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Abstract: Suppose we observe a discrete-time Markov chain at certain periodic
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1.1 Introduction

For Markov chains observed at certain periodic or random time points only, we
discuss when one can identify the underlying transition distribution, and how
one can construct estimators of linear functionals of the stationary distribution
in nonparametric models, and of the innovation density in linear autoregression.
By Markov chain we mean a Markov process in discrete time, with arbitrary
state space.

In Section 1.2 we consider nonparametric estimators of linear functionals
of the form E[h(X0, X1)] of a real-valued first-order stationary Markov chain.
We introduce different periodic and random partial observation patterns. If
nothing is known about the structure of the transition distribution, consistent
estimation of E[h(X0, X1)] is, in general, impossible unless one occasionally sees
adjacent pairs (Xj−1, Xj). We can use these pairs to construct an empirical es-
timator of E[h(X0, X1)]. In the simplest such situation, with every third of the
realizations of the chain unobserved, we show how to use the information across
the gaps for improving the empirical estimator. The approach carries over to
the other observation patterns, and to higher-order Markov chains. In Section
1.3 we assume that the Markov chain is a first-order linear autoregressive pro-
cess. In this case we can even treat observation patterns in which we never
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see adjacent pairs, assuming only that we know the sign of the autoregression
parameter. In the simplest such situation, only every second realization of the
process is observed. We construct deconvolution-type estimators for the innova-
tion density in this case. Again the approach carries over to more complicated
observation patterns, and to higher-order linear autoregressive processes.

1.2 Nonparametric Estimators

Full observations. Let X0, . . . , Xn be observations of a real-valued station-
ary and uniformly ergodic first-order Markov chain with transition distribution
Q(x, dy). We can identify Q from the stationary distribution of an adjacent pair
(X0, X1), which in turn is identified from sufficiently many linear functionals
E[h(X0, X1)], for example from the distribution function (s, t) 7→ E[1(X0 ≤
s,X1 ≤ t)] of (X0, X1). It suffices therefore to study estimation of such func-
tionals. Let h be a bounded measurable function on R2. A natural estimator
of Eh = E[h(X0, X1)] is the empirical estimator

Eh =
1
n

n∑
j=1

h(Xj−1, Xj).

It admits the martingale approximation

n1/2(Eh− Eh) = n−1/2
n∑

j=1

(Ah)(Xj−1, Xj) + op(1) (1.1)

with

(Ah)(x, y) = h(x, y)−Qxh +
∞∑

k=1

(Qk
yh−Qk+1

x h),

where Qxh =
∫

h(x, y)Q(x, dy) and Qk
xh =

∫
QyhQk−1(x, dy) for k = 2, 3, . . ..

Hence by the martingale central limit theorem, n1/2(Eh−Eh) is asymptotically
normal with variance E[(Ah)2(X0, X1)]. See Meyn and Tweedie (1993), Chap-
ter 17, for these results and for generalizations. In nonparametric models, with
nothing known about the structure of the transition distribution, Eh is efficient
in the sense of Hájek and LeCam; see Penev (1991), Bickel (1993), Greenwood
and Wefelmeyer (1995) and Bickel and Kwon (2001) for different proofs.

Periodic skipping. Suppose now that we observe only some of the realiza-
tions, in a deterministic pattern that repeats itself periodically, say with period
m. Specifically, in the first period we observe at k times 1 ≤ i1 < . . . < ik ≤ m
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and then at times m + i1, . . ., 2m + i1, . . ., for n + 1 periods, say. Then we ob-
serve up to time (n+1)m and have (n+1)k observations. Here it is understood
that we know how many realizations we skip. We will consider below a pattern
where we do not have this information. The skip lengths are

s1 = i2 − i1, . . . , sk−1 = ik − ik−1, sk = m + i1 − ik.

1. In the simplest case, some of the skip lengths are 1. For example, let
m = 3, k = 2, i1 = 1, i2 = 2. Then every third realization is missing. A simple
estimator of E[h(X0, X1)] is the empirical estimator based on observed pairs
(X3j−2, X3j−1) of successive realizations of the chain. Such an estimator does
not use the information in the non-adjacent pairs (X3j−1, X3j+1), and we should
be able to find better estimators, in the sense of smaller asymptotic variance
(unless the observations happen to be independent). In the next subsection we
describe how one could use the information in the non-adjacent pairs to improve
on the empirical estimator.

2. Suppose that none of the skip lengths is 1, but they have no common
divisor. Then we can represent 1 as a linear combination of skip lengths. Sup-
pose, for example, that m = 5, k = 2, i1 = 1, i2 = 3. Then the skip lengths
are s1 = 2, s2 = 3, and, since 1 = 3 − 2, we can write Q = Q−2Q3. We can
therefore identify Q from Q2 and Q3, which in turn can be estimated from the
pairs (X5j+1, X5j+3) and (X5j−2, X5j+1), respectively. To estimate the inverse
of a transition distribution, decompose the state space into a finite number of
sets and invert the corresponding empirical transition matrix.

3. If the skip lengths have a common divisor, Q is not identifiable. Suppose,
for example, that m = 2, k = 1, i1 = 1. Then we skip every second realization.
The remaining observations allow us to estimate Q2, but this does not identify
the root Q uniquely. In certain parametric and semiparametric models we can
however still (nearly) identify Q, for example if the chain follows a first-order
linear autoregressive model; see Section 1.3.

Observing two out of three. Suppose we observe (X3j−2, X3j−1) for j =
1, . . . , n. A simple estimator for E[h(X0, X1)] is the empirical estimator

Eh =
1
n

n∑
j=1

h(X3j−2, X3j−1).

The information in the non-adjacent pairs (X3j−1, X3j+1) can be used as fol-
lows. Write (X, Y, Z) for (X3j−1, X3j , X3j+1). We want to estimate E[h(X, Y )].
Introduce the conditional expecations

h`(X, Z) = E(h(X, Y )|X, Z) and hr(X, Z) = E(h(Y, Z)|X, Z).

We have
E[h`(X, Z)] = E[hr(X, Z)] = E[h(X, Y )].
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If we knew h` and hr, we could estimate E[h(X, Y )] by empirical estimators

1
n

n∑
j=1

h`(X3j−1, X3j+1) and
1
n

n∑
j=1

hr(X3j−1, X3j+1)

or smoothed versions of these. We do not know h` and hr and suggest to replace
them by estimators as follows. Assume that the finite-dimensional stationary
distributions of the chain have Lebesgue densities. Let p1, p2, p3 denote the
densities of X, (X, Y ), (X, Y, Z), respectively. Write g for the density of (X, Z).
Note that

g(x, z) =
∫

p3(x, y, z) dy.

We have

h`(x, z) =
∫

h(x, y)p3(x, y, z) dy

g(x, z)
.

Write
p3(x, y, z) =

p2(x, y)p2(y, z)
p1(y)

.

Estimate p2 by a kernel estimator based on the adjacent pairs (X3j−2, X3j−1),

p̂2(x, y) =
1
n

n∑
i=1

kb(x−X3j−2)kb(y −X3j−1),

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. Estimate p1 by

p̂1(y) =
1
2

( ∫
p̂2(x, y) dx +

∫
p̂2(y, z) dz

)
.

Then we can estimate p3 by

p̂3(x, y, z) =
p̂2(x, y)p̂2(y, z)

p̂1(y)

and g by

ḡ(x, z) =
∫

p̂3(x, y, z) dy.

We arrive at the following estimator for h`,

ĥ`(x, z) =
∫

h(x, y)p̂3(x, y, z) dy

ḡ(x, z)
.

Rather than looking at the empirical estimator (1/n)
∑n

j=1 ĥ`(X3j−1, X3j+1), it
is technically convenient to look at the smoothed version

E`h =
∫

ĥ`(x, z)ĝ(x, z) dx dz,
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where ĝ is a kernel estimator of g based on non-adjacent pairs (X3j−1, X3j+1),

ĝ(x, z) =
1
n

n∑
j=1

kb(x−X3j−1)kb(y −X3j+1).

Similarly,

ĥr(x, z) =
∫

h(y, z)p̂3(x, y, z) dy

ḡ(x, z)

and
Erh =

∫
ĥr(x, z)ĝ(x, z) dx dz.

Under appropriate conditions, the three estimators Eh, E`h and Erh can be
shown to be asymptotically normal. We can take linear combinations of them
to obtain estimators with smaller asymptotic variance than the empirical es-
timator Eh. The best weights are expressed in terms of the variances and
covariances of the three estimators. They depend on the unknown distribution
but can be estimated empirically. Consider for example the empirical estimator
Eh = (1/n)

∑n
j=1 h(X3j−2, X3j−1) based on the observations (X3j−2, X3j−1),

j = 1, . . . , n. The observations follow a Markov chain with transition distribu-
tion of (X3j+1, X3j+2) given (X3j−2, X3j−1) = (v, w) not depending on v and
defined by

R(w, dy, dz) = Q2 ⊗Q(w, dy, dz) = Q2(w, dy)Q(y, dz).

We can apply the martingale approximation (1.1) to obtain

n1/2(Eh− Eh) = n−1/2
n∑

j=1

(Bh)(X3j−1, X3j+1, X3j+2) + op(1)

with

(Bh)(w, y, z) = h(y, z)−Rwh +
∞∑

k=1

(Rk
zh−Rk+1

w h).

By the martingale central limit theorem, Eh is asymptotically normal with
variance E[(Bh)2(X2, X4, X5)] of the form

Eh2 − (Eh)2 + 2
∞∑

k=1

E[(h(X1, X2)− Eh)h(X3k+1, X3k+2)].

This variance can be estimated empirically, by

Eh2 − (Eh)2 + 2
m(n)∑
k=1

1
n− k

n−k∑
j=1

(h(X3j−2, X3j−1)− Eh)h(X3(j+k)−2, X3(j+k)−1)
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with m(n) slowly increasing to infinity. Compare Müller et al. (2001). Similar
martingale approximations can be obtained for Eh` and Ehr, and their variances
and the covariances of the three estimators can be estimated similarly as the
variance of Eh.

Random skipping. Suppose that, after an observation at time j, we make the
next observation at time j + s with probability as. Then the skip lengths are
i.i.d. random variables Si, i = 0, 1, . . ., with values in N and distribution given
by A({s}) = as, s ∈ N. Set T0 = 0 and Tj =

∑j−1
i=0 Si, and write Yj = XTj .

Suppose we observe the pairs (Sj , Yj) for j = 0, . . . , n, say. They form a Markov
chain with transition distribution

R(x, ds, dy) = A(ds)Qs(x, dy).

Let Ns denote the observed number of skip lengths Sj = s. We can estimate
as by Ns/n. Estimation of E[h(X0, X1)] is similar to the case of periodic skip-
ping considered above. In particular, if a1 is positive, a simple estimator of
E[h(X0, X1)] is the empirical estimator

1
N1

∑
Sj=1

h(Yj , Yj+1).

The information in the pairs (Yj , Yj+1) with skip lengths Sj = 2, 3, . . . can be
exploited similarly as for periodic skipping.

“Skipping at random”. In the previous subsection we have assumed that
the skip lengths are independent of the Markov chain. It is however conceivable
that the skip lengths depend on the previous state. Let A(x, ds) denote the skip
length distribution out of state x. Then we observe pairs (Sj , Yj) for j = 0, . . . , n
with transition distribution

R(x, ds, dy) = A(x, ds)Qs(x, dy).

This factorization is analogous to the factorization Q(x, dy)A(x, y, ds) of the
transition distribution of a Markov renewal process; for efficient estimation in
semiparametric models of the corresponding semi-Markov process see Green-
wood et al. (2004). The name “skipping at random” is chosen because of the
similarity with responses “missing at random” in regression models; for effi-
cient semiparametric estimation see Müller et al. (2006). Recent monographs
treating missing data are Little and Rubin (2002), van der Laan and Robins
(2003) and Tsiatis (2006). Random skipping as considered above, with A not
depending on x, would correspond to “missing totally at random”. We can
estimate as(x) = A(x, {s}) by the kernel estimator

âs(x) =
∑n

i=1 kb(x− Yi)1(Si = s)∑n
i=1 kb(x− Yi)

,
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where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. Again, if a1(x) =
A(x, {1}) is positive with positive probability, a simple estimator of the expeca-
tion E[h(X0, X1)] can be based on the observed pairs of successive observations:

n−1∑
j=0

1(Sj = 1)
â1(Yj)

h(Yj , Yj+1).

Again, the information in the pairs (Yj , Yj+1) with skip lengths Sj = 2, 3, . . .
can be exploited similarly as for periodic skipping.

1.3 Linear Autoregression

Full observations. Let X0, . . . , Xn be observations from a stationary first-
order autoregressive linear model

Xj = ϑXj−1 + εj (1.2)

with |ϑ| < 1 and i.i.d. innovations εj that have mean zero, finite variance
and density f . This is a first-order Markov chain with transition distribution
Q(x, dy) = f(y − ϑx) dy, parametrized by ϑ and f . A simple estimator for ϑ is
the least squares estimator

ϑ̄ =

∑n
j=1 Xj−1Xj∑n

j=1 X2
j−1

.

We can use it to estimate the innovation εj by the residual ε̄j = Xj − ϑ̄Xj−1.
An estimator for the innovation density f is the residual-based kernel estimator

f̂(x) =
1
n

n∑
j=1

kb(x− ε̄j)

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth.

Observing one out of two. As mentioned in Section 1.2, the transition
distribution of a Markov chain is not identifiable if observations are skipped
periodically with skip lenghts having a common divisor. In the simplest such
case, only every second of the realizations of the chain is observed. The situation
is much better for autoregression (1.2). Then the transition distribution is
still identifiable, up to the sign of ϑ. To see this, suppose that we observe
X0, X2, . . . , X2n and write

X2j = ϑ2X2j−2 + η2j (1.3)
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with
η2j = ε2j + ϑε2j−1. (1.4)

The X2j follow again a first-order linear autoregesssive model, now with au-
toregression parameter s = ϑ2 and innovation η2j . The non-uniqueness of
the square-root of the two-step transition distribution Q2 reduces to the non-
uniqueness of the square-root of ϑ2. Let us assume that we know the sign of
ϑ, say ϑ is positive. This knowledge is realistic in many applications. We can
estimate ϑ2 by the least squares estimator

ŝ =

∑n
j=1 X2j−2X2j∑n

j=1 X2
2j−2

.

Then ϑ̂ = ŝ1/2 estimates ϑ.
It remains to estimate f . We introduce three different approaches. All are

solutions of certain deconvolution problems. Write ϕY (t) = E[exp(itY )] for the
characteristic function of a random variable Y .

1. The most straightforward estimator for f uses only the autoregressive
representation (1.2), which implies

ϕX(t) = ϕϑX(t)ϕε(t) = ϕX(ϑt)ϕε(t).

Estimate ϕX by the empirical characteristic function

ϕ̂X(t) =
1
n

n∑
j=1

exp(itX2j).

An estimator for ϕε is then given by

ϕ̂ε,1(t) =
ϕ̂X(t)

ϕ̂X(ϑ̂t)
.

Let K be a kernel, ϕK its characteristic function, and b a bandwidth that tends
to zero as n tends to infinity. By Fourier inversion we arrive at an estimator
for f ,

f̂1(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,1(t) dt.

2. Another estimator for f uses only the moving average representation
(1.4) of the η2j . It is based on the approach of Belomestny (2003); see also Be-
lomestny and Prokhorov (2003) and Belomestny (2005). Belomestny considers
i.i.d. random variables Y1 and Y2 and estimates their density on the basis of
i.i.d. observations distributed as ϑY1 + Y2. The moving average representation
(1.4) is of this form, but we do not know ϑ and do not observe the η2j and must
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replace them by an estimator ϑ̂ and residuals η̂2j = X2j − ŝX2j−2. From (1.4)
we obtain

ϕη(t) = ϕε(t)ϕϑε(t) = ϕε(t)ϕε(ϑt).

Iteratively solving for ϕε we arrive at the representation

ϕε(t) =
ϕη(t)
ϕε(ϑt)

=
∞∏

r=0

ϕη(ϑ2rt)
ϕη(ϑ2r+1t)

.

Estimate ϕη by the residual-based empirical characteristic function

ϕ̂η(t) =
1
n

n∑
j=1

exp(itη̂2j).

An estimator for ϕε is then given by

ϕ̂ε,2(t) =
N∏

r=0

ϕ̂η(ŝrt)

ϕ̂η(ϑ̂2r+1t)

with N tending to infinity. By Fourier inversion we arrive at a second estimator
for f ,

f̂2(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,2(t) dt.

3. A third estimator for f uses (1.2) together with the autoregression rep-
resentation (1.3) of the observations X2j . They give

ϕX(t) = ϕX(ϑt)ϕε(t) and ϕX(t) = ϕX(ϑ2t)ϕη(t)

and hence

ϕε(t) =
ϕX(ϑ2t)ϕη(t)

ϕX(ϑt)
.

An estimator for ϕε is therefore given by

ϕ̂ε,3(x) =
ϕ̂X(ŝt)ϕ̂η(t)

ϕ̂X(ϑ̂t)
.

By Fourier inversion we arrive at a third estimator for f ,

f̂3(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,3(t) dt.

The estimator f̂1 is the easiest to calculate. However, the representation
of ϕε as a ratio ϕX/ϕϑX does not lead to a good estimator of ϕε and f . It is
comparable with the usual deconvolution estimators treated in the literature;
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see Fan (1991) for their convergence rates, which can be very slow. The estima-
tors f̂2 and f̂3 do not have this disadvantage, at least not to the same extent.
This is easier to explain for f̂3, which is based on the representation of ϕε as
ϕϑ2Xϕη/ϕϑX whose tail behavior is governed by the numerator. Of course, ϕ̂ε,3

and f̂3 are preferable because they are simpler than ϕ̂ε,2 and f̂2. Apart from
this, f̂2 and f̂3 have similar convergence rates.

Let g denote the density of the innovation η2j . Paradoxically, it can be
estimated at a better rate than the density of the innovation εj of the fully
observed time series. From (1.4) we have the representation

g(y) =
∫

f(y − ϑx)f(x) dx

and can estimate g by the plug-in estimator

ĝ(y) =
∫

f̂(y − ϑ̂x)f̂(x) dx,

where f̂ is f̂2 or f̂3. The estimator ĝ can be root-n consistent; compare Frees
(1994), Schick and Wefelmeyer (2004a, 2004b, 2006) and Giné and Mason (2006)
for related results.

Higher lags. Versions of the three estimators f̂1, f̂2, f̂3 can also be con-
structed if we observe the AR(1) process each k-th time only. We have seen
that an AR(1) process, observed every second time, is again AR(1), with dif-
ferent innovation distribution and autoregression parameter. If we observe the
process each k-th time only, we also have an AR(1) process

Xkj = ϑkXk(j−1) + ηkj (1.5)

with innovations

ηkj =
k−1∑
i=0

ϑiεkj−i. (1.6)

Suppose we observe X0, Xk, . . . , Xkn. Then ϑk can be estimated by the least
squares estimator

ŝ =

∑n
j=1 Xk(j−1)Xkj∑n

j=1 X2
k(j−1)

.

If k is even, we cannot identify the sign of ϑ and will again assume that we
know ϑ to be positive. Then ϑ̂ = ŝ1/k estimates ϑ.

A version of f̂1 is obtained by using again the Fourier inverse of

ϕ̂ε,1(t) =
ϕ̂X(t)

ϕ̂X(ϑ̂t)
,
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now with the empirical characteristic function

ϕ̂X(t) =
1
n

n∑
j=1

exp(itXkj).

In view of (1.5) and (1.6) we obtain

ϕX(t) = ϕη(t)ϕX(ϑkt) (1.7)

and then, by the representation (1.2),

ϕε(t) =
ϕX(t)
ϕX(ϑt)

=
ϕη(t)ϕX(ϑkt)

ϕX(ϑt)
. (1.8)

A version of ϕ̂ε,3 is therefore

ϕ̂ε,3(t) =
ϕ̂η(t)ϕ̂X(ŝt)

ϕ̂X(ϑ̂t)
,

now with empirical characteristic function

ϕ̂η(t) =
1
n

n∑
j=1

exp(itη̂kj)

based on residuals η̂kj = Xkj − ŝXk(j−1). An estimator for f is now obtained
by Fourier inversion of ϕ̂ε,3.

For a version of the second estimator, f̂2, we apply (1.7) repeatedly to (1.8)
and obtain

ϕε(t) =
ϕη(t)ϕX(ϑkt)

ϕη(ϑt)ϕX(ϑk+1t)
=

ϕη(t)
ϕη(ϑt)

∞∏
r=1

ϕη(ϑkrt)
ϕη(ϑkr+1t)

.

From this we obtain a version of ϕ̂ε,2 and hence of f̂2.

Higher order autoregression. Generalizations of our results to higher-order
autoregression are not straightforward. In general we lose the Markov property.
Consider an AR(2) process

Xj = ϑ1Xj−1 + ϑ2Xj−2 + εj ,

with innovations εj as before. Assume that the polynomial 1 − ϑ1z − ϑ2z
2

does not have zeroes on the closed complex unit disk. Suppose we observe the
process at even times only. We have

X2j = ϑ1X2j−1 + ϑ2X2j−2 + ε2j .
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Replacing X2j−1 by its AR(2) representation, we obtain

X2j = (ϑ2
1 + ϑ2)X2j−2 + ϑ1ϑ2X2j−3 + ε2j + ϑ1ε2j−1. (1.9)

Iterating this for odd-numbered indices, we arrive at an ARMA(∞,∞) repre-
sentation for X2j ,

X2j = (ϑ2
1 + ϑ2)X2j−2 +

∞∑
i=1

ϑ2
1ϑ

i
2X2j−2i−2 + ε2j + ϑ1ε2j−1 +

∞∑
i=1

ϑ1ϑ
i
2ε2j−2i−1.

If we replace all X2j−i by their AR(2) representations, we arrive at an AR(∞)
representation for X2j .

A simpler representation is obtained if we subtract

ϑ2X2j−2 = ϑ2(ϑ1X2j−3 + ϑ2X2j−4 + ε2j−2)

from (1.9). This gives the ARMA(2,2) representation

X2j − (ϑ2
1 + 2ϑ2)X2j−2 + ϑ2

2X2j−4 = ε2j + ϑ1ε2j−1 − ϑ2ε2j−2.

The parameters are identifiable if we know their signs.
Such a representation can be obtained for arbitrary ARMA(p,q) processes

observed at even times. Introduce polynomials %(z) = 1 + %1z + . . . + %pz
p and

ϕ(z) = 1 + ϕ1z + . . . + ϕqz
q. Assume that % does not vanish on the closed

complex unit disk. Define the backshift operator by BXj = Xj−1. Consider
the ARMA(p,q) process

%(B)Xj = ϕ(B)εj ,

with εj as before. Let %∗1, . . . , %
∗
p denote the zeroes of %. They lie outside the

unit disk. Factor % as

%(z) =
p∏

i=1

(z − %∗i ).

Introduce the polynomials

%2(z) =
p∏

i=1

(z − %∗2i ), %+(z) =
p∏

i=1

(z + %∗i ).

We can write

%2(z2) =
p∏

i=1

(z2 − %∗2i ) =
p∏

i=1

(z + %∗i )(z − %∗i ) = %+(z)%(z)

and obtain an ARMA(p,p + q) representation for the ARMA(p,q) process ob-
served at even times only:

%2(B2)X2j = %+(B)ϕ(B)ε2j .
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We retain a Markovian representation if we have observations in blocks of
length at least equal to the order of the process. For example, suppose we do
not see every third observation of the AR(2) process, so our observations are
(X3j−2, X3j−1) for j = 1, . . . , n, say. Then we can write

X3j+1 = (ϑ2
1 + ϑ2)X3j−1 + ϑ1ϑ2X3j−2 + ε3j+1 + ϑ1ε3j

and
X3j+2 = ϑ1X3j+1 + ϑ1ϑ2X3j−1 + ϑ2

2X3j−2 + ε3j+2 + ϑ2ε3j .

This means that the observations (X3j−2, X3j−1) follow an alternating autore-
gressive process, with orders alternating between 2 and 3, and independent
innovations η3j+1 = ε3j+1 + ϑ1ε3j , j = 1, . . . , n, and η3j+2 = ε3j+2 + ϑ2ε3j ,
j = 1, . . . , n, respectively. Note however that for fixed j the innovations η3j+1

and η3j+2 depend on each other. The observations (X3j−2, X3j−1) can also be
viewed as a two-dimensional autoregressive process of order 3.

In both cases described above we have obtained ARMA(p,q) representations
for the partially observed process. Such representations can again be used
to construct estimators for the innovation density. Consider an ARMA(2,2)
process of the form

Xj + aXj−1 + bXj−2 = εj + cεj−1 + dεj−2 = ηj .

To construct an estimator analogous to f̂2, write

ϕε(t) =
ϕη(t)

ϕε(ct)ϕε(dt)
,

replace ϕε(ct) and ϕε(dt) by such ratios to obtain

ϕε(t) =
ϕη(t)ϕε(c2t)ϕε(d2t)ϕ2

ε(cdt)
ϕη(ct)ϕη(dt)

,

and iterate these steps to obtain an infinite product in terms of ϕη. An estimator
for ϕη can be based on residuals η̂j = Xj + âXj−1 + b̂Xj−2.
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