/∼wefelm/


