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Abstract. ccc This paper studies a class of estimators of the stationary den-
sity of an autoregressive model with autoregression parameter 0 < % < 1.

These estimators use two types of estimators of the innovation density, a stan-
dard kernel estimator and a weighted kernel estimator with weights chosen to

mimic the condition that the innovation density has mean zero. Bahadur ex-

pansions are obtained for this class of estimators in L1, the space of integrable
functions. It is shown that the density estimators based on the weighted kernel

estimators are efficient if an efficient estimator of the autoregression parameter

is used.

1. Introduction

Consider observations X0, . . . , Xn from a stationary autoregressive process,
AR(1),

Xt = %Xt−1 + εt, t ∈ Z,
with unknown autoregression parameter % in the open interval (0, 1). The innova-
tions εt, t ∈ Z, are i.i.d. with a common density f , mean zero and finite variance
σ2, and {Xs, s ≤ t} and {εr, r > t} are independent. Then Xt has the infinite series
representation

Xt = εt +

∞∑
j=1

%jεt−j .

We are interested in estimating the stationary density g of the process. The usual
estimators are density estimators based on the observations X0, . . . , Xn. They do
not use the autoregressive structure of the model and work for ergodic nonparamet-
ric Markov chains or more general time series. See, for example, Chanda (1983),
Yakowitz (1989), Hart and Vieu (1990), Tran (1992), Chan and Tran (1992), Hallin
and Tran (1996), Honda (2000), Wu and Mielniczuk (2002), Bryk and Mielniczuk
(2005) and Schick and Wefelmeyer (2008a).

For the autoregressive process, the density satisfies the equation

g(x) =

∫ ∞
−∞

f(x− %y)g(y) dy, x ∈ R.

Thus a natural estimator of g is given by the plug-in estimator

ĝ0(x) =

∫ ∞
−∞

f̂(x− %̂y)ĝ(y) dy, x ∈ R,

1
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with %̂ a root-n consistent estimator of %, f̂ a kernel estimator of f based on the
residuals ε̂j = Xj − %̂Xj−1, j = 1, . . . , n, and ĝ a kernel estimator of g based on the
observations X0, . . . , Xn. It can be deduced from Schick and Wefelmeyer (2008b)
that the plug-in estimator ĝ0 is root-n consistent in L1 under mild assumptions.
Similar results for moving average processes are in Schick and Wefelmeyer (2004a,
2004b).

We can repeat the above plug-in procedure with ĝ0 replacing ĝ. This leads to
the estimator

ĝ1(x) =

∫ ∞
−∞

f̂(x− %̂y)ĝ0(y) dy, x ∈ R.

One expects the estimator ĝ1 to be better than ĝ0 as it uses a better initial estimator
of g. Proceeding in this way one recursively defines new estimators

ĝk+1(x) =

∫ ∞
−∞

f̂(x− %̂y)ĝk(y) dy, x ∈ R,

for positive integers k. It is easy to check that ĝk has the representation

ĝk(x) =

∫
Rk+1

f̂
(
x−

k∑
i=1

%̂iyi − %̂k+1z
) k∏
j=1

f̂(yj) dyj ĝ(z) dz

for nonnegative k.
Our goal in this paper is to study the estimator ĝkn where kn is a sequence of

integers that grow to infinity slowly. We shall do so under the following assumptions.

(A1) The density f has finite Fisher information for location.
(A2) The estimator %̂ satisfies the stochastic expansion

%̂ = %+
1

n

n∑
j=1

ψ(Xj−1, εj) + oP (n−1/2)

for a function ψ satisfying
∫∞
−∞ ψ(x, y)f(y) dy = 0 and

Ψ =

∫ ∞
−∞

∫ ∞
−∞

ψ2(x, y)f(y) dy g(x) dx <∞.

Recall that the density f has finite Fisher information for location if f is abso-
lutely continuous and the integral

Jf =

∫ ∞
−∞

(f ′(x))2

f(x)
dx

is finite, where f ′ denotes the almost everywhere derivative of f . In this case we let
`f = −f ′/f denote the score function for location. Assumption (A1) implies that f ′

is integrable with L1-norm ‖f ′‖1 = ‖`ff‖1 ≤ J1/2
f . This allows the representation

f(x) =

∫ x

−∞
f ′(t) dt, x ∈ R,

and shows that f is bounded by ‖f ′‖1. Furthermore, the moment assumptions on
f , assumption (A1) and an application of the Cauchy–Schwarz inequality show that
the integral ∫ ∞

−∞
(1 + |x|)|f ′(x)| dx =

∫ ∞
−∞
|`f (x)|(1 + |x|)f(x) dx

is finite.
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It follows from (A2) that n1/2(%̂ − %) converges in distribution to a normal
random variable with mean zero and variance Ψ. The sample autocorrelation coef-
ficient

1
n

∑n
i=1Xi−1Xi

1
n

∑n
i=1X

2
i−1

meets this requirement with ψ(x, y) = xy/E(X2
0 ) = xy(1 − %2)/σ2. An efficient

estimator of ρ is characterized by (A2) with

ψ(x, y) =
x`f (y)

E(X2
0 )Jf

=
x`f (y)(1− %2)

σ2Jf
.

For AR(p) and ARMA(p, q) models see Kreiss (1987a,b) and Drost et al. (1997).
For nonlinear autoregression see Koul and Schick (1997) and Schick and Wefelmeyer
(2002a).

We shall work with two estimators of f . The first one is the usual kernel density
estimator

f̂1(x) =
1

n

n∑
j=1

Kb(x− ε̂j), x ∈ R,

based on the residuals. Here Kb(x) = (1/b)K(x/b) for a density K and a bandwidth
b. The second one is the weighted kernel density estimator

f̂2(x) =
1

n

n∑
j=1

1

1 + λ̂ε̂j
Kb(x− ε̂j), x ∈ R,

where λ̂ is chosen such that 1− λ̂ε̂1, . . . , 1− λ̂ε̂n are positive and

1

n

n∑
j=1

ε̂j

1 + λ̂ε̂j
= 0

on the event {min1≤j≤n ε̂j < 0 < max1≤j≤n ε̂j} and is taken to be zero otherwise.
The second estimator satisfies ∫ ∞

−∞
yf̂2(y) dy = 0

on this event and thus mimics that f has mean zero. Rates of convergence in
the L1-norm of these two estimators were derived by Müller et al. (2005) in the
more general setting of nonlinear autoregressive models. We shall improve their
results for the present model in later sections. Both density estimators have the

same rates of convergence in the L1-norm, but the estimator f̂2 performs better as
plug-in estimator for linear functionals of f . This was observed in Müller et all.
(2005) in the context of estimating the innovation distribution function and further
exploited in Müller et al. (2006) in the prediction for autoregressive models.

To state our first result we introduce some notation. We start with the random
variables

Ẋ0 =

∞∑
j=1

j%j−1ε−j and Yj = X0 − %jε−j =

∞∑
i=0

1[i 6= j]%iε−i, j ≥ 0.

Let ġ denote the function defined by

ġ(x) = E[−Ẋ0f
′(x− ρX−1)], x ∈ R.
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This function is integrable with L1-norm

(1.1) ‖ġ‖1 ≤ ‖f ′‖1E[|Ẋ0|] ≤ ‖f ′‖1
E[|ε0|]

(1− %)2
=
‖f ′‖1‖ιRf‖1

(1− %)2
,

where ιR denotes the identity map on R. For j = 0, 1, 2, . . . , let γj denote the
density of Yj . Then we have the following representation of the stationary density,

(1.2) g(x) =

∫ ∞
−∞

γj(x− %jy)f(y) dy, x ∈ R,

for each such j. Now introduce functions γ and γ∗ by

γ(x, y) =

∞∑
j=0

(
γj(x− %jy)− g(x)

)
, x, y ∈ R,

and

γ∗(x, y) = γ(x, y)−
∫ ∞
−∞

γ(x, z)zf(z) dz
y

σ2
, x, y ∈ R.

These functions satisfy the integrability conditions

(1.3)
(∫

R2

|γ(x, y)| dxf(y) dy
)2
≤ π

∫
R2

(1 + x2)|γ(x, y)|2 dxf(y) dy <∞

and

(1.4)
(∫

R2

|γ∗(x, y)| dxf(y) dy
)2
≤ π

∫
R2

(1 + x2)|γ∗(x, y)|2 dxf(y) dy <∞

as will be shown in Section 2. Finally we introduce the average

Ψ̄n =
1

n

n∑
i=1

ψ(Xi−1, εi)

and assume that the kernel estimator ĝ also uses the kernel K and the bandwidth
b,

ĝ(x) =
1

n+ 1

n∑
j=0

Kb(x−Xj), x ∈ R.

Theorem 1. Suppose (A1) and (A2) are met, the kernel K is a symmetric den-
sity with finite variance and is twice continuously differentiable with ‖(1 + ι2R)K ′‖1
and ‖(1 + ι2R)(K ′′)2‖1 finite, and the sequence kn and the bandwidth b = bn are
chosen to satisfy

kn
log(n)

→∞, k4nb
4
nn→ 0 and

k2n
nb3n
→ 0.

Then, for the choice f̂ = f̂1, the estimator ĝkn satisfies the L1-Bahadur expansion∫ ∞
−∞

∣∣∣ĝkn(x)− g(x)− Ψ̄nġ(x)− 1

n

n∑
i=1

γ(x, εi)
∣∣∣ dx = oP (n−1/2)

while, for the choice f̂ = f̂2, it satisfies the L1-Bahadur expansion∫ ∞
−∞

∣∣∣ĝkn(x)− g(x)− Ψ̄nġ(x)− 1

n

n∑
j=1

γ∗(x, εi)
∣∣∣ dx = oP (n−1/2).
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The proof of Theorem 1 is in Section 5. The assumptions on kn and bn are
met by taking kn = (log n)α for some α > 1 and bn = n−β for some β in the open
interval (1/4, 1/3). The standard normal density is a possible choice for K.

Inspecting the proof of Theorem 1 reveals that the theorem remains valid if we
omit integration with respect to z resulting in the estimator

p̂(x) =

∫
Rkn

f̂
(
x−

kn∑
i=1

%̂iyi

) kn∏
j=1

f̂(yj) dyj , x ∈ R.

In view of the identity∫ ∞
−∞

h(y)f̂1(y) dy =
1

n

n∑
j=1

∫ ∞
−∞

h(ε̂j − u)Kb(u) du

this estimator with f̂ = f̂1 can be written as a V-statistic

p̂(x) =
1

nkn+1

n∑
j0=1

· · ·
n∑

jkn=1

Kn(x−
kn∑
i=0

%̂iε̂ji), x ∈ R,

with Kn the convolution of the densities Kb, K%̂b,. . . ,K%̂knb. For the estimator

f̂ = f̂2 we can write it as a weighted V-statistic

p̂(x) =
1

nkn+1

n∑
j0=1

· · ·
n∑

jkn=1

Kn(x−
∑kn
i=0 %̂

iε̂ji)∏kn
l=0(1 + λ̂ε̂jl)

, x ∈ R.

If we take K to be the standard normal density, then Kn equals the normal den-

sity with mean zero and variance b2
∑kn
i=0 %̂

2i. This allows for a straighforward

computation of the estimator p̂ for both, f̂1 and f̂2.
It follows from the integrability conditions of γ and γ∗ that the CLT in L1

applies to the L1-valued random variables Zj = γ(·, εj), j = 1, 2, . . . , and Z∗j =
γ∗(·, εj), j = 1, 2 . . . , and yields that

n−1/2
n∑
j=1

Zj = n−1/2
n∑
j=1

γ(·, εj) and n−1/2
n∑
j=1

Z∗j = n−1/2
n∑
j=1

γ∗(·, εj)

converge in distribution to centered Gaussian processes. Indeed, as shown in Lemma
3 of Schick and Wefelmeyer (2007) the integrability conditions imply the necessary
and sufficient conditions of the CLT in L1; see Ledoux and Talagrand (1991),
Theorem 10.10 or van der Vaart and Wellner (1996, p. 92).

Our next result gives Hadamard differentiability of the stationary density which
will be crucial in the characterization of efficient estimators of g in L1. For this we
write g%,f for g to stress the dependence of g on the parameters % and f . Let H
denote the set of all measurable function h which satisfy∫ ∞
−∞

h(y)f(y) dy = 0,

∫ ∞
−∞

yh(y)f(y) dy = 0 and

∫ ∞
−∞

h2(y)f(y) dy <∞.

This set is the tangent space at f of the set F of all densities with mean zero, finite
variance and finite Fisher information. Indeed, one can show that for each h in H
there is a sequence fn of densities with finite Fisher information satisfying

(1.5)

∫ ∞
−∞

(
n1/2

(√
fn(x)−

√
f(x)

)
− 1

2
h(x)

√
f(x)

)2
dx→ 0,
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(1.6)

∫ ∞
−∞

xfn(x) dx = 0 and

∫ ∞
−∞

x2
∣∣fn(x)− f(x)

∣∣ dx→ 0.

The proof of the next theorem which establishes Hadamard differentiability is in
Section 6.

Theorem 2. Suppose f has finite Fisher information for location. Let h belong
to H. Let fn be a sequence of densities satisfying (1.5) and (1.6) and let %n be a
sequence in (0, 1) satisfying n1/2(%n − %)→ t for some real t. Then g%n,fn satisfies∫ ∞

−∞

∣∣n1/2(g%n,fn(x)− g%,f (x)
)
−Ah(x)− ġ(x)t

∣∣ dx = oP (n−1/2)

with

Ah(x) =

∫
γ∗(x, y)h(y)f(y) dy, x ∈ R.

We will now show that the density estimator ĝkn(x) is efficient for g(x) if

we use f̂2 and an efficient estimator %̂ for %. More specifically we consider linear
functionals of the density g of the form Φ(g) =

∫∞
−∞ φ(y)g(y) dy with φ bounded

and measurable, i.e., φ ∈ L∞, and show that Φ(ĝkn) is efficient for the functional
Φ(g). We follow efficiency proofs for other models and functionals and will be brief.
See Kreiss (1987), Drost et al. (1997), Koul and Schick (1997), and Schick and
Wefelmeyer (2002b). Write Pn%f for the joint distribution of (X0, . . . , Xn) when %
and f are true. Choose %n and fn close to % and f as in Theorem 2. Under the above
assumptions it follows from Koul and Schick (1997) that the local log-likelihood ratio
admits the stochastic expansion

log
dPn%nfn
dPn%f

= n−1/2
n∑
j=1

tXj−1`f (εj) + n−1/2
n∑
j=1

h(εj) + oP (1).

In other words, the model is locally asymptotically normal (LAN) with central
sequence n−1/2

∑n
j=1 tXj−1`f (εj) + n−1/2

∑n
j=1 h(εj). It follows from Theorem 1

and the above characterization of efficient estimators for % that n1/2(Φ(ĝkn)−Φ(g))
is approximated stochastically by an expression of the form of a central sequence.
This implies that Φ(ĝkn) is efficient for Φ(g) (and also regular and asymptotically
linear).

This efficiency result is an instance of the plug-in principle formulated by
Klaassen and Putter (2002) in the i.i.d. case. In order to see this, fix %, write
εj(%) = εj = Xj − %Xj−1, and set

f̃2(x, %) =
1

n

n∑
j=1

1

1 + λ̃(%)εj(%)
Kb(x− εj(%)), x ∈ R,

where λ̃(%) is chosen such that 1− λ̃(%)ε1(%), . . . , 1− λ̃(%)εn(%) are positive and

1

n

n∑
j=1

εj(%)

1 + λ̃(%)εj(%)
= 0

on the event {min1≤j≤n εj(%) < 0 < max1≤j≤n εj(%)} and is taken to be zero
otherwise. Set
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g̃k(x, %) =

∫
Rk+1

f̃2

(
x−

k∑
i=1

%iyi − %k+1z, %
) k∏
j=1

f̃2(yj , %) dyj ĝ(z) dz, x ∈ R.

Then for kn as in Theorem 1 the estimator Φ(g̃kn(·, %)) =
∫∞
−∞ φ(x)g̃kn(x, %) dx is

efficient for Φ(g) =
∫∞
−∞ φ(y)g(y) dy when % is fixed. Plugging in an efficient estima-

tor %̂ for %, we obtain an efficient estimator Φ(g̃kn(·, %̂)) =
∫∞
−∞ φ(x)g̃kn(x, %̂) dx =∫∞

−∞ φ(x)ĝkn(x) dx when % is unknown.

2. Some Auxiliary Lemmas

In this section we collect some lemmas that will be used in the proofs of our
theorems. We start with three inequalities.

Lemma 1. For numbers r and s in the interval (0, 1), we have the inequalities

(2.1)

∞∑
j=1

|rj − sj | ≤ |r − s|
(1−max{r, s})2

,

(2.2)

∞∑
j=1

|rj − sj |2 ≤ |r − s|2

(1−max{r, s})3
,

(2.3)

∞∑
j=1

|rj − sj − jsj−1(r − s)| ≤ |r − s|2

(1−max{r, s})3
.

Proof. Recall the infinite series
∞∑
j=1

jtj−1 =
1

(1− t)2
and

∞∑
j=1

j(j − 1)tj−2 =
2

(1− t)3
, |t| < 1.

Using the inequality |rj − sj | ≤ |r− s|jmax{r, s}j−1 and the first infinite series, we
obtain (2.1). Using |rj − sj |2 ≤ 1

2 (r − s)22j(2j − 1) max{r, s}2j−2 and the second
infinite series, we obtain (2.3). Using

|rj − sj − jsj−1(r − s)| ≤ 1

2
(r − s)2j(j − 1) max{r, s}j−2

and the second infinite series, we obtain (2.3). �

Lemma 2. Let h be a measurable function. Then we have the inequality

‖h‖21 ≤
∫ ∞
−∞

π(1 + x2)h2(x) dx.

Proof. Let us set w(x) = π(1 + x2), x ∈ R. Then 1/w is the Cauchy density.
We calculate

‖h‖21 = ‖
√
wh/
√
w‖21 ≤ ‖wh2‖1‖1/w‖1 = ‖wh2‖1

which is the desired result. �

Lemma 3. Let p and q be two integrable functions with ‖ι2Rp‖1 and ‖ι2Rq‖1 finite.
Then the inequality ‖ιRp− ιRq‖21 ≤ (‖ι2Rp‖1 + ‖ι2Rq‖1)‖p− q‖1 holds.
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Proof. Bound |ιRp−ιRq| by |p−q|1/2(|p|+|q|)1/2|ιR| and then use the Cauchy–
Schwarz inequality. �

Let h be an integrable function. Then the L1-modulus of continuity of h is the
map wh defined by

wh(t) = sup
|u|≤t

∫ ∞
−∞
|h(x− u)− h(x)| dx, t ≥ 0.

The map wh is bounded by 2‖h‖1 and continuous at 0, see Rudin (1974), Theorem
9.5 for the latter. We say h is L1-Lipschitz if there is a constant Λ such that∫ ∞

−∞
|h(x− t)− h(x)| dx ≤ Λ|t|, t ∈ R.

In this case the inequality wh(t) ≤ Λt holds for all t ≥ 0.

Lemma 4. Let h be an integrable function and T, T1, T2, . . . be random variables
such that E[|Tn − T |]→ 0. Then∫ ∞

−∞

∣∣E[h(x− Tn)]− E[h(x− T )]
∣∣ dx→ 0.

Proof. In view of the inequality |E(X)| ≤ E(|X|) and Fubini’s theorem, the
integral is bounded by E[wh(|Tn − T |)], and the desired result follows from the
dominated convergence theorem. �

Let H1 denote the set of all integrable functions of the form

h(x) =

∫ x

−∞
h′(x) dx

for some integrable function h′ and let H2 denote set of all h in H1 with h′ in H1.
We write h′′ for (h′)′. If h belongs to H1, then h is bounded by ‖h′‖1 and uniformly
continuous. More precisely, we have

|h(y)− h(x)| =
∣∣∣ ∫ y

∞
h′(s) ds−

∫ y

−∞
h′(s− (y − x)) ds

∣∣∣ ≤ wh′(|y − x|)

for all real x and y. As an integrable and uniformly continuous function, h(x)→ 0
as x→∞. This implies that h′ integrates to zero,∫ ∞

−∞
h′(x) dx = 0,

and this gives the alternative representation

h(x) = −
∫ ∞
x

h′(x) dx.

Using this we can show that ‖h‖1 ≤ ‖ιRh′‖1. Indeed, the left-hand side is bounded
by∫ 0

−∞

∫ x

−∞
|h′(t)| dt dx+

∫ ∞
0

∫ ∞
x

|h′(t)| dt dx ≤
∫ 0

−∞
|th′(t)| dt+

∫ ∞
0

|th′(t)| dt.

In view of this inequality, we conclude that a continuously differentiable function h
belongs to H1 if lim|x|→∞ h(x) = 0 and ‖(1 + |ιR|)h′‖1 is finite.

Assumption (A1) implies that the density f belongs to H1. The next two results
are easily verified.
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Lemma 5. Let h belong to H1 and let t be a positive number. Then the function
ht defined by

ht(x) = h(x/t)/t, x ∈ R,
belongs to H1, and we can take

h′t(x) = h′(x/t)/t2, x ∈ R.

Thus ‖h′t‖1 = ‖h′‖1/t.

Lemma 6. Let h = h1 ∗ h2 denote the convolution of the integrable functions
h1 and h2. Then the following are true.

(1) If h1 is L1-Lipschitz with constant Λ, then h is L1-Lipschitz with constant
Λ‖h2‖1.

(2) If h1 belongs to H1, then h belongs to H1 with h′ = h′1 ∗ h2.
(3) If h1 and h2 belong to H1, then h belongs to H2 with h′′ = h′1 ∗ h′2.

Lemma 7. Let h belong to H1. Then h is L1-Lipschitz with constant ‖h′‖1.
Moreover, we have the inequality∫ ∞

−∞

∣∣h(x− t)− h(x) + th′(x)
∣∣ dx ≤ |t|wh′(|t|), t ∈ R.

In particular, if h′ is L1-Lipschitz with constant Λ, then we have∫ ∞
−∞

∣∣h(x− t)− h(x) + th′(x)
∣∣ dx ≤ t2Λ, t ∈ R.

Proof. Fix t ∈ R. Then we have the identity

h(x− t)− h(x) = −t
∫ 1

0

h′(x− st) ds

and consequently the bounds∫ ∞
−∞
|h(x− t)− h(x)| dx ≤ |t|

∫ ∞
−∞

∫ 1

0

|h′(x− st)| ds dx = |t|‖h′‖1

and∫ ∞
−∞

∣∣h(x−t)−h(x)+th′(x)
∣∣ dx ≤ ∫ ∞

−∞
|t|
∫ 1

0

|h′(x−st)−h′(x)| ds dx ≤ |t|wh′(|t|).

If h′ is L1-Lipschitz with constant Λ, then |t|wh′(|t|) ≤ Λt2. �

Lemma 8. Let h belong to H1 and let T , U and V be random variables. If T
and U have finite means, then we have the inequalities∫ ∞

−∞

∣∣E(h(x− V − T ))− E(h(x− V ))
∣∣ dx ≤ ‖h′‖1E(|T |)

and ∫ ∞
−∞

∣∣E(h(x− V − T ))− E(h(x− V )) + E(Uh′(x− V ))
∣∣ dx

≤ E(|T |wh′(|T |)) + ‖h′‖1E(|T − U |)
≤ E(|U |wh′(|T |)) + 3‖h′‖1E(|T − U |).
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Proof. Using the formula |E(X)| ≤ E(|X|), Fubini’s theorem and then the
substitution u = x − V we obtain that the left-hand side of the first inequality is
bounded by

E

∫ ∞
−∞
|h(u− T )− h(u)| du,

and of the second inequality by

E

∫ ∞
−∞

∣∣h(u− T )− h(u) + Th′(u)− (T − U)h′(u)
∣∣ du.

The desired result then follows from the previous lemma and the fact that wh′ is
bounded by 2‖h′‖1. �

Corollary 1. Let f be in H1. Then, as r → %,

(2.4)
∥∥gr,f − g%,f − (r − %)ġ

∥∥
1

= o(|r − %|).

Proof. For 0 < r < 1 let Sr =
∑∞
j=1 r

jε−j . Recall that Ẋ0 is defined to be∑∞
j=1 j%

j−1ε−j . It follows from Lemma 1 that

E(|Sr − S%|) ≤
|r − %|‖ιRf‖1

(1−max{r, %})2

and

E
(
|Sr − S% − (r − %)Ẋ0|

)
≤ |r − %|2‖ιRf‖1

(1−max{r, %})3
.

Note the identity

gr,f (x) = E(f(x− Sr)).
Applying Lemma 8 with h = f , V = S% = %X−1, T = Sr − S% and U = (r − %)Ẋ0

shows that the left-hand side of (2.4) is bounded by

|r − %|E
(
|Ẋ0|wf ′(|Sr − S%|)

)
+ 3‖f ′‖1‖ιRf‖1

|r − %|2

(1−max{r, %})3
.

The desired result now follows from the dominated convergence theorem. �

For integrable functions p and q and t > 0, we denote by Bt(p, q) the integrable
function defined by

Bt(p, q)(x) =

∫ ∞
−∞

p(x− ty)q(y) dy, x ∈ R.

The integrability of Bt(p, q) follows from the inequality

‖Bt(p, q)‖1 ≤ ‖p‖1‖q‖1.
We can view Bt as a bilinear operator from L1 × L1 to L1. Since Bt(p, q) is the
convolution of p and qt, where qt(x) = q(x/t)/t, x ∈ R, the following lemma is an
immediate consequence of Lemmas 5 and 6.

Lemma 9. Let p and q be integrable functions and t be a positive number. Then
the following hold.

(1) If p is L1-Lipschitz with constant Λ, then Bt(p, q) is L1-Lipschitz with
constant Λ‖q‖1.

(2) If p belongs to H1, then Bt(p, q) belongs to H1 with Bt(p, q)
′ = Bt(p

′, q).
(3) If q belongs to H1, then Bt(p, q) belongs to H1 with Bt(p, q)

′ = Bt(p, q
′)/t.
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(4) If p and q belong to H1, then Bt(p, q) belongs to H2 with Bt(p, q)
′′ =

Bt(p
′, q′)/t.

The next two results are consequences of Lemmas 7 and 8.

Lemma 10. Let p and q be an integrable function with ‖ιRq‖1 finite and p being
L1-Lipschitz with constant Λ. Then we have the inequality∥∥∥Bt(p, q)− p ∫ ∞

−∞
q(y) dy

∥∥∥
1
≤ Λ‖ιRq‖1t, t > 0.

In particular, if the integral of q is zero, we have

‖Bt(p, q)‖1 ≤ Λ‖ιRq‖1t, t > 0.

Lemma 11. Let p belong to H1 and let q be a density. If q has finite mean,
then we have the inequality

‖Bt(p, q)− p‖1 ≤ ‖p′‖1‖ιRq‖1t, t > 0.

If p′ is L1-Lipschitz with constant Λ and q has mean zero and finite variance, then
we have the inequality

‖Bt(p, q)− p‖1 ≤ Λ‖ι2Rq‖1t2, t > 0.

Let v be the function defined by

v(x) = (1 + |x|), x ∈ R.

This function satisfies the inequality

v(x+ y) ≤ v(x)v(y), x, y ∈ R.

If vh is integrable, then we have∫ ∞
−∞

v(x)|h(x− t)| dx =

∫ ∞
−∞

v(x+ t)|h(x)| dx ≤ v(t)‖vh‖1, t ∈ R.

¿From this we immediately derive the following result.

Lemma 12. Let vp and vq be integrable. Then, for every 0 < t ≤ 1, vBt(p, q)
is integrable with

‖vBt(p, v)‖1 ≤ ‖vp‖1
∫ ∞
−∞

v(ty)|q(y)| dy ≤ ‖vp‖1‖vq‖1.

Lemma 13. Let h belong to H1 with vh′ integrable. Then ‖vh‖∞ ≤ ‖vh′‖1.

Proof. For negative x we have the bound

v(x)|h(x)| ≤ v(x)

∫ x

−∞
|h′(u)| du ≤

∫ x

−∞
v(u)|h′(u)| du

while for positive x we have the inequality

v(x)|h(x)| ≤ v(x)

∫ ∞
x

|h′(u)| du ≤
∫ ∞
x

v(u)|h′(u)| du.

These inequalities imply ‖vh‖∞ ≤ ‖vh′‖1. �
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We have seen that (A1) implies that ‖vf ′‖1 is finite. The stationary den-
sity g equals B%(f, g) and therefore belongs to H2 with g′ = B%(f

′, g) and g′′ =
B%(f

′, g′)/% yielding

‖g′‖1 ≤ ‖f ′‖1, ‖vg′‖1 ≤ ‖vf ′‖1‖vg‖1 and ‖g′′‖1 ≤ ‖f ′‖21/%.

Recall that γj denotes the density of Yj = X0−%jε−j =
∑∞
i=0 1[i 6= j]%iε−i for

nonnegative integers j. Since Y0 equals %X−1, we have γ0(x) = g(x/%)/%. Thus the
density γ0 belongs to H2 with γ′0 = g′(x/%)/%2 and γ′′0 (x) = g′′(x/%)/%3 yielding
the bounds

‖γ′0‖1 ≤ ‖f ′‖1/%, ‖vγ′0‖1 ≤ ‖vf ′‖1‖vg‖1/% and ‖γ′′0 ‖1 ≤ ‖f ′‖21/%3.

For j ≥ 1, the density γj equals B%(f, γj−1) as is easily checked and thus belongs
to H2 with γ′j = B%(f

′, γj−1) and γ′′j = B%(f
′, γ′j−1)/% giving the bounds

‖γ′j‖1 ≤ ‖f ′‖1, ‖vγ′j‖1 ≤ ‖vf ′‖1‖vγj−1‖1 and ‖γ′′j ‖1 ≤ ‖f ′‖1‖γ′j−1‖1/%.

Note also the bounds ‖vγj‖1 = E(1 + |Yj |) ≤ 1 +
∑∞
i=0 %

i‖ιRf‖ ≤ ‖vf‖1/(1 − ρ)
and similarly ‖vg‖1 ≤ ‖vf‖1/(1− %). Consequently, we have the following result.

Corollary 2. Suppose (A1) holds. Then there are constants C1, C2 and C3

such that the inequalities ‖γ′j‖1 ≤ C1, ‖vγ′j‖1 ≤ C2 and ‖γ′′j ‖1 ≤ C3 hold for all
j ≥ 0.

Let us now verify the integrability condition (1.3). The first inequality follows
from the moment inequality and Lemma 2. The finiteness of the integral

I2 =

∫
R2

(1 + x2)γ2(x, y)f(y) dy dx

follows if we verify the inequality

τj =

∫
R2

(1 + x2)(γj(x− %jy)− g(x))2f(y) dx dy ≤M%j , j ≥ 0,

for some finite constant M . Indeed, we first bound I2 by

∞∑
i=0

∞∑
j=0

∫
R2

(1 + x2)|γi(x− %iy)− g(x)||γj(x− %jy)− g(x)|f(y) dy dx

and then use the Cauchy–Schwarz inequality to obtain

I2 ≤
∞∑
i=0

∞∑
j=0

√
τiτj =

( ∞∑
i=0

√
τi

)2
≤ M

(1−√%)2
.

The formula (1.2) yields the identity∫ ∞
−∞

(γj(x− %jy)− g(x))2f(y) dy =

∫ ∞
−∞

γ2j (x− %jy)f(y) dy − g2(x), x ∈ R.

Using the substitution x = u + %jy and the fact that f has mean zero and finite
variance σ2, we calculate∫

R2

(1 + x2)γ2j (x− %jy)f(y) dy dx =

∫ ∞
−∞

(1 + u2 + %2jσ2)γ2j (u) du
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and then, utilizing the inequality 1 + x2 ≤ (1 + |x|)2 = v2(x),

τj =

∫ ∞
−∞

(1 + x2)(γ2j (x)− g2(x)) dx+ %2jσ2

∫
γ2j (x) dx

≤ (‖vγj‖∞ + ‖vg‖∞)‖v(γj − g)‖1 + %2jσ2‖γj‖∞.

Next we use the inequalities ‖γj‖∞ ≤ ‖vγj‖∞ ≤ ‖vγ′j‖1 ≤ C2 and

‖v(g − γj)‖1 =

∫ ∞
−∞

v(x)
∣∣∣ ∫ ∞
−∞

∫ 1

0

|γ′j(x− s%jy)|%jy dsf(y) dy
∣∣∣ dx

≤
∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

v(x− s%jy)|γ′j(x− s%jy)| dxv(y)%j |y|f(y) dy ds

≤ ‖vγ′j‖1%j‖v2f‖1

to conclude the exponential decay τj ≤M%j .
Let us now verify the integrability condition (1.4). The first inequality follows

from the moment inequality and Lemma 2. The finiteness of the second integral
follows from (1.3) and the inequality∫

(γ∗(x, y))2f(y) dy =

∫
γ2(x, y)f(y) dy −

(∫
γ(x, y)yf(y) dy

)2
/σ2

≤
∫
γ2(x, y)f(y) dy.

3. Behavior of the Density Estimators

Let f̃ denote the kernel density estimate

f̃(x) =
1

n

n∑
j=1

Kb(x− εj), x ∈ R,

based on the actual innovations, and let

f̄(x) =

∫ ∞
−∞

Kb(x− y)f(y) dy =

∫ ∞
−∞

f(x− bu)K(u) du, x ∈ R,

denotes its expectation. We have

(3.1) ‖f̃ − f̄‖1 = OP ((nb)−1/2).

Indeed, we calculate, using Lemma 2 and the substitution x = y + bu,

nbE[‖f̃ − f̄‖21] ≤ π
∫ ∞
−∞

(1 + x2)nbE[(f̃(x)− f̄(x))2] dx

≤ π
∫ ∞
−∞

(1 + x2)

∫ ∞
−∞

bK2
b (x− y)f(y) dy dx

= π

∫ ∞
−∞

∫ ∞
−∞

(1 + (y + bu)2)f(y)K2(u) dy du

= π(1 + σ2)‖K2‖1 + πb2‖(ιRK)2‖1.

The following result was proved in Müller et al. (2005) under stronger assump-
tions. In particular, we remove the assumption that the error density has a finite
moment of order 5/2.
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Theorem 3. Suppose the bandwidth b = bn satisfies nb4n → 0 and nb3n →
∞, the kernel K is a symmetric density with finite variance and is continuously
differentiable with a bounded derivative K ′ with

∫∞
−∞(1 + u2)|K ′(u)| du finite, the

estimator %̂ is root-n consistent, i.e.,
√
n(%̂ − %) = OP (1), and the density f is

L1-Lipschitz with constant Λ. Then we have the stochastic rates∫ ∞
−∞

∣∣∣f̂1(x)− f̃(x)
∣∣∣ dx = OP

( 1

nb3/2

)
and ∫ ∞

−∞

∣∣∣f̂2(x)− f̃(x) + xf(x)λ̂
∣∣∣ dx = OP

( 1

nb3/2

)
.

Proof. The assumptions on K imply that K belongs to H1. Thus Lemma 9
implies that f̄ = Bb(f,K) belongs to H1 and f̄ ′ = Bb(f,K

′)/b is L1-Lipschitz
with constant Λ‖K ′‖1/b. It follows from Lemma 10 and

∫∞
−∞K ′(u) du = 0 that

‖f̄ ′‖1 ≤ Λ‖ιRK ′‖1.
The residuals are of the form

ε̂j = Xj − %̂Xj−1 = εj − (%̂− %)Xj−1, j = 1, . . . , n.

This representation, the root-n consistency of %̂ and the stochastic rates

1

n

n∑
j=1

Xj−1 = OP (n−1/2) and
1

n

n∑
j=1

εjXj−1 = OP (n−1/2)

yield

1

n

n∑
j=1

ε̂j =
1

n

n∑
j=1

εj +OP (1/n)

and
1

n

n∑
j=1

ε̂2j =
1

n

n∑
j=1

ε2j +OP (1/n).

We also need the following results already established in Müller et al. (2005),

(3.2) λ̂ =
1

n

n∑
j=1

εj
σ2

+ oP (n−1/2) = OP (n−1/2),

(3.3) max
1≤j≤n

|ε̂j | = oP (n1/2).

A consequence of the above is the stochastic rate

(3.4)
1

n

n∑
j=1

λ̂2ε̂2j

1 + λ̂ε̂j
= OP (n−1)

which plays a role in comparing f̂2 with f̂1.
We shall establish the following stochastic rates.

(3.5)

∫ ∞
−∞
|f̂2(x)− f̂1(x) + λ̂xf̂1(x)| dx = OP (bn−1/2),

(3.6) ‖f̂1 − f̃‖1 = OP (1/(nb3/2)),
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(3.7)

∫ ∞
−∞
|x||f̂1(x)− f(x)| dx = OP (b1/2).

These stochastic rates together with λ̂ = OP (n−1/2) and nb4 → 0 imply the desired
results.

To verify (3.5), we write

f̂2(x)− f̂1(x) + λ̂xf̂1(x) =
1

n

n∑
j=1

Kb(x− ε̂j)
( 1

1 + λ̂ε̂j
− 1 + λ̂ε̂j + λ̂(x− ε̂j)

)

=
1

n

n∑
j=1

Kb(x− ε̂j)
( λ̂2ε̂2j

1 + λ̂ε̂j
+ λ̂(x− ε̂j)

)
and then find that the left-hand side of (3.5) is bounded by

1

n

n∑
j=1

λ̂2ε̂2j

1 + λ̂ε̂j
+ |λ̂|b

∫ ∞
−∞
|u|K(u) du = OP (1/n) +OP (bn−1/2),

where we used (3.2) and (3.4) in the last step. This proves (3.5).
Next we prove (3.6). For this we write

f̂1(x)− f̃(x) =
1

n

n∑
j=1

(
Kb

(
x− εj + (%̂− %)Xj−1

)
−Kb(x− εj)

)
= H√n(%̂−%)(x) +D(x) + (%̂− %)

1

n

n∑
j=1

Xj−1f̄
′(x)

with

Ht(x) =
1

n

n∑
j=1

(
Kb

(
x− εj +

tXj−1√
n

)
−Kb(x− εj)− f̄

(
x+

tXj−1√
n

)
+ f̄(x)

)
,

D(x) =
1

n

n∑
j=1

(
f̄(x+ (%̂− %)Xj−1)− f̄(x)− (%̂− %)Xj−1f̄

′(x)
)
.

Since f̄ ′ has norm ‖f̄ ′‖1 ≤ Λ‖ιRK ′‖1 and is L1-Lipschitz with constant Λ‖K ′‖1/b,
we derive, utilizing Lemma 7 and setting B = Λ max{‖K ′‖1, ‖ιRK ′‖1},

‖f̂1 − f̃‖1 ≤ ‖H√n(%̂−%)‖1 +B
(1

b
(%̂− %)2

1

n

n∑
j=1

X2
j−1 + |%̂− %|

∣∣∣ 1
n

n∑
j=1

Xj−1

∣∣∣)
= ‖H√n(%̂−%)‖1 +OP (1/(nb)).

Thus the desired (3.6) follows if we verify that the stochastic rate

(3.8) sup
|t|≤C

‖Ht‖1 = OP (1/(nb3/2)

holds for every large constant C. Fix such a C. Since max1≤j≤n |Xj−1| is of

stochastic order oP (n1/2), we may replace Ht by H̄t where

H̄t(x) =
1

n

n∑
j=1

(
Kb

(
x− εj +

tXj−1√
n

)
−Kb(x− εj)− f̄

(
x+

tXj−1√
n

)
+ f̄(x)

)
Wj−1

with
Wj−1 = 1[C|Xj−1| ≤

√
n], j = 1, . . . , n.
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We have H̄0(x) = 0 for all x, and for s and t in [−C,C] we have

H̄t(x)− H̄s(x) =
1

n

n∑
j=1

(t− s)Xj−1√
n
Wj−1Vj(x)

with

Vj(x) =

∫ 1

0

(
K ′b

(
x− εj + (s+ v(t− s))Xj−1√

n

)
− f̄ ′

(
x+ (s+ v(t− s))Xj−1√

n

))
dv.

A martingale argument yields

E[(H̄t(x)− H̄s(x))2] ≤ (t− s)2

n2
E[X2

0W0V1(x)2]

≤ (t− s)2

n2b3

∫ 1

0

E
[
X2

0W0Mb(x− ε1 + (s+ v(t− s))X0√
n

)
]
dv

with Mb(x) = (1/b)M(x/b) and M = (K ′)2. Lemma 2 yields the bound

|‖H̄t‖1 − ‖H̄s‖1|2 ≤ ‖H̄t − H̄s‖21 ≤ π
∫ ∞
−∞

(1 + x2)(H̄t(x)− H̄s(x))2 dx.

Combining the above yields the inequality

n2b3E[|‖H̄t‖1 − ‖H̄s‖1|2] ≤ π
∫ ∞
−∞

(1 + x2)n2b3E[(H̄t(x)− H̄s(x))2] dx

≤ π(t− s)2
∫ 1

0

I(v) dv

with

I(v) =

∫ ∞
−∞

(1 + x2)E
[
X2

01[C|X0| ≤
√
n]Mb

(
x− ε1 + (s+ v(t− s))X0√

n

)]
dx

=

∫ ∞
−∞

E
[
X2

01[C|X0| ≤
√
n]
(
1 +

(
ε1 − (s+ v(t− s))X0/

√
n+ bu

)2)]
M(u) du

≤
∫ ∞
−∞

E[X2
01[C|X0| ≤

√
n](1 + 3ε21 + 3b2u2 + 3)M(u) du

≤ E[X2
0 ]

∫ ∞
−∞

4(1 + σ2 + b2u2)M(u) du

≤ 4(1 + σ2 + b2)E[X2
0 ]

∫ ∞
−∞

(1 + u2)M(u) du, 0 < v < 1.

In the first inequality we used the Cauchy–Schwarz inequality and the fact that
s + v(t − s) belongs to the interval [−C,C] and is hence bounded by C. Note
that ‖(1 + ι2R)M‖1 is finite by the assumptions on K ′. In view of Theorem 12.3

in Billingsley (1968), the process {Xn(t) = nb3/2‖H̄t‖1, |t| ≤ C} is tight and this
implies (3.8).

We are left to verify (3.7). Since f is L1-Lipschitz, the identity f̄ = Bb(f,K)
and Lemma 10 yield ‖f̄ − f‖1 ≤ Λb‖ιRK‖1. This, the rate nb3 → ∞, (3.1) and
(3.6) establish the stochastic rate

‖f̂1− f‖1 ≤ ‖f̂1− f̃‖1 + ‖f̃ − f̄‖1 + ‖f̄ − f‖1 = OP

(b3/2
nb3

+
b

(nb3)1/2
+ b
)

= OP (b).
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In view of Lemma 3 the desired result follows from this, the stochastic rate∫ ∞
−∞

x2f̂1(x) dx =
1

n

n∑
j=1

ε̂2j +

∫ ∞
−∞

b2u2K(u) du = OP (1)

and the fact that f has a finite second moment. �

Corollary 3. Under the assumptions of Theorem 3 the estimator f̂1 satisfies

‖f̂1 − f‖1 = OP (b) and ‖ιR(f̂1 − f)‖1 = OP (b1/2),

and the estimator f̂2 satisfies

‖f̂2 − f‖1 = OP (b) and ‖ιR(f̂2 − f)‖1 = OP (b1/2).

Proof. The first two rates were established in the proof of (3.7). The third rate

follows from the first one and ‖f̂2 − f̂1‖1 = OP (n−1b−3/2) +OP (n−1/2) = op(b
3/2)

which is a consequence of Theorem 3. ¿From (3.2) and (3.3) we derive the bound∫
x2f̂2(x) d ≤ max

1≤j≤n

1

1 + λ̂εj

∫
x2f̂1(x) dx = Op(1).

The argument used to prove (3.7) now yields ‖ιR(f̂2 − f)‖1 = OP (b1/2). �

4. Behavior of the derivative of the density estimators

In this section we assume that the density f belongs to H1 and show that the
derivatives of our kernel estimators estimate f ′ consistently in the L1 norm.

Theorem 4. Suppose the bandwidth b = bn satisfies nb4n → 0 and nb3n → ∞,
the kernel K is a symmetric density with finite variance and is twice continuously
differentiable with ‖(1 + ι2R)K ′‖1 and ‖(1 + ι2R)(K ′′)2‖1 finite, the estimator %̂ is
root-n consistent, and f belongs to H1. Then we have the stochastic rates

‖f̂ ′1 − f ′‖1 = oP (1) and ‖f̂ ′2 − f ′‖1 = oP (1).

Proof. The assumptions on K imply that K belongs to H2 and meets the
assumptions of Theorem 3. Since f ′ is integrable and f̄ ′ equals Bb(f

′,K), we have

(4.1) ‖f̄ ′ − f ′‖1 ≤
∫ ∞
−∞

wf ′(|bu|)K(u) du→ 0.

The desired result thus follows from the following stochastic rates:

(4.2) ‖f̂ ′2 − f̂ ′1‖1 = OP (1/(bn1/2)),

(4.3) ‖f̂ ′1 − f̃ ′‖1 = OP (1/(nb5/2)),

(4.4) ‖f̃ ′ − f̄ ′‖1 = OP (1/(nb3)1/2).

Let us first establish (4.2). In view of λ̂ = OP (n−1/2), it suffices to show the rates

‖ιRf̂ ′1‖1 = OP (1/b) and ‖f̂ ′2 − f̂ ′1 − λ̂ιRf̂ ′1‖1 = OP (n−1/2). The former follows from
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the inequality

‖ιRf̂ ′1‖1 ≤
1

n

n∑
j=1

∫ ∞
−∞
|x||K ′b(x− ε̂j)| dx

≤ 1

n

n∑
j=1

∫ ∞
−∞
|ε̂j + bu| |K

′(u)|
b

du

≤ ‖K
′‖1
b

( 1

n

n∑
j=1

|εj |+ |%̂− %|
1

n

n∑
j=1

|Xj−1|
)

+ ‖ιRK ′‖1.

For the latter we use the identity

f̂ ′2(x)− f̂ ′1(x) + λ̂xf̂ ′1(x) =
1

n

n∑
j=1

K ′b(x− ε̂j)
( 1

1 + λ̂ε̂j
− 1 + λ̂ε̂j + λ̂(x− ε̂j)

)

=
1

n

n∑
j=1

K ′b(x− ε̂j)
( λ̂2ε̂2j

1 + λ̂ε̂j
+ λ̂(x− ε̂j)

)
to obtain the inequality

‖f̂ ′2 − f̂ ′1 − λ̂ιRf̂ ′1‖1 ≤
1

n

n∑
j=1

λ̂2ε̂2j

1 + λ̂ε̂j

‖K ′‖1
b

+ |λ̂|‖ιRK ′‖1 = OP

( 1

nb

)
+OP

( 1√
n

)
where we used (3.2) and (3.4) in the last step. This proves (4.2).

Let us now prove (4.3). We write

f̂ ′1(x)− f̃ ′(x) =
1

n

n∑
j=1

(
K ′b(x− εj + (%̂− %)Xj−1)−K ′b(x− εj)

)
= H ′√n(%̂−%)(x) +D′(x) + (%̂− %)

1

n

n∑
j=1

Xj−1f̄
′′(x)

with

H ′t(x) =
1

n

n∑
j=1

(
K ′b

(
x− εj +

tXj−1√
n

)
−K ′b(x− εj)− f̄ ′

(
x+

tXj−1√
n

)
+ f̄ ′(x)

)
,

D′(x) =
1

n

n∑
j=1

(
f̄ ′(x+ (%̂− %)Xj−1)− f̄ ′(x)− (%̂− %)Xj−1f̄

′′(x)
)
.

It follows from Lemma 9 that f̄ belongs to H2 and f̄ ′′ = Bb(f
′,K ′)/b has norm

‖f̄ ′′‖1 ≤ ‖f ′‖1‖K ′‖1/b and is L1-Lipschitz with Lipschitz constant ‖f ′‖1‖K ′′‖1/b2.
Using this and Lemma 7 we obtain with B = ‖f ′‖1 max{‖K ′‖1, ‖K ′′‖1},

‖f̂ ′1 − f̃ ′‖1 ≤ ‖H ′√n(%̂−%)‖1 +B
( 1

b2
(%̂− %)2

1

n

n∑
j=1

X2
j−1 +

1

b
|%̂− %|

∣∣∣ 1
n

n∑
j=1

Xj−1

∣∣∣)
= ‖H ′√n(%̂−%)‖1 +OP (1/(nb2)).

Thus the desired (4.3) follows if we verify that the stochastic rate

(4.5) sup
|t|≤C

‖H ′t‖1 = OP (1/(nb5/2))



EFFICIENT DENSITY ESTIMATION IN AN AR(1) MODEL 19

holds for every large constant C. Fix such a C. Since max1≤j≤n |Xj−1| is of

stochastic order oP (n1/2), we may replace H ′t by H̄ ′t where

H̄ ′t(x) =
1

n

n∑
j=1

(
K ′b

(
x− εj +

tXj−1√
n

)
−K ′b(x− εj)− f̄ ′

(
x+

tXj−1√
n

)
+ f̄ ′(x)

)
Wj−1

with Wj−1 = 1[C|Xj−1| ≤
√
n], j = 1, . . . , n, as in the proof of Theorem 3. We

have H̄ ′0(x) = 0 for all x, and for s and t in [−C,C] we have

H̄ ′t(x)− H̄ ′s(x) =
1

n

n∑
j=1

(t− s)Xj−1√
n
Wj−1Vj(x)

with

Vj(x) =

∫ 1

0

(
K ′′b

(
x− εj + (s+ v(t− s))Xj−1√

n

)
− f̄ ′′

(
x+ (s+ v(t− s))Xj−1√

n

))
dv.

A martingale argument yields

E[(H̄ ′t(x)− H̄ ′s(x))2] ≤ (t− s)2

n2
E[X2

0W0V1(x)2]

≤ (t− s)2

n2b5

∫ 1

0

E
[
X2

0W0Mb

(
x− ε1 + (s+ v(t− s))X0√

n

)]
dv

with Mb(x) = (1/b)M(x/b) and M = (K ′′)2. Lemma 2 yields the bound

|‖H̄ ′t‖1 − ‖H̄ ′s‖1|2 ≤ ‖H̄ ′t − H̄ ′s‖21 ≤ π
∫ ∞
−∞

(1 + x2)(H̄ ′t(x)− H̄ ′s(x))2 dx.

Combining the above yields the inequality

n2b5E[|‖H̄ ′t‖1 − ‖H̄ ′s‖1|2] ≤ π
∫ ∞
−∞

(1 + x2)n3b5E[(H̄ ′t(x)− H̄ ′s(x))2] dx

≤ π(t− s)2
∫ 1

0

I(v) dv

with

I(v) =

∫ ∞
−∞

(1 + x2)E[X2
01[C|X0| ≤

√
n]Mb

(
x− ε1 + (s+ v(t− s))X0√

n

)
dx

≤ 4(1 + σ2 + b2)E[X2
0 ]

∫ ∞
−∞

(1 + u2)M(u) du, 0 < v < 1,

where the inequality is obtained as in the proof of Theorem 3. In view of Theorem
12.3 in Billingsley (1968), the process {X′n(t) = nb5/2‖H̄ ′t‖1, |t| ≤ C} is tight and
this implies (4.5).

We are left to verify (4.4). Using Lemma 2 we calculate

nb3E[‖f̃ ′ − f̄ ′‖21] ≤ π
∫ ∞
−∞

(1 + x2)nb3E[(f̃ ′(x)− f̄ ′(x))2] dx

≤ π
∫ ∞
−∞

(1 + x2)

∫ ∞
−∞

b3(K ′b(x− y))2f(y) dy dx

= π

∫ ∞
−∞

∫ ∞
−∞

(1 + (y + bu)2)f(y)(K ′(u))2 dy du

= π(1 + σ2)‖(K ′)2‖1 + πb2‖(ιRK ′)2‖1.
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This shows ‖f̃ ′ − f̄ ′‖1 = OP (1/
√
nb3).

5. Proof of Theorem 1

Let f̂ denote either the estimator f̂1 or the estimator f̂2. In view of the prop-
erties of kn and b = bn, Corollary 3 implies the stochastic rates

(5.1) (kn + 1)‖f̂ − f‖1 = oP (n−1/4)

and

(5.2) ‖ιR(f̂ − f)‖1 = Op(b
1/2),

while Theorem 4 yields

(5.3) ‖f̂ ′ − f ′‖1 = oP (1).

Recall that ĝkn can be expressed as

(5.4) ĝkn(x) =

∫
Rkn+1

f̂
(
x−

kn∑
i=1

%̂iyi − %̂kn+1z
) kn∏
j=1

f̂(yj) dyj ĝ(z) dz, x ∈ R.

Corollary 1, assumption (A2) and the bound (1.1) yield∥∥∥g%̂,f − g − ġ 1

n

n∑
j=1

ψ(Xj−1, εj)
∥∥∥
1

= oP (n−1/2).

Thus we need to compare ĝkn with g%̂,f . For this we represent g%̂,f as

(5.5) g%̂,f (x) =

∫
Rkn+1

f
(
x−

kn∑
i=1

%̂iyi − %̂kn+1z
) kn∏
j=1

f(yj) dyj g%̂,f (z) dz, x ∈ R.

Replacing %̂kn+1 by %kn+1 and g%̂,f (z) by g(z) yields

g∗%̂,f (z) =

∫
Rkn+1

f
(
x−

kn∑
i=1

%̂iyi − %kn+1z
) kn∏
j=1

f(yj) dyj g(z) dz, x ∈ R.

Replacing %̂kn+1 by %kn+1 and ĝ(z) by g(z) in (5.4) yields

ĝ∗kn(x) =

∫
Rkn+1

f̂
(
x−

kn∑
i=1

%̂iyi − %kn+1z
) kn∏
j=1

f̂(yj) dyj g(z) dz, x ∈ R.

We begin by establishing the rates

(5.6) ‖ĝkn − ĝ∗kn‖1 = oP (n−1/2)

and

(5.7) ‖g%̂,f − g∗%̂,f‖1 = oP (n−1/2).

We have the identities ĝkn = B%̂kn+1(p̂, ĝ) and ĝ∗kn = B%kn+1(p̂, g) with

p̂(x) =

∫
Rkn

f̂
(
x−

kn∑
i=1

%̂iyi

) kn∏
j=1

f̂(yj) dyj , x ∈ R.

It is easy to check that p̂ is H1-valued with

p̂′(x) =

∫
Rkn

f̂ ′
(
x−

kn∑
i=1

%̂iyi

) k∏
j=1

f̂(yj) dyj , x ∈ R,
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and that ‖p̂′‖1 ≤ ‖f̂ ′‖1 = OP (1) holds in view of (5.3). Using Lemma 11 we obtain

‖ĝkn − ĝ∗kn‖1 ≤ ‖ĝkn − p̂‖1 + ‖ĝ∗kn − p̂‖1 ≤ ‖p̂
′‖1(%̂kn+1‖ιRĝ‖1 + %kn+1‖ιRg‖1).

The desired (5.6) now follows from %̂kn+1 = oP (n−1/2) and ‖ιRĝ‖1 = OP (1). Indeed,
the former follows from

n1/2%̂kn+1 = exp
(
− (kn + 1)

(
log(1/%̂)− log(n)

2(kn + 1)

))
= oP (1)

and the latter from

E(‖ιRĝ‖1) = ‖ιRE(ĝ)‖1 = ‖ιRg ∗Kb‖1 ≤ ‖ιRg‖1 + ‖ιRKb‖1 = ‖ιRg‖1 +O(b).

A similar argument yields (5.7).

We are left to compare ĝ∗kn and g∗%̂,f . For this we express ĝ∗kn as L%̂(f̂ , . . . , f̂)

and g∗%̂,f as L%̂(f, . . . , f) where

Lr(h0, . . . , hkn)(x) =

∫
Rkn+1

h0

(
x−

kn∑
i=1

riyi − %kn+1z
) kn∏
j=1

hj(yj) dyjg(z) dz

for integrable functions h0, . . . , hkn and positive numbers r. One checks

(5.8) ‖Lr(h0, . . . , hkn)‖1 ≤
kn∏
j=0

‖hj‖1.

To simplify notation, we set

L̄r,h = Lr(h, . . . , h)

and, for a subset A of {0, . . . , kn},

Lr,A(p, q) = Lr(h0, . . . , hkn) with hi =

{
p, i ∈ A,
q, i 6∈ A,

, i = 0, . . . , kn.

We use the identity

kn∏
j=0

(aj + bj) =
∑

A⊂{0,1,...,kn}

∏
j∈A

aj
∏
j∈Ac

bj

to conclude

L̄r,p+q =
∑

A∈{0,1,...,kn}

Lr,A(p, q).

Applying this with r = %̂, p = f̂ − f and q = f , and singling out the terms with A
of cardinality at most one, we obtain

L̄%̂,f̂ = L̄%̂,f +

kn∑
j=0

L%̂,{j}(f̂ − f, f) +R1

with

R1 =
∑

A⊂{0,...,kn}
card(A)≥2

L%̂,A(f̂ − f, f)
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By (5.8), ‖Lr,A(p, q)‖1 is bounded by ‖p‖a1‖q‖
kn+1−a
1 with a the cardinality of A.

Since there are
(
kn+1
a

)
≤ (kn + 1)a/a! subsets of cardinality a, we obtain

‖R1‖1 ≤
kn+1∑
a=2

(kn + 1)a

a!
‖f̂ − f‖a1 ≤ ((kn + 1)‖f̂ − f‖1)2e(kn+1)‖f̂−f‖1 .

In view of the rate (kn + 1)‖f̂ − f‖1 = oP (n−1/4) given in (5.1), this establishes

(5.9)
∥∥∥ĝ∗kn − g∗%̂,f − kn∑

j=0

L%̂,{j}(f̂ − f, f)
∥∥∥
1

= oP (n−1/2).

Our next goal is to verify

(5.10)
∥∥∥ kn∑
j=0

L%̂,{j}(f̂ − f, f)−
kn∑
j=0

L%,{j}(f̂ − f, f)
∥∥∥
1

= oP (n−1/2).

To achieve this we derive bounds on the terms

Di(h) = ‖L%̂,{i}(h, f)− L%,{i}(h, f)‖1, i = 0, . . . , kn,

for h ∈ H1 with ‖ιRh‖1 finite. Using Lemma 7 we obtain

D0(h) ≤ ‖h′‖1
kn∑
j=1

|%̂j − %j |‖ιRf‖1

and

Di(h) ≤ ‖f ′‖1
kn∑
j=1

|%̂j − %j |
(
1[j 6= i]‖h‖1‖ιRf‖1 + 1[j = i]‖ιRh‖1

)
≤ ‖f ′‖1‖h‖1‖ιRf‖1

kn∑
j=1

|%̂j − %j |+ ‖f ′‖1‖ιRh‖1|%̂i − %i|, i = 1, . . . , kn.

Using the inequality (2.1) with r = %̂ and s = % and taking h = f̂ − f we obtain
that the left-hand side of (5.10) is bounded by

‖f̂ ′ − f ′‖1‖ιRf‖1 + ‖f ′‖1‖ιR(f̂ − f)‖1 + kn‖f ′‖1‖f̂ − f‖1‖ιRf‖1
(1−max{%̂, %})2

|%̂− %|.

This bound is of order oP (n−1/2) because %̂−% is of order OP (n−1/2) and the terms

kn‖f̂ − f‖1, ‖ιR(f̂ − f)‖1 and ‖f̂ ′ − f ′‖1 are of order oP (1) in view of (5.1)–(5.3).
Next we observe the identity

kn∑
j=0

L%,j(f̂ − f, f) =

kn∑
j=0

B%j (γj , f̂ − f) =

kn∑
j=0

Γj(f̂ − f)

where, for an integrable function h, Γjh = B%j (γj , h) is the function defined by

Γjh(x) =

∫ ∞
−∞

γj(x− %jy)h(y) dy, x ∈ R.

We have ‖Γjh‖1 ≤ ‖h‖1 for all integrable h. Using this and Theorem 3 we derive

kn∑
j=0

‖Γj(f̂1 − f̃)‖1 ≤ (kn + 1)‖f̂1 − f̃‖1 = OP (kn/(nb
3/2))
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and
kn∑
j=0

‖Γj(f̂2 − f̃) + λ̂Γj(ιRf))‖1 ≤ (kn + 1)‖f̂2 − f̃ + λ̂ιRf‖1 = OP (kn/(nb
3/2)).

Since f has mean zero and finite variance, Lemma 10 and Corollary 2 yield the
inequalities

‖Γj(ιRf)‖1 ≤ %j‖γ′j‖1‖ι2Rf‖1 ≤ C1σ
2%j , j ≥ 0.

This and the expansion (3.2) yield∥∥∥λ̂ kn∑
j=0

Γj(ιRf)− 1

n

n∑
i=1

εi
σ2

∞∑
j=0

Γj(ιRf)
∥∥∥
1

= oP (n−1/2).

Since f has mean zero, we compute

Γj(ιRf)(x) =

∫ ∞
−∞

(γj(x− %jy)− g(x))yf(y) dy, x ∈ R,

and obtain the identity
∞∑
j=0

Γj(ιRf)(x) =

∫ ∞
−∞

γ(x, y)yf(y) dy, x ∈ R.

In view of k2n/(nb
3)→ 0, we obtain

(5.11)
∥∥∥ kn∑
j=0

L%,{j}(f̂1 − f)−
kn∑
j=0

Γj(f̃ − f)
∥∥∥
1

= oP (n−1/2)

and

(5.12)
∥∥∥ kn∑
j=0

L%,{j}(f̂2 − f)−
kn∑
j=0

Γj(f̃ − f) +

∞∑
j=0

Γj(ιRf)
1

n

n∑
i=1

εi
σ2

∥∥∥
1

= oP (n−1/2).

For j = 0, 1, . . . , we compute

Γj f̃(x) =

∫
γ̄j(x− %jbu)K(u) du, x ∈ R,

with

γ̄j(x) =
1

n

n∑
i=1

γj(x− %jεi), x ∈ R.

By Corollary 2, γj belongs to H2 with ‖γ′′j ‖1 ≤ C3. This implies that γ̄j is H2-

valued and ‖γ̄′′j ‖1 ≤ C3. Lemma 11, applied with t = b%j , p = γ̄j and q = K, yields
the bound

‖Γj f̃ − γ̄j‖1 ≤ C3b
2%2j‖ι2RK‖1.

Since Γjf = g, we derive∥∥∥ kn∑
j=0

(Γj(f̃ − f)− (γ̄j − g))
∥∥∥
1
≤

kn∑
j=0

‖Γj f̃ − γ̄j‖1 = OP (b2) = oP (n−1/2).

Finally, using Corollary 2 we obtain the rate

E
[∥∥∥ ∞∑

j=kn+1

(γ̄j − g)
∥∥∥
1

]
≤

∞∑
j=kn+1

‖γ′j‖1%jE[|ε1 − ε2|] = O(%kn+1) = oP (n−1/2).
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¿From this we conclude

(5.13)
∥∥∥ kn∑
j=0

Γj(f̃ − f)− Γ̄n

∥∥∥
1

= oP (n−1/2)

with

Γ̄n(x) =
1

n

n∑
i=1

γ(x, εi), x ∈ R.

The first L1-Bahadur expansion follows from (5.6), (5.7), (5.9), (5.10), (5.11) and
(5.13), while the second follows from (5.6), (5.7), (5.9), (5.10), (5.12) and (5.13).

6. Proof of Theorem 2

Corollary 1 and n1/2(%n − %)→ t imply

‖n1/2(g%n,f − g%,f )− tġ‖1 → 0.

Thus we are left to show

(6.1) ‖n1/2(g%n,fn − g%n,f )−Ah‖1 → 0.

Recall that hf and ιRhf integrate to zero, i.e.,∫ ∞
−∞

h(y)f(y) dy = 0 and

∫ ∞
−∞

yh(y)f(y) dy = 0.

The second integral condition allows us to replace the function γ∗ in the definition
of Ah by γ, and this leads to the representation

Ah =

∞∑
j=0

Γj(hf)

in view of the definition of γ and the first integral condition which gives∫ ∞
−∞

(γj(x− %jy)− g(x))h(y)f(y) dy =

∫ ∞
−∞

γj(x− %jy)h(y)f(y) dy = Γj(hf)(x).

It follows from Corollary 2 and Lemma 10 that ‖Γj(hf)‖1 ≤ C1%
j‖ιRhf‖1. Using

the definition of γ0, we have the identity Γ0(hf) = B%(hf, g). Let kn be a sequence

of positive integers such that kn/(log(n))2 → 1. This implies that n1/2%kn → 0 and
therefore

∑∞
j=kn+1 ‖Γj(hf)‖1 = o(n−1/2). Thus we achieve (6.1) by verifying

(6.2) ‖n1/2(g%n,fn − ḡn)−B%(hf, g)‖1 → 0

and

(6.3)
∥∥∥n1/2(ḡn − g%n,f )−

kn∑
j=1

Γj(hf)
∥∥∥
1
→ 0

with

ḡn(x) =

∫
Rkn+1

f
(
x−

kn∑
j=1

%jnyj − %kn+1z
) kn∏
j=1

fn(yj) dyjg(z) dz, x ∈ R.

Let us set
∆n = n1/2(fn − f)− hf.

We begin by showing that (1.5) and (1.6) imply

(6.4) ‖∆n‖1 → 0 and ‖ιR∆n‖1 → 0.
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For this we set τ = 1
2h
√
f and write

n1/2(fn − f)− hf = n1/2(
√
fn −

√
f)(
√
fn +

√
f)− 2τ

√
f

=
(
n1/2(

√
fn −

√
f)− τ

)
(
√
fn +

√
f) + τ(

√
fn −

√
f).

This shows that ‖∆n‖1 is bounded by

‖n1/2(
√
fn −

√
f)− τ‖2‖

√
fn +

√
f‖2 + ‖τ‖2‖

√
fn −

√
f‖2

and ‖ιR∆n‖1 is bounded by

‖n1/2(
√
fn −

√
f)− τ‖2‖ιR(

√
fn +

√
f)‖2 + ‖τ‖2‖ιR(

√
fn −

√
f)‖2.

These bounds converge to 0 because (1.5) implies that n1/2(
√
fn −

√
f) converges

in L2 to τ and
√
fn −

√
f converges in L2 to 0 and because (1.6) implies that

‖ιR(
√
fn −

√
f‖22 ≤ ‖ι2R|fn − f |‖1 → 0.

As a consequence of (6.4), the bilinearity of B%n and ‖B%n(p, q)‖1 ≤ ‖p‖1‖q‖1
we obtain

(6.5) ‖n1/2(B%n(fn, gn)−B%n(f, gn))−B%n(hf, gn)‖1 ≤ ‖n1/2(fn−f)−hf‖1 → 0

with gn = g%n,fn . For this gn we have

B%n(f, gn)(x) =

∫
Rkn+1

f
(
x−

kn∑
i=1

%inyi − %kn+1
n z

) kn∏
j=1

fn(yj) dyjgn(z) dz

and obtain by an argument similar to the one used to derive (5.6),

(6.6) ‖n1/2(B%n(f, gn)− ḡn)‖1 ≤ ‖f ′‖1n1/2
(
%kn+1
n ‖ιRgn‖1 + %kn+1‖ιRg‖1

)
→ 0.

Now we use the representations

B%n(hf, gn)(x) = E((hf)(x−Sn)) and B%(hf, g)(x) = E((hf)(x−S)), x ∈ R,

with Sn =
∑∞
j=1 %

j
nF
−1
n (Uj)) and with S =

∑∞
j=1 %

jF−1(Uj)), where U1, U2, . . .

are independent uniform random variables and F−1n and F−1 are the left-inverses
of the distribution functions Fn and F with respective densities fn and f . We verify

E[|Sn − S|] ≤
∞∑
j=1

|%jn − %j |‖ιRfn‖1 +

∞∑
j=1

%j
∫ 1

0

|F−1n (u)− F−1(u)| du→ 0

with the help of Lemma 1, properties (1.6) and the inequality∫ 1

0

|F−1n (u)−F−1(u)| du =

∫ ∞
−∞
|Fn(x)−F (x)| dx ≤

∫ ∞
−∞
|y||fn(y)− f(y)| dy → 0

where the convergence to 0 follows from (6.4). An application of Lemma 4 yields

(6.7) ‖B%n(hf, gn)−B%(hf, g)‖1 → 0.

The desired (6.2) follows from (6.5)–(6.7).
To verify (6.3) we begin by observing the identity ḡn = L%n,{0}(f, fn). An

argument similar to the one that produced (5.9) yields

n1/2
∥∥∥ḡn − kn∑

j=1

L%n,{j}(fn − f, f)
∥∥∥
1
→ 0,
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now using kn‖fn − f‖1 = O(knn
−1/2). Next, mimicking the argument that lead to

(5.10) yields

n1/2
∥∥∥ kn∑
j=1

L%n,{j}(fn − f, f)−
kn∑
j=1

L%,{j}(fn − f), f)
∥∥∥
1
≤ Cnn

1/2|%n − %|
(1−max{%n, %})2

→ 0

with Cn = ‖f ′‖1
(
‖ιR(fn − f)‖1 + kn‖fn − f‖1‖ιRf‖1

)
→ 0. Finally, we have

n1/2L%,{j}(fn − f, f)− Γj(hf) = n1/2B%j (γj , fn − f)−B%j (γj , hf) = B%j (γj ,∆n),

and Lemma 10, Corollary 2 and (6.4) imply∥∥∥ kn∑
j=1

B%j (γj ,∆n)
∥∥∥
1
≤

kn∑
j=1

‖γ′j‖1%j‖ιR∆n‖1 → 0.

Here we used the fact that hf integrates to zero. This completes the proof of (6.3).
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