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Abstract Densities of functions of independent and identically distributed random

observations can be estimated by a local U-statistic. It has been shown recently that,

under an appropriate integrability condition, this estimator behaves asymptotically like

an empirical estimator. In particular, it converges at the parametric rate. The integra-

bility condition is rather restrictive. It fails for the sum of powers of two observations

when the exponent is at least two. We have shown elsewhere that for exponent equal to

two the rate of convergence slows down by a logarithmic factor on the support of the

squared observation and is still parametric outside this support. For exponent greater

than two, and on the support of the exponentiated observation, the estimator behaves

like a classical density estimator: The bias is not negligible and the rate depends on

the bandwidth. Outside the support, the rate is again parametric.

Keywords Local U-statistic · density estimator · convergence rate · Hoeffding

decomposition
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1 Introduction

Suppose that X1, . . . , Xn are independent observations with density f . It is sometimes

of interest to estimate the density p of a transformation q(X1, . . . , Xm) of m of these
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observations. Frees (1994) proposed as an estimator of p(z) the local U-statistic

p̂F (z) =
1`n
m

´ X
1≤i1<···<im≤n

kb(z − q(Xi1 , . . . , Xim
))

with kb(x) = k(x/b)/b for a kernel k and a bandwidth b. He showed that this estimator

can be pointwise
√
n-consistent under some assumptions on f and q. Saavedra and

Cao (2000) consider the function q(X1, X2) = X1 + aX2. They obtain pointwise
√
n-

consistency for their convolution estimator

p̂SC(z) =

Z
f̂(z − ax)f̂(x) dx

with a kernel estimator f̂ of f . This is a plug-in estimator which replaces the un-

known density f in the representation of p(z) by f̂ . As pointed out in Schick and

Wefelmeyer (2008), if f̂(x) = (1/n)
Pn

j=1Kb(x − Xj), then the estimator p̂SC(z)

is asymptotically equivalent to p̂F (z) with m = 2, q(X1, X2) = X1 + aX2, and

k(y) =
R
K(y − ax)K(x) dx.

It is even possible to obtain
√
n-consistency in various norms, together with func-

tional central limit theorems in the corresponding spaces. Schick and Wefelmeyer

(2004, 2007) prove such results for transformations of the form q(X1, . . . , Xm) =

u1(X1) + · · ·+ um(Xm) and q(X1, X2) = X1 +X2 in the sup-norm and in L1-norms.

Giné and Mason (2007a) consider general transformations q(X1, . . . , Xm) and obtain

such results in the Lp-norms. Their results hold locally uniformly in the bandwidth.

Giné and Mason (2007b) prove a law of the iterated logarithm for the estimator. Du

and Schick (2007) generalize some of these results to the estimation of derivatives of

convolutions of densities.

These results are less generally valid than appears at first sight. Consider the case

q(X1, X2) = |X1|ν + |X2|ν

for some positive ν. Then the Frees estimator is

p̂b(z) =
2

n(n− 1)

X
1≤i<j≤n

kb(z − |Xi|ν − |Xj |ν). (1.1)

For
√
n-consistency the above authors require the density of |X1|ν to be square-

integrable. Let h and g denote the densities of |X1| and |X1|ν , respectively. Then

h(y) = (f(y) + f(−y))1[y > 0]

and, with β = 1/ν,

g(y) = βyβ−1h(yβ).

If h is bounded, then the density g of |X1|ν is square-integrable if ν < 2. However, if

ν ≥ 2 and lim infy→0+ h(y) > 0, then it is not. Indeed, the Frees estimator behaves

differently for ν < 2, ν = 2 and ν > 2. In the following we describe its asymptotic

behavior at a fixed positive z. Throughout this paper we always impose the following

condition on the kernel k.

(K) The kernel k is a continuously differentiable function that integrates to one and

has support [−1, 1].
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In the ensuing discussion we restrict ourselves to the case when h is of bounded

variation and the right-hand limit h(0+) of h at 0 is positive. This rules out square-

integrability of g. The requirement of bounded variation implies some smoothness of

p, which is used to control the bias.

For ν < 2, we can apply the arguments of Schick and Wefelmeyer (2004, 2008) and

Giné and Mason (2007a) and obtain the following result.

Theorem 1 Let ν < 2. Suppose the density h is of bounded variation and h(0+) is

positive. Let b ∼
√

logn/n. Then

√
n(p̂b(z)− p(z))

d−→ N
`
0, 4Var(g(z − |X1|ν))

´
.

If ν = 2, one typically obtains a rate of convergence of order
p
n/ logn. More

precisely, Schick and Wefelmeyer (2008) derived the following result.

Theorem 2 Let ν = 2. Suppose h is of bounded variation and h(0+) and g(z−) are

positive. Let b ∼
√

logn/n. Then

r
n

logn

“
p̂b(z)− p(z)

”
d−→ N(0, h2(0+)g(z−)).

If ν > 2, the results of this paper imply the following rate. Faster rates are possible

under additional smoothness assumptions on p at z.

Theorem 3 Let ν > 2. Suppose h is of bounded variation and h(0+) and g(z−) are

positive. Let b ∼ 1/n. Then

p̂b(z)− p(z) = OP (n−β).

Even in the case ν ≥ 2, the Frees estimator can be
√
n-consistent. But this requires

that g(z−) = 0. More precisely, we have the following result. The case ν = 2 was

already obtained in Schick and Wefelmeyer (2008).

Theorem 4 Let ν ≥ 2. Suppose h is of bounded variation with h(0+) positive and g

vanishes in a neighborhood of z. Let b ∼
√

logn/n. Then

√
n(p̂b(z)− p(z))

d−→ N
`
0, 4Var(g(z − |X1|ν))

´
.

If g has compact support and z is not in the support of g, then g vanishes in a

neighborhood of z, and the Frees estimator is
√
n-consistent for all ν.

Our paper is organized as follows. In Section 2 we describe our results. The analysis

is based on the Hoeffding decomposition of our estimator and on various propositions

which treat the terms in this decomposition in different scenarios. A synthesis of results

is given in a series of theorems. The resulting convergence results are uniform in the

bandwidth and allow us to replace in the above theorems p̂b(z) by p̂ŝb(z) with a positive

random variables ŝ = ŝn satisfying ŝn + 1/ŝn = OP (1). Proofs are given in Section 3.
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2 Results

The density p of |X1|ν + |X2|ν is the convolution g ∗ g of the density g of |X1|ν with

itself. Thus we have the following representation for p,

p(z) =

Z z

0
β(z − y)β−1h((z − y)β)βyβ−1h(yβ) dy,

valid for z > 0. Using the substitution y = zs we find for such z that

p(z) = β2z2β−1
Z 1

0
h(zβ(1− s)β)h(zβsβ)(1− s)β−1sβ−1 ds.

Of course, p(z) = 0 for negative z. Since the integrand is symmetric about 1/2, we

have

p(z) = 2β2z2β−1
Z 1/2

0
h(zβ(1− s)β)h(zβsβ)(1− s)β−1sβ−1 ds. (2.1)

The representation shows that, for β < 1/2, the density p has a pole at 0 if h has a

positive right-hand limit h(0+) at 0. Indeed, then we have

lim
z↓0

z1−2βp(z) = β2h2(0+)
Γ 2(β)

Γ (2β)
.

Below are graphs of p for various values of ν when h is the uniform density on (0, 1).

0 1 2

1

ν = 3

0 1 2

1

ν = 2

0 1 2
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0 1 2

1

ν = 1/2
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We study the behavior of the estimator p̂b(z) at a fixed positive point z. Since p̂b(z)

is a U-statistic, we have the Hoeffding decomposition

p̂b(z) = p ∗ kb(z) + 2A(g ∗ kb) + U(kb)

where we write A(ψ) for the centered average

A(ψ) =
1

n

nX
j=1

`
ψ(z − |Xj |ν)− E[ψ(z − |Xj |ν)]

´
and U(ψ) for the degenerate U-statistic

U(ψ) =
2

n(n− 1)

X
1≤i<j≤n

ψ̄(Xi, Xj)

with

ψ̄(x, y) = ψ(z − |x|ν − |y|ν)− ψ ∗ g(z − |x|ν)− ψ ∗ g(z − |y|ν) + ψ ∗ p(z).

Thus we need to treat the bias p∗kb(z)−p(z), the average A(g∗kb) and the degenerate

U-statistic U(kb). To allow for random bandwidth we treat these expressions with b

replaced by sb and with s running through a compact subinterval I of (0,∞). Let C(I)

denote the space of continuous functions on I endowed with the supremum norm. We

first treat the degenerate U-statistic. A version of this result for the case ν = 2 is

already contained in Schick and Wefelmeyer (2008).

Proposition 1 If p is bounded in a neighborhood of z, then the degenerate U-statistic

process {n
√
b U(ksb) : s ∈ I} is tight in C(I).

The next three propositions deal with the average A(g∗ksb) under various assump-

tions. The case ν < 2 is essentially known, see Schick and Wefelmeyer (2004), Giné

and Mason (2007a) and Du and Schick (2008).

Proposition 2 Let h have bounded variation. If ν < 2 or g vanishes in a neighborhood

of z, then

sup
s∈I

√
n|A(g ∗ ksb)−A(g)| = oP (1)

and √
nA(g)

d−→ N
`
0,Var(g(z − |X1|ν))

´
.

The next result was proved in Schick and Wefelmeyer (2008).

Proposition 3 Let ν = 2. Let h have bounded variation and let h(0+) and g(z−) be

positive. Suppose log(1/b)/ logn→ γ for some positive γ. Then

sup
s∈I

r
n

logn

˛̨̨
A(g ∗ ksb)−A(g1(b log n,∞))

˛̨̨
= oP (1)

and r
n

logn
A(g1(b log n,∞))

d−→ N(0, γh2(0+)g(z−)/4).

The following proposition treats ν > 2 and is new.
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Proposition 4 Let ν > 2. Let h have bounded variation and let h(0+) and g(z−) be

positive. Then

sup
s∈I

p
nb1−2β |A(g ∗ ksb)| = OP (1).

Finally we treat the bias term. For a positive α we let bαc denote the largest integer

less than α. Recall that the function p is α-smooth at z if p is bαc times differentiable

around z and if its bαc-th derivative is Hölder at z with exponent α−bαc in the sense

that ˛̨
p(bαc)(z + t)− p(bαc)(z)

˛̨
≤ L|t|α−bαc, |t| < δ,

for some δ > 0 and some constant L. A Taylor expansion then gives the following

well-known result.

Proposition 5 If p is α-smooth at z for some positive α and the kernel also satisfiesR
xik(x) dx = 0 for i = 1, . . . , bαc, then

sup
s∈I

|p ∗ ksb(z)− p(z)| = O(bα).

The next lemma shows that p is α-smooth at z with exponent α = min(1, β) if the

density h is of bounded variation. The special case β = 1/2 was already obtained in

Schick and Wefelmeyer (2008).

Lemma 1 Suppose h is of bounded variation. Then p is Hölder at z with exponent

α = min(1, β).

Higher Hölder exponents can be guaranteed under stronger assumptions on h.

Lemma 2 Suppose h is of bounded variation and g vanishes in a neighborhood of z.

Then p is Hölder at z with exponent 1.

Lemma 3 Suppose h is Lipschitz on (0,∞) in the sense that

|h(v)− h(u)| ≤ Λ(v − u), 0 < u < v,

for some constant Λ. Then p is Hölder at z with exponent 1.

The above propositions and lemmas imply various asymptotic results for the Frees

estimator p̂ŝb(z) with a random bandwidth ŝb, where ŝ is a positive random variable

that changes with the sample size in such a way that

ŝ+
1

ŝ
= OP (1).

We first consider the case when g vanishes in a neighborhood of z. This happens if z

is outside the support of g. From Propositions 1, 2, 5 and Lemma 2 we obtain
√
n-

consistency and asymptotic normality for all ν.

Theorem 5 Suppose h is of bounded variation and g vanishes in a neighborhood of z.

Let nb2 → 0 and nb→∞. Then

√
n (p̂ŝb(z)− p(z))

d−→ N
`
0, 4Var(g(z − |X1|ν))

´
.
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Now we consider the case when both h(0+) and g(z−) are positive. The results

for ν < 2, ν = 2 and ν > 2 are then quite different. Under the minimal smoothness

assumptions of Lemma 1 we have the following results.

Theorem 6 Suppose h is of bounded variation. Let h(0+) and g(z−) be positive.

1. Let ν < 2. Take b such that nb → ∞ and nb2α → 0, where α = min(1, β), say

b ∼ (n logn)−1/(2α). Then

√
n (p̂ŝb(z)− p(z))

d−→ N
`
0, 4Var(g(z − |X1|ν))

´
.

2. Let ν = 2. Take b ∼ (logn)τ/n for some τ < 1. Thenr
logn

n

“
p̂ŝb(z)− p(z)

”
d−→ N(0, h2(0+)g(z−)).

3. Let ν > 2. Take b ∼ 1/n. Then

nβ(p̂ŝb(z)− p(z)) = OP (1).

Under additional smoothness assumptions on p, better results are possible.

Theorem 7 Suppose h is of bounded variation. Let h(0+) and g(z−) be positive.

Suppose p is α-smooth at z for some α ≥ min(1, β), and the kernel k also fulfillsR
xik(x) dx = 0 for i = 1, . . . , bαc.

1. Let ν < 2. Take b such that nb→∞ and nb2α → 0, say b ∼ (n logn)−1/(2α). Then

√
n (p̂ŝb(z)− p(z))

d−→ N
`
0, 4Var(g(z − |X1|ν))

´
.

2. Let ν = 2. Take b ∼ n−γ with 1/(2α) ≤ γ ≤ 1. Thenr
logn

n

“
p̂ŝb(z)− p(z)

”
d−→ N(0, γh2(0+)g(z−)).

3. Let ν > 2. Take b ∼ n−γ with 0 < γ ≤ 1. Then

p̂ŝb(z)− p(z) = OP (bα) +OP

“ 1√
nb1−2β

”
.

In particular, if γ = 1/(1 + 2(α− β)) we obtain

p̂ŝb(z)− p(z) = OP (n−α/(1+2(α−β))).

In the last two theorems, the conclusions for the case ν < 2 remain valid without

the requirement that h(0+) and g(z−) are positive.

For ν < 2 the convergence rate of p̂ŝb(z) is
√
n and is not affected by the choice

of bandwidth within the admissible range. We recommend choosing a large bandwidth

such as (n logn)−1/(2α).

For ν = 2 the convergence rate of p̂ŝb(z) is
p
n/ logn and does not depend on the

bandwidth b ∼ n−γ . However, the asymptotic variance depends on the exponent γ

and is minimized by γ = 1/(2α). Thus smoothness of p does not improve the rate of

convergence, but allows for smaller asymptotic variances.
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For ν > 2 the estimator p̂ŝb(z) behaves like classical kernel density estimators: The

bias is not negligible, and the rate is determined by the rates of the bias and variance

terms. The optimal bandwidth is proportional to n−1/(1+2(α−β)). For the smallest

admissible Hölder exponent α = β, the optimal bandwidth is proportional to 1/n and

one has

p̂ŝb(z)− p(z) = OP (n−β).

Suppose we have independent observations Z1, . . . , Zn from the density p itself.

Then the kernel estimator

p̃b(z) =
1

n

nX
j=1

kb(z − Zj)

based on these direct observations satisfies

p̃b(z)− p(z) = O(bα) +OP

“ 1√
nb

”
if p is α-smooth. The optimal bandwidth is b ∼ n−1/(1+2α), yielding

p̃b(z)− p(z) = OP (n−α/(1+2α)).

Thus the estimator p̂b(z) with optimal bandwidth has a faster rate of convergence than

the kernel estimator p̃b(z) based on n observations from p.

3 Proofs

This section contains the proofs of Propositions 1, 2 and 4 and of Lemmas 1 to 3. We

use ‖ψ‖ and ‖ψ‖q to denote the sup-norm and the Lq-norm, respectively, of a function

ψ. By assumption (K) on the kernel k, there are constants M1 and M2 such that

‖ktb − ksb‖1 = ‖kt − ks‖1 ≤M1|t− s|, s, t ∈ I, (3.1)

and √
b‖ktb − ksb‖2 = ‖kt − ks‖2 ≤M2|t− s|, s, t ∈ I. (3.2)

For c < d we set

Γz(c, d) = sup
c<y<d

g(z − y) and Γ (c, d) = sup
c<y<d

g(y).

Note that

Γz(c, d) = Γ (z − d, z − c).

In the proofs we shall use the fact that translation is continuous in L2, i.e., for a

square-integrable function ḡ one hasZ
(ḡ(x− v)− ḡ(x))2 dx→ 0 as v → 0. (3.3)

See Theorem 9.5 in Rudin (1987).
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Proof of Proposition 1. Let I = [l, r]. For a bounded ψ, the summands in the

degenerate U-statistic U(ψ) are centered and uncorrelated. This follows from the fact

that E(ψ̄(Xi, Xj)|Xi) = 0 and E(ψ̄(Xi, Xj)|Xj) = 0. Thus we have

E[U2(ψ)] =
2

n(n− 1)
E[ψ̄2(X1, X2)].

Straightforward calculations show that

E[ψ̄2(X1, X2)] ≤ E[ψ2(z − |X1|ν − |X2|ν)] = ψ2 ∗ p(z).

If ψ has support in a compact set S, then

ψ2 ∗ p(z) ≤ sup
y∈S

p(z − y)‖ψ‖22.

We will apply this inequality with ψ = ksb and ψ = ktb− ksb for s and t in I. For such

s and t, these functions have support contained in S = [lb, rb]. Note that the density p

is bounded in a neighborhood of z and that U(ktb)−U(ksb) equals U(ktb−ksb). These

properties and (3.2) yield

n2bE[U2(ksb)] = O(1) and n2bE[(U(ktb)− U(ksb))
2] ≤ B|t− s|2

for all s and t in I and some constant B. Thus tightness in C(I) of the sequence

{n
√
b U(ksb) : s ∈ I} follows from Theorem 12.3 in Billingsley (1968). �

Proof of Proposition 2. We shall show that

E[g2(z − |X1|ν)] = g2 ∗ g(z) =

Z z

0
g(z − y)g2(y) dy <∞, (3.4)

nE[(A(g ∗ ksb)−A(g))2] → 0, (3.5)

nE[(A(g ∗ ktb)−A(g ∗ ksb))
2] ≤ B|t− s|2, (3.6)

for all s and t in I. The second conclusion of the proposition then follows from (3.4)

and the central limit theorem. The first conclusion is a consequence of (3.5), (3.6) and

Theorem 12.3 in Billingsley (1968).

Let us first consider the case when ν ≥ 2 and g vanishes in a neighborhood (z −
2δ, z + 2δ) of z for some δ > 0. Then the integral in (3.4) equalsZ z

2δ
g(z − y)g2(y) dy ≤ Γ (2δ, z)

Z z

2δ
g(z − y)g(y) dy ≤ βδβ−1‖h‖p(z).

This proves (3.4). Since A(g ∗ ksb)−A(g) = A(g ∗ ksb − g) and

nE[A2(ψ)] ≤ E[ψ2(z − |X1|ν)] = ψ2 ∗ g(z), (3.7)

we can bound the left-hand side of (3.5) by

(g ∗ ksb − g)2 ∗ g(z) =

Z
g(z − y)

“ Z
(g(y − sbu)− g(y))k(u) du

”2
dy

≤ ‖k‖1
Z
g(z − y)

Z
(g(y − sbu)− g(y))2|k(u)| du dy.
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Thus (3.5) follows if we show thatZ
g(z − y)(g(y − v)− g(y))2 dy → 0 as v → 0. (3.8)

Since g vanishes on the interval (z−2δ, z+2δ), the range of integration can be restricted

to (2δ, z − δ) for |v| < δ, and for such v the integral in (3.8) is bounded by

Γz(2δ, z − δ)

Z z−δ

2δ
(g(y − v)− g(y))2 dy

≤ βδβ−1‖h‖
Z

(ḡ(y − v)− ḡ(y))2 dy

where ḡ = g1(δ,z). Since ḡ is square-integrable, we obtain (3.8) from (3.3).

It follows from (3.4) and (3.8) that g ∗ g2(z− v) → g ∗ g2(z) as v → 0. This implies

that there is a constant M such that

g ∗ g2 ∗ |ktb − ksb|(z) ≤M‖ksb − ktb‖1, s, t ∈ I.

We can bound the left-hand side of (3.6) by (g∗(ktb−ksb))
2∗g(z). Using the inequality

(u ∗w)2 ≤ ‖w‖1(u2 ∗ |w|), which follows from the Cauchy–Schwarz inequality, we have

(g ∗ (ktb − ksb))
2 ∗ g(z) ≤ ‖ktb − ksb‖1g ∗ g2 ∗ |ktb − ksb|(z)

≤M‖ktb − ksb‖21

for s and t in I. This bound and (3.1) imply (3.6).

Let us now consider the case ν < 2. Inspecting the above arguments we see that

the desired (3.4) to (3.6) follow if we verify (3.4) and (3.8) in the present case. Note

that now ḡ = g1(0,z) is square-integrable. The integral in (3.4) is bounded by

Γz(0, z∗)

Z z∗

0
g2(y) dy + Γ (z∗, z)

Z z

z∗

g(z − y)g(y) dy

with z∗ = z/2. This proves (3.4). We have

sup
|v|<δ

sup
z−δ<y<z

|g(y − v)− g(y)| ≤ 2Γ (z − 2δ, z + δ).

For |v| < δ, we can bound the integral in (3.8) by the sum S(v) + S of

S(v) = Γz(−δ, z − δ)

Z z−δ

−δ
(g(y − v)− g(y))2 dy

≤ Γ (δ, z + δ)

Z
(ḡ(y − v)− ḡ(y))2 dy

and

S = (2Γ (z − 2δ, z + δ))2
Z z

z−δ
g(z − y) dy

≤ (2Γ (z − 2δ, z + δ))2‖h‖δβ .

Since ḡ is square-integrable, we have S(v) → 0 as v → 0 by (3.3). This yields (3.8). �
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Proof of Proposition 4. In view of Theorem 12.3 in Billingsley (1968) it suffices to

show

nb1−2βE[A2(g ∗ ksb)] = O(1) (3.9)

and

nb1−2βE[(A(g ∗ ktb)−A(g ∗ ksb))
2] ≤ B|t− s|2 (3.10)

for s and t in I = [l, r]. For this we show that there is a constant M such that

nE[A2(g ∗∆b)] ≤ b2β−1M(‖∆‖1 + ‖∆‖2)2 (3.11)

whenever ∆b(x) = ∆(x/b)/b for some bounded function ∆ with support in [−r, r]. In

view of (3.1) and (3.2), an application of this bound with ∆ = ks yields (3.9), and an

application with ∆ = kt − ks yields (3.10).

In view of (3.7), the left-hand side of (3.11) is bounded by

g ∗ (g ∗∆b)
2(z) =

Z
g(z − y)(g ∗∆b(y))

2 dy. (3.12)

Since ∆b has support contained in [−rb, rb], the function g∗∆b vanishes on (−∞,−rb].
For −rb < y < 2rb we use the bounds

(g ∗∆b)
2(y) =

“ Z rb

−rb
g(y − x)∆b(x) dx

”2

≤
Z rb

−rb
g(y − x) dx

Z rb

−rb
g(y − x)∆2

b(x) dx

and Z rb

−rb
g(y − x) dx ≤

Z 3rb

0
g(u) du ≤ ‖h‖(3rb)β

and obtain

J1 =

Z 2rb

−rb
g(z − y)(g ∗∆b(y))

2 dy

≤ Γz(−rb, 2rb)‖h‖(3rb)β
Z 2rb

−rb

Z rb

−rb
g(y − x)∆2

b(x) dx dy

≤ Γz(−rb, 2rb)‖h‖(3rb)β
Z 3rb

0
g(u) du

Z
∆2

b(x) dx

≤ Γz(−rb, 2rb)(‖h‖(3r)β)2b2β−1‖∆‖22.

For y > 2rb we use the bound

(g ∗∆b)
2(y) ≤ ‖∆b‖1

Z
g2(y − x)|∆b(x)| dx,

and for |v| < r and z∗ = z/2 we use the boundsZ z∗

rb
g(z − u− bv)g2(u) du ≤ Γz(0, z∗ + rb)‖h‖2

Z z∗

rb
β2u2β−2 du

≤ Γz(0, z∗ + rb)‖h‖2β2(rb)2β−1/(1− 2β)
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and Z z+rb

z∗

g(z − u− bv)g2(u) du ≤ Γ 2(z∗, z + rb)

and obtain

J2 =

Z z

2rb
g(z − y)(g ∗∆b(y))

2 dy

≤ ‖∆‖1
Z z

2rb
g(z − y)

Z
g2(y − bv)|∆(v)| dv

≤ ‖∆‖1
Z Z z+rb

rb
g(z − u− bv)g2(u) du|∆(v)| dv

≤ ‖∆‖21
“
Γ 2(z∗, z + rb) + Γz(0, z∗ + rb)‖h‖2β2(rb)2β−1/(1− 2β)

”
.

The bounds for J1 and J2 yield the desired (3.11). �

In the proof of the lemmas we repeatedly use the inequalities

(s+ t)γ ≤ sγ + tγ and tγ − sγ ≤ (t− s)γ , (3.13)

valid for 0 ≤ s < t and 0 < γ ≤ 1. Let

w(s) = β2(s(1− s))β−11[0 < s < 1].

Recall that α = min(1, β). It is easy to check that, for some c > 0,Z v

u
w(s) ds ≤ c(v − u)α, 0 < u < v < 1. (3.14)

In view of the representation (2.1) we can write p(z) = 2z2β−1q(z) with

q(z) =

Z 1/2

0
h(zβ(1− s)β)h(zβsβ)w(s) ds.

Thus the Hölder properties of p follow from those of q.

Proof of Lemma 1. Since h is of bounded variation, we may assume that h(y) =R
1[0 ≤ t ≤ y]ϕ(dt), where ϕ is the difference ϕ1 − ϕ2 of two finite measures. Write

µ = ϕ1 + ϕ2, and for 0 ≤ u ≤ v <∞ setZ v

u
r(t)µ(dt) =

Z
r(t)1[u < t ≤ v]µ(dt).

Then

|h(v)− h(u)| ≤
Z v

u
µ(dt). (3.15)

We can write

|q(z2)− q(z1)| ≤ ‖h‖
Z 1/2

0
|h(zβ

1 s
β)− h(zβ

2 s
β)|w(s) ds

+ ‖h‖
Z 1/2

0

˛̨̨
h(zβ

1 (1− s)β)− h(zβ
2 (1− s)β)

˛̨̨
w(s) ds.



13

Using the substitution u = 1− s and the identity w(s) = w(1− s), we see that

|q(z2)− q(z1)| ≤ ‖h‖
Z 1

0
|h(zβ

1 s
β)− h(zβ

2 s
β)|w(s) ds (3.16)

for 0 < z1 < z2. Using (3.15) and (3.14), we can bound the integral on the right-hand

side by Z Z (z2s)β

(z1s)β

µ(dt)w(s) ds =

Z zβ
2

0

Z tν/z1

tν/z2

w(s) ds µ(dt)

≤
Z zβ

2

0
c
“ tν
z1

− tν

z2

”α
µ(dt)

and thus obtain

|q(z2)− q(z1)| ≤ c‖h‖z−α
1 (z2 − z1)

αµ[0, zβ
2 ]

for 0 < z1 < z2. Since µ is a finite measure, this yields the desired result. �

Proof of Lemma 2. In view of Lemma 1 we may assume that β < 1. By assumption,

there is a positive δ < z/4 such that h(t) = 0 for all |t− zβ | < 2δβ . Let |yβ − zβ | < δβ

and η = δ/(zβ +δβ)ν . For 0 < s < η, we have |yβ(1−s)β −yβ | ≤ yβsβ < δβ by (3.13).

Thus the integrand in q(y) is zero for such s and we can write

q(y) =

Z 1/2

η
h(yβ(1− s)β)h(yβsβ)w(s) ds.

Let zβ − δβ < zβ
1 < zβ

2 < zβ + δβ . From (3.16) we obtain

|q(z1)− q(z2)| ≤ ‖h‖β2(η/2)β−1
Z 1

0
|h(zβ

1 s
β)− h(zβ

2 s
β)| ds.

With the help of (3.15) we find

Z 1

0
|h(zβ

1 s
β)− h(zβ

2 s
β)| ds ≤

Z 1

0

Z zβ
2 sβ

zβ
1 sβ

µ(dt) ds

≤
Z zβ

2

0

“ tν
z1

− tν

z2

”
µ(dt)

≤ z2 − z1
z1

µ(R).

This completes the proof. �

Proof of Lemma 3. From (3.16) we obtain

|q(z2)− q(z1)| ≤ ‖h‖Λ|zβ
2 − zβ

1 |
Z 1

0
sβw(s) ds

for 0 < z1 < z2. This is the desired result. �
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