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Abstract

We consider time series described by Markov chains that alternate
periodically between different transition distributions, with conditional
constraints involving unknown parameters. We obtain variance bounds
and characterize efficient estimators for these parameters. Efficient esti-
mators can be obtained as solutions of randomly weighted martingale
estimating equations. Our model includes alternating heteroskedas-
tic nonlinear autoregressive models whose innovations are martingale
increments, in other words, alternating quasi-likelihood models. We
consider in particular submodels of these in which the transition dis-
tributions do not alternate except for the conditional means and vari-
ances, and show that this information leads to better estimators for
the parameters.
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1 Introduction

Consider a time series that evolves in a periodically changing environment,
with observations on a smaller time scale. This can be modeled by a peri-
odic change in the transition distribution. Müller, Schick and Wefelmeyer
(2007, 2009) consider homoskedastic and heteroskedastic alternating linear
and nonlinear autoregression models with independent innovations. The as-
sumption of independent innovations is not always realistic, and typically not
made in the econometric literature. This is why we now consider, instead,
alternating Markov chains with conditional constraints, including alternat-
ing quasi-likelihood models and alternating (homoskedastic) nonlinear and
linear regression models with innovations depending on the past.

Specifically, let Xi, i ∈ Z, be a Markov chain of order p on an arbi-
trary state space. Assume that the chain alternates periodically between m
possibly different transition distributions with possibly different conditional
constraints. Here p is allowed to be larger than the length m of the period.
At time jm+k with j ∈ Z and k = 1, . . . ,m, the transition distribution from
Xjm+k−1 = x = (x1, . . . , xp) to Xjm+k = y is Qk(x, dy), with conditional
constraints

Qk(x, akϑ) = E(akϑ(Xjm+k−1, Xjm+k)|Xjm+k−1 = x) = 0, (1.1)

where Xi = (Xi−p+1, . . . , Xi) and akϑ(x, y) is a known q-dimensional vector
of functions involving an unknown d-dimensional parameter ϑ. We assume
that we have initial observations X−p+1, . . . , X0 and then observe n periods
X1, . . . , Xnm.

In Section 2 we characterize efficient estimators of general differentiable
vector-valued functionals of (Q1, . . . , Qk). In Section 3 we describe an ef-
ficient estimator for ϑ as the solution of a randomly weighted martingale
estimating equation. The weights involve estimators of conditional moments
of the time series. There is a large literature on such estimators, and we will
be brief here.

A special case of model (1.1) are alternating heteroskedastic nonlinear
autoregressive models whose innovations are martingale increments, which
we may also call alternating quasi-likelihood models. Here the state space is
the real line, and we have parametric models for the conditional means and
variances,

E(Xjm+k|Xjm+k−1) = rkϑ(Xjm+k−1), (1.2)

E((Xjm+k − rkϑ(Xjm+k−1))2|Xjm+k−1) = s2
kϑ(Xjm+k−1). (1.3)

Then (1.1) holds with

akϑ(x, y) =

(
y − rkϑ(x)

(y − rkϑ(x))2 − s2
kϑ(x)

)
. (1.4)
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This alternating quasi-likelihood model can also be written as the alternating
nonlinear and heteroskedastic autoregressive model

Xjm+k = rkϑ(Xjm+k−1) + skϑ(Xjm+k−1)εjm+k, j ∈ Z, k = 1, . . . ,m,

with innovations εjm+k that are martingale increments with conditional dis-
tribution of εjm+k given Xjm+k−1 = x of the form Tk(x, dy) and fulfilling
the conditional constraints

∫
Tk(x, dy)y = 0 and

∫
Tk(x, dy)y2 = 1. Then

the transition distribution from Xjm+k−1 = x to Xjm+k is given by

Qk(x, dy) =
1

skϑ(x)
Tk

(
x,
dy − rkϑ(x)

skϑ(x)

)
. (1.5)

Description (1.1) of the model is convenient if we make no structural as-
sumptions on Tk. However, if we have constraints on Tk for k = 1, . . . ,m,
the description (1.5) is more appropriate because the Tk appear explicitly
as “parameters” of the model. For non-alternating quasi-likelihood models,
Müller, Schick and Wefelmeyer (2011) consider constraints on the transi-
tion distribution T = T1 = · · · = Tk. Specifically they assume that the
conditional distribution T (x, dy) is symmetric about xp, or that it does not
depend on the last q arguments xp−q+1, . . . , xp. A degenerate case is q = p,
in which case T (x, dy) = T (dy), so the innovations are independent. For
efficient estimation of ϑ in the latter model see Drost, Klaassen and Werker
(1997). Koul and Schick (1997) treat the case with a constant scale function.

In Section 4 we use description (1.5) of the model to give another char-
acterization of efficient estimators for ϑ that covers constraints on the Tk.
For our alternating quasi-likelihood model, we are in particular interested
in the constraint that the conditional distribution of the innovations does
not alternate, Tk = T . We show that this contains information about ϑ.
An efficient estimator can now be constructed by the one-step (or Newton–
Raphson) improvement of a consistent initial estimator, for example a least
squares estimator. This method is useful for general semiparametric models.

2 Characterizing efficiency in the general model

Consider first the nonparametric alternating Markov chain model with pe-
riod m and transition distributions Qk(x, dy) of order p for k = 1, . . . ,m
about which we do not make any structural assumptions. It can be viewed
as a non-alternating m-dimensional Markov chain

Yj = (X(j−1)m+1, . . . , Xjm)>, j ∈ Z.

This is a homogeneous Markov chain of order c = dp/me. Its transition
distribution from Yj−c, . . . ,Yj−1 to Yj = (x1, . . . , xm)> depends only on
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the values of the last p components of the vector (Y>j−c, . . . ,Y
>
j−1)>, which

form the vector

Xj−1 = (X(j−1)m−p+1, . . . , X(j−1)m)>.

Setting xk−1 = (xk−p, . . . , xk−1), it is given by

Q(x0, dx1, . . . , dxm) = Q1⊗· · ·⊗Qm(x0, dx1, . . . , dxm) =
m∏
k=1

Qk(xk−1, dxk).

We observe X0,Y1, . . . ,Yn. Assume that Yj , j ∈ Z, is strictly stationary
and positive Harris recurrent. Write Qk(x, v) =

∫
Qk(x, dy)v(x, y) for the

conditional expectation of a random variable v(Xk−1, Xk) given Xk−1 = x.
When the argument x is omitted, we use the abbreviation Qkv = Qk(·, v).
Let Gk−1 denote the joint law of Xk−1. Then Gk−1 ⊗ Qk is the stationary
law of (Xk−1, Xk).

The nonparametric model is locally asymptotically normal in the follow-
ing sense. Fix ϑ and Q = Q1 ⊗ · · · ⊗Qm. For k = 1, . . . ,m introduce

Hk = {vk ∈ L2(Gk−1 ⊗Qk) : Qkvk = 0}.

For vk ∈ Hk choose Hellinger differentiable perturbations Qknvk of Qk∫∫
n
((dQknvk(x, ·)

dQk(x, ·)
(y)
)1/2
−1− 1

2
n−1/2vk(x, y)

)2
Gk−1(dx)Qk(x, dy)→ 0.

Since Qknvk must be a conditional distribution, we must have Qkvk = 0. It
follows that the local parameter space of the nonparametric model is H =
H1×· · ·×Hm. Write Pn and Pnv for the joint law of (X0,Y1, . . . ,Yn) under
Q and Qnv = Q1nv1⊗· · ·⊗Qmnvm , respectively. As in Penev (1991), Höpfner
et al. (1990) and Höpfner (1993) we obtain local asymptotic normality for
v = (v1, . . . , vm) ∈ H,

log
dPnv

dPn
= n−1/2

n∑
j=1

m∑
k=1

vk(Xjm+k−1, Xjm+k)− 1

2
‖v‖2 + oPn(1),

n−1/2
n∑

j=1

m∑
k=1

vk(Xjm+k−1, Xjm+k)⇒ ‖v‖N under Pn,

where N is a standard normal random variable and

‖v‖2 =

m∑
k=1

Gk−1 ⊗Qkv
2
k.
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Here we have used that v1(X0, X1), . . . , vm(Xm−1, Xm) are martingale in-
crements and therefore orthogonal. The norm ‖v‖ induces on H an inner
product

(v, v′) =
m∑
k=1

Gk−1 ⊗Qk(vkv
′
k).

This inner product determines how difficult it is, asymptotically, to distin-
guish between Q and Qnv on the basis of observations X0,Y1, . . . ,Yn.

Consider now the submodel with conditional constraints (1.1). They can
be written

Qk(x, akϑ) =

∫
Qk(x, dy)akϑ(x, y) = 0, k = 1, . . . ,m.

They must also hold for the perturbed transition distribution Qnv = Q1nv1⊗
· · · ⊗ Qmnvm , possibly with perturbed parameter, say ϑnu = ϑ + n−1/2u +
o(n−1/2) for some u ∈ Rd. Under appropriate differentiability conditions on
akϑ with respect to ϑ, we obtain the pointwise expansion

0 = Qknvkakϑnu = Qkakϑ + n−1/2
(
Qk(akϑvk) + (Qkȧkϑ)u

)
+ o(n−1/2),

where ȧkϑ is the q× d matrix of partial derivatives of akϑ with respect to ϑ.
Hence the perturbation vk must be in the affine space

Vku = {vk ∈ Hk : Qk(akϑvk) + (Qkȧkϑ)u = 0}.

Set Vu = V1u × · · · × Vmu. The local parameter space of the constrained
alternating Markov chain model is the union V of the sets Vu, u ∈ Rp. In
model (1.1), we can now characterize efficient estimators of finite-dimensional
functionals of Q as follows, using results originally due to Hájek and Le Cam,
for which we refer to Theorem 2 in Section 3.3 of the monograph by Bickel
et al. (1998). Note that this theorem holds for general locally asymptotically
normal models even though it is stated only for the i.i.d. case.

A d-dimensional functional ϕ(Q) is called differentiable at Q with gra-
dient g if g = (g1, . . . , gm) ∈ Hd = (H1 × · · · ×Hm)d and

n1/2(ϕ(Qnv)−ϕ(Q))→ (g, v) =
m∑
k=1

Gk−1⊗Qk(gkvk), v = (v1, . . . , vm) ∈ V.

We always regard an element in Hd = (H1 × · · · ×Hm)d as a d×m matrix.
The canonical gradient g∗ is the componentwise projection of g onto V d. An
estimator ϕ̂ is called regular for ϕ at Q with limit L if L is a d-dimensional
random vector such that

n1/2(ϕ̂− ϕ(Qnv))⇒ L under Pnv, v ∈ V.
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The convolution theorem says that if ϕ̂ is regular for ϕ at Q with limit L,
then

L = (g∗, g∗>)1/2N +M in distribution,

where N is a d-dimensional standard normal random vector and M a random
vector independent of N . This justifies calling a regular estimator efficient
for ϕ if its limit is

L = (g∗, g∗>)1/2N in distribution.

Its asymptotic covariance matrix is (g∗, g∗>). An estimator ϕ̂ is called
asymptotically linear for ϕ at Q with influence function f if f = (f1, . . . , fm)
belongs to Hd and

n1/2(ϕ̂− ϕ(Q)) = n−1/2
n∑

j=1

m∑
k=1

fk(Xjm+k−1, Xjm+k) + oPn(1).

Such an estimator is asymptotically normal with covariance matrix

m∑
k=1

Gk−1 ⊗Qk(fkf
>
k ).

By Theorem 2 of Bickel et al. (1998) mentioned above, we have the following
two characterizations.

1. An asymptotically linear estimator is regular for ϕ at Q if and only if
its influence function is a gradient for ϕ at Q.

2. An estimator is regular and efficient for ϕ at Q if and only if it is
asymptotically linear with influence function equal to the canonical gra-
dient of ϕ at Q.

Now we apply these results to the parameter ϑ, considered as a functional
of the transition distribution by setting ϕ(Q) = ϑ if Qkakϑ = 0 for k =
1, . . . ,m. We have

n1/2(ϕ(Qnv)− ϕ(Q)) = n1/2(ϑnu − ϑ) + o(1)→ u, v ∈ Vu.

The canonical gradient of ϑ is therefore characterized as the vector g∗ =
(g∗1, . . . , g

∗
m) ∈ V d for which

(g∗, v) =

m∑
k=1

Gk−1 ⊗Qk(g∗kvk) = u, v ∈ Vu.
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We now prove that g∗ = J−1λ with λ = (λ1, . . . , λm) and J =
∑m

k=1 Jk,
where

λk(xk−1, xk) = −Qk(xk, ȧ
>
kϑ)Qk(xk, akϑa

>
kϑ)−1akϑ(xk−1, xk),

Jk = Gk−1 ⊗Qk(λkλ
>
k ) = Gk−1

(
Qkȧ

>
kϑQk(akϑa

>
kϑ)−1Qkȧkϑ

)
.

For the proof note first that Qk(akϑλ
>
k ) = −Qkȧkϑ. This means that the i-th

row of λ is in Vei , where ei denotes the i-th d-dimensional unit vector. We
obtain Qk(akϑλ

>
k )J−1 = −QkȧkϑJ

−1. Hence the i-th row of g∗ = J−1λ is in

Vui , where ui denotes the i-th column of J−1. Hence g∗ is in V d. Finally,
for v ∈ Vu we have

(g∗, v) =
m∑
k=1

Gk−1 ⊗Qk(g∗kvk) = J−1
m∑
k=1

Gk−1 ⊗Qk(λkvk)

= −J−1
m∑
k=1

Qkȧ
>
kϑQk(akϑa

>
kϑ)−1Qk(akϑvk) = J−1

m∑
k=1

Jku = u.

Hence g∗ = J−1λ is the canonical gradient of ϑ.

It follows that an efficient estimator ϑ̂ of ϑ has the asymptotic expansion

n1/2(ϑ̂− ϑ) = n−1/2
n∑

j=1

m∑
k=1

g∗k(Xjm+k−1, Xjm+k) + oPn(1)

= J−1n−1/2
n∑

j=1

m∑
k=1

λk(Xjm+k−1, Xjm+k) + oPn(1)

and asymptotic covariance matrix

(g∗, g∗>) = J−1
m∑
k=1

Gk−1 ⊗Qk(λkλ
>
k )J−1 = J−1.

3 Estimators in the general model

For q = d, a simple estimator of ϑ is the least squares estimator ϑ̂LS , which
we define as a solution of the d-dimensional martingale estimating equation

n∑
j=1

m∑
k=1

akϑ(Xjm+k−1, Xjm+k) = 0.
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For arbitrary q, we define weighted least squares estimators ϑ̂WLS as solutions
of the martingale estimating equations of the form

n∑
j=1

m∑
k=1

W>kϑ(Xjm+k−1)akϑ(Xjm+k−1, Xjm+k) = 0,

where Wkϑ is a q×d matrix of weight functions. Under appropriate differen-
tiability assumptions on akϑ with respect to ϑ, the asymptotic distribution
of ϑ̂WLS is obtained from a Taylor expansion

0 =
1

n

n∑
j=1

m∑
k=1

W>kϑ(Xjm+k−1)akϑ(Xjm+k−1, Xjm+k)

+
1

n

n∑
j=1

m∑
k=1

W>kϑ(Xjm+k−1)ȧkϑ(Xjm+k−1, Xjm+k)(ϑ̂WLS − ϑ)

+ oPn(n−1/2).

If the matrixMϑ =
∑m

k=1Gk−1(W>kϑQkȧkϑ) is invertible, we can rewrite the
stochastic expansion as

n1/2(ϑ̂WLS − ϑ)

= −M−1
ϑ n−1/2

n∑
j=1

m∑
k=1

W>kϑ(Xjm+k−1)akϑ(Xjm+k−1, Xjm+k) + oPn(1).

Hence ϑ̂WLS is asymptotically linear with influence function f = (f1, . . . , fm)
given by

fk(xk−1, xk) = −
( m∑

k=1

Gk−1(W>kϑQkȧkϑ)
)−1

W>kϑ(xk−1)akϑ(xk−1, xk).

The asymptotic covariance matrix is

M−1
ϑ

m∑
k=1

Gk−1(W>kϑQk(akϑa
>
kϑ)Wkϑ)M−1

ϑ .

By the Cauchy–Schwarz inequality, the optimal weights are

Wkϑ = W ∗kϑ = Qk(akϑa
>
kϑ)−1Qkȧkϑ.

For these weights, the asymptotic covariance matrix becomes J−1 with J
defined in Section 2. The weights W ∗kϑ depend on the unknown transition
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distributions Qk. In order to make the corresponding estimating equation
meaningful, the weights must be replaced by estimators, say Ŵ ∗kϑ. If the
state space is R, such estimators are obtained by replacing the conditional
expectations Qk(x, akϑa

>
kϑ) and Qk(x, ȧkϑ) appearing in W ∗kϑ(x) by modified

versions of Nadaraya–Watson estimators

Q̂k(x, akϑa
>
kϑ) =

∑n
i=1Kb(x−Xim+k−1)akϑ(x, Xim+k)a>kϑ(x, Xim+k)∑n

i=1Kb(x−Xim+k−1)
,

Q̂k(x, ȧkϑ) =

∑n
i=1Kb(x−Xim+k−1)ȧkϑ(x,Xim+k)∑n

i=1Kb(x−Xim+k−1)
,

where Kb(x) = K(x1/b, . . . , xp/b) with p-dimensional kernel K and band-
width b = bn → 0. Such modifications may be necessitated by technical
considerations. Nadaraya-Watson estimators typically perform poorly at
points x at which the density of Xk−1 is close to zero. Thus one may be
forced to to exclude such points. This can be achieved by replacing the
conditional expectations Q̂k(x, h) by the density weighted versions

Q̂k(x, h)1
[ n∑

i=1

Kb(x−Xim+k−1) > ηnbp
]

with η = ηn slowly tending to zero.
An optimally weighted least squares estimator ϑ̂∗ is then obtained as a

solution of
n∑

j=1

m∑
k=1

Ŵ ∗>kϑ (Xjm+k−1)akϑ(Xjm+k−1, Xjm+k) = 0. (3.1)

Under appropriate conditions, the stochastic expansion of ϑ̂∗ is not changed
when the weights W ∗kϑ are replaced by the estimators Ŵ ∗kϑ. It follows that

the influence function of ϑ̂∗ equals the canonical gradient g∗ = J−1λ of ϑ.
Hence ϑ̂∗ is efficient.

Remark. In particular, for q = d, the least squares estimator ϑ̂LS , with
weights Wk given by the d× d unit matrix, is also asymptotically linear. Its
influence function is fLS = (fLS1 , . . . , fLSm ) with

fLSk (xk−1, xk) = −
( m∑

k=1

Gk−1 ⊗Qkȧkϑ

)−1
akϑ(xk−1, xk),

and its asymptotic covariance matrix is( m∑
k=1

Gk−1 ⊗Qkȧkϑ

)−1
m∑
k=1

Gk−1 ⊗Qk(akϑa
>
kϑ)
( m∑

k=1

Gk−1 ⊗Qkȧkϑ

)−1
.
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It is straightforward to check that fLS − g∗ and g∗ are uncorrelated,

(fLS , g∗>) =
m∑
k=1

Gk−1 ⊗Qk(fLSk g∗>k ) = J−1 = (g∗, g∗>).

Hence the difference between the asymptotic covariance matrices of ϑ̂LS and
ϑ̂∗ is nonnegative and equals

(fLS − g∗, (fLS − g∗)>) = (fLS − g∗, fLS>).

It follows that the optimally weighted least squares estimator ϑ̂∗ is strictly
better than ϑ̂LS unless fLS = g∗.

4 Characterizing efficiency in quasi-likelihood
models

Now we consider the alternating nonlinear and heteroskedastic autoregres-
sive model

Xjm+k = rkϑ(Xjm+k−1) + skϑ(Xjm+k−1)εjm+k, j ∈ Z, k = 1, . . . ,m.
(4.1)

We assume that the distribution Tk(x, dy) of εjm+k given Xjm+k−1 = x
fulfills Tk(x, e) = 0 and Tk(x, e2) = 1, where e(y) = y is the identity on
R. In Section 2 we have shown local asymptotic normality for alternating
Markov chain models with conditional constraints (1.1). For the special case
of an alternating quasi-likelihood model (4.1) we now give a different proof,
using the parametrization by ϑ and Tk. As noted, this will allow us to treat
constraints on the Tk, in particular the special constraint T1 = · · · = Tm = T .

Fix ϑ and T = (T1, . . . , Tm). Assume that Yj = (X(j−1)m+1, . . . , Xjm)>,
j ∈ Z, is strictly stationary and positive Harris recurrent. Following Müller
et al. (2011), we make the following assumptions on rkϑ, skϑ and T.

Assumption 1 For k = 1, . . . ,m there are Gk−1-square-integrable func-
tions ṙk = ṙkϑ and ṡk = ṡkϑ such that, for each constant C, the quantities

sup
‖∆‖≤Cn−1/2

n∑
j=1

(
rk,ϑ+∆(Xjm+k−1)− rkϑ(Xjm+k−1)−∆>ṙk(Xjm+k−1)

)2

and

sup
‖∆‖≤Cn−1/2

n∑
j=1

(
sk,ϑ+∆(Xjm+k−1)− skϑ(Xjm+k−1)−∆>ṡk(Xjm+k−1)

)2

are of order oPn(1), and the function skϑ is bounded away from zero locally
uniformly in ϑ.
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Assumption 2 For k = 1, . . . ,m and each x, the conditional distribution
Tk(x, dy) has a positive and absolutely continuous density tk(x, y), and E[ε4

k]
and E[`2k1(Xk−1, εk)(1 + ε2

k)] are finite, where `k1(x, y) = −t′k(x, y)/tk(x, y),
with derivative taken with respect to y.

Since the Tk have densities, the Gk−1 also have densities, say gk−1. In-
troduce perturbations ϑnu = ϑ + n−1/2u with u ∈ Rd and tknvk(x, y) =

tk(x, y)(1 + n−1/2vk(x, y)) with vk a bounded measurable function on Rp+1.
The constraints Tk(x, 1) = 1, Tk(x, e) = 0, Tk(x, e2) = 1 must also hold for
Tk = Tknvk . We obtain

Tk(x, vk) = 0, Tk(x, vke) = 0, Tk(x, vke
2) = 0.

Let Vk denote the set of these vk. Write v = (v1, . . . , vm), V = V1×· · ·×Vm
and Tnv = (T1nv1 , . . . , Tmnvm). Suppose we observe X0,Y1, . . . ,Yn. Write
Pn and Pnuv for the joint law of the observations under (ϑ,T) and (ϑnu,Tnv),
respectively. Write g0nuv for the density of X0 under (ϑnu,Tnv). Then we
have local asymptotic normality as follows. The proof is similar to the proof
in Drost, Klaassen and Werker (1997), who treat the non-alternating case
and independent observations. For k = 1, . . . ,m set `k2(x, y) = `k1(x, y)y−1
and λk = (`k1, `k2)>, and define the d× 2 matrix

Mk(x) = Mkϑ(x) =
1

skϑ(x)
(ṙk(x), ṡk(x)).

Theorem 1 Let (u,v) ∈ Rd ×V. Suppose Assumptions 1 and 2 hold and
the stationary density g0 depends smoothly on the parameters in the sense
that

∫
|g0nuv(x)− g0(x)| dx→ 0. Then

log
dPnuv

dPn
= n−1/2

n∑
j=1

m∑
k=1

skuvk(Xjm+k−1, εjm+k)− 1

2
‖(u,v)‖2 + oPn(1),

(4.2)

n−1/2
n∑

j=1

m∑
k=1

skuvk(Xjm+k−1, εjm+k)⇒ ‖(u,v)‖N under Pn, (4.3)

where N is a standard normal random variable and

skuvk(Xk−1, εk) = u>Mk(Xk−1)λk(Xk−1, εk) + vk(Xk−1, εk),

‖(u,v)‖2 =
m∑
k=1

E[s2
kuvk

(Xk−1, εk)].
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Here we have used that s1uv1(X0, ε1), . . . , smuvm(Xm−1, εm) are uncor-
related. The norm ‖(u,v)‖ determines how difficult it is, asymptotically, to
distinguish between (ϑ, t) and (ϑnu, tnv) on the basis of the observations. It
induces an inner product

((u′,v′), (u,v)) =
m∑
k=1

E[sku′v′k(Xk−1, εk)skuvk(Xk−1, εk)].

Consider now a model for T. It is given by a family of vectors T of
conditional distributions T = (T1, . . . , Tm). Assume that the fixed T belongs
to T . Let W be the set of all v ∈ V such that Tnv lies in T . Assume that
W is a linear space, the local parameter space of T at T. Let V̄k denote the
closure of Vk in L2(Gk−1 ⊗ Tk), and set V̄ = V̄1 × · · · × V̄m. Let W̄ denote
the closure of W in V̄.

Definition 1 A real-valued functional ϕ of (ϑ, t) is called differentiable at
(ϑ, t) with gradient

∑m
k=1 skuϕvϕk

(Xk−1, εk) if (uϕ,vϕ) ∈ Rd × V̄ and

n1/2(ϕ(ϑnu, tnv)− ϕ(ϑ, t))→ ((uϕ,vϕ), (u,v)), (u,v) ∈ Rd ×W.

If vϕ = wϕ is in W̄, then suϕwϕ is called the canonical gradient of ϕ.

Definition 2 An estimator ϕ̂ of ϕ is called regular at (ϑ, t) with limit L if
L is a random variable such that

n1/2(ϕ̂− ϕ(ϑnu, tnv))⇒ L under Pnuv, (u,v) ∈ Rd ×W.

As in Section 2 we obtain from the convolution theorem that for such an
estimator, L = ‖(uϕ,wϕ)‖N+M in distribution, with M independent of N .

Definition 3 An estimator ϕ̂ of ϕ is called asymptotically linear at (ϑ, t)
with influence function

∑m
k=1 skuϕvϕk

(Xk−1, εk) if (uϕ,vϕ) ∈ Rd × V̄ and

n1/2(ϕ̂− ϕ(ϑ, t)) =
n∑

j=1

m∑
k=1

skuϕvϕk
(Xjm+k−1, εjm+k) + oPn(1).

As in Section 2, we have the following characterization: An estimator is reg-
ular and efficient if and only if it is asymptotically linear with influence func-
tion equal to the canonical gradient. We apply the theory to several models
T and to estimating ϑ, i.e., to the d-dimensional functional ϕ(ϑ, t) = ϑ.
Then differentiability of multivariate functionals ϕ and asymptotic linearity
of multivariate estimators ϕ̂ are understood componentwise. Regularity and
the convolution theorem have obvious multivariate versions. The character-
ization of efficient estimators is also meant componentwise.

First we consider the nonparametric model. This is a special case of the
model which was treated in Sections 2 and 3 by a different approach.



Efficient estimators for alternating quasi-likelihood models 13

4.1 Nonparametric model

Suppose we have no structural information on T1, . . . , Tm. Then W = V. In
order to calculate the canonical gradient of ϑ, we use the orthogonal decom-
position of skuvk described in Müller, Schick and Wefelmeyer (2011). From
Tk(x, 1) = 1 and Assumption 2 we obtain Tk(x, `k1e) = 1, Tk(x, `k1e

2) = 0,
Tk(x, `k1e

3) = 3. Setting ψ(y) = (y, y2 − 1)>, we have

Tk(x, ψλ>k ) =

(
1 0
0 2

)
.

We obtain

skuvk(Xk−1, εk) = u>Mk(Xk−1)A>k (Xk−1)ψ(εk) (4.4)

+u>Mk(Xk−1)λ∗k(Xk−1, εk) + vk(Xk−1, εk),

where the components of λ∗k(x, y) = λk(x, y)−A>k (x)ψ(y) are in Vk, and

Ak(x) = Tk(x, ψψ>)−1Tk(x, ψλ>k ) = ck(x)

(
Tk(x, e4)− 1 −2Tk(x, e3)
−Tk(x, e3) 2

)
with 1/ck(x) = detTk(x, ψψ>) = Tk(x, e4) − 1 − Tk(x, e3)2. The canonical
gradient of ϑ is then

Λ−1
m∑
k=1

Mk(Xk−1)A>k (Xk−1)ψ(εk),

where Λ =
∑m

k=1 Λk with Λk = E[ck(X)Mk(X)Bk(X)M>k (X)] and

Bk(x) =

(
Tk(x, e4)− 1 −2Tk(x, e3)
−2Tk(x, e3) 4

)
.

An efficient estimator ϑ̂ of ϑ is obtained as a solution of the estimating
equations

n∑
j=1

m∑
k=1

Mkϑ(Xjm+k−1)Ã>k (Xjm+k−1)ψ
(Xjm+k − rkϑ(Xjm+k−1)

skϑ(Xjm+k−1)

)
= 0.

Here Ãk(x) is an estimator of Ak(x) obtained by replacing the conditional
third and fourth moments Tk(x, ei), i = 3, 4, by potentially density weighted
versions of Nadaraya–Watson estimators

T̃k(x, ei) =

∑n
j=1Kb(x−Xjm+k−1)ε̃ijm+k∑n

j=1Kb(x−Xjm+k−1)
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with Kb(x) = K(x1/b, . . . , xp/b) for a p-dimensional kernel K and a band-
width b, based on residuals ε̃jm+k = (Xjm+k−rkϑ̃(Xjm+k−1))/skϑ̃(Xjm+k−1).

The estimator ϑ̃ can be any n1/2-consistent estimator of ϑ, for example the
least squares estimator, which solves the estimating equation

n∑
j=1

m∑
k=1

Mkϑ(Xjm+k−1)ψ
(Xjm+k − rkϑ(Xjm+k−1)

skϑ(Xjm+k−1)

)
= 0.

The asymptotic covariance matrix of ϑ̂ is Λ−1.
The efficient estimator ϑ̂ is asymptotically equivalent to the efficient

estimator ϑ̂∗ solving equation (3.1) of Section 3 when akϑ is given by (1.4).
For this akϑ we have

ȧk(x, y) = −
(

ṙk(x)
2ṙk(x)(y − rkϑ(x)) + 2ṡk(x)s2

kϑ(x)

)
.

Hence the optimal weights Ŵ ∗kϑ are estimators of W ∗kϑ = Qk(akϑa
>
kϑ)−1Qkȧkϑ

which now involve the two matrices of conditional expectations

Qk(x, akϑa
>
kϑ) =

(
s2
kϑ(x) Qk(x, (e− rkϑ(x))3)

Qk(x, (e− rkϑ(x))3) Qk(x, (e− rkϑ(x))4)− s4
kϑ(x)

)
,

Qk(x, ȧk) = −
(

ṙk(x)
2ṡk(x)s2

kϑ(x)

)
.

The centered conditional moments Qk(x, (e − rkϑ(x))i), i = 3, 4, can again
be estimated by potentially density weighted versions of Nadaraya–Watson
estimators.

4.2 Equal conditional innovation distributions

Suppose the conditional distributions of the innovations εk given Xk−1 are
known to be equal, T1 = · · · = Tm = T . Then T = (T, . . . , T ). A perturba-

tion of the density t of T is of the form tnv(x, y) = t(x, y)(1 + n−1/2v(x, y)),
where v belongs to the set V of bounded measurable functions on Rp+1 such
that T (x, v) = 0, T (x, ve) = 0, T (x, ve2) = 0. The local parameter space W
of T now consists of the vectors w = (v, . . . , v) with v ∈ V . Set `1(x, y) =
−t′(x, y)/t(x, y), `2(x, y) = `1(x, y)y−1 and λ = (`1, `2)>. Local asymptotic
normality (4.2), (4.3) now holds with vk = v and v = w = (v, . . . , v), and
with λk = λ. The decomposition (4.4) reduces to

skuvk(Xk−1, εk) = u>Mk(Xk−1)A>(Xk−1)ψ(εk) (4.5)

+u>Mk(Xk−1)λ∗(Xk−1, εk) + v(Xk−1, εk),
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where the two components of λ∗(x, y) = λ(x, y)−A>(x)ψ(y) are in V , and

A(x) = T (x, ψψ>)−1T (x, ψλ>) = c(x)

(
T (x, e4)− 1 −2T (x, e3)
−T (x, e3) 2

)
with 1/c(x) = detT (x, ψψ>) = T (x, e4) − 1 − T (x, e3)2. However, the d-
dimensional functions Mk(x)λ∗(x, y) still depend on k. This yields that
(M1(x)λ∗(x, y), . . . ,Mm(x)λ∗(x, y)) is not in W̄d. The row-wise projection
onto W̄d is (M∗(x)λ∗(x, y), . . . ,M∗(x)λ∗(x, y)) with

M∗(x) =
1

m

m∑
k=1

Mk(x).

We arrive at the orthogonal decomposition

skuvk(Xk−1, εk) = u>s∗k(Xk−1, εk)+u>M∗(Xk−1)λ∗(Xk−1, εk)+v(Xk−1, εk)

with
s∗k(x, y) = Mk(x)A>(x)ψ(y) + (Mk(x)−M∗(x))λ∗(x, y)

= Mk(x)λ(x, y)−M∗(x)λ∗(x, y).

Hence the canonical gradient of ϑ is Λ−1
∗
∑m

k=1 s
∗
k(Xk−1, εk) with Λ∗ =∑m

k=1 Λ∗k and Λ∗k = E[s∗k(Xk−1, εk)s∗>k (Xk−1, εk)], which computes to

Λk + E[(Mk(Xk−1)−M∗(Xk−1))J∗(Xk−1)(Mk(Xk−1)−M∗(Xk−1))>].

Here we have used T (x, λ∗ψ
>) = 0, and we have set

J∗(x) = T (x, λ∗λ
>
∗ )

= T (x, λλ>)−A>(x)T (x, ψλ>)− T (x, λψ>)A(x)

+A>(x)T (x, ψψ>)A(x)

= T (x, λλ>)− c(x)

(
T (x, e4)− 1 −2T (x, e3)
−2T (x, e3) 4

)
.

The canonical gradient of ϑ now involves the score functions `1(x, y) =
−t′(x, y)/t(x, y) and `2(x, y) = `1(x, y)y − 1 for (conditional) location and
scale of T (x, dy). This makes it difficult to estimate ϑ by an estimating
equation. We can follow Müller et al. (2007) and construct an efficient

estimator as one-step improvement of a consistent initial estimator ϑ̃,

ϑ̂∗ = ϑ̃+ Λ̃−1
∗

1

n

n∑
j=1

m∑
k=1

s̃∗k(Xjm+k−1, ε̃jm+k),
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The right-hand side requires estimators for `1 and `2 and for the conditional
moments T (x, ei), i = 3, 4. An estimator for `1 is t̃′/t̃, where t̃ is a kernel
estimator based on (Xi, ε̃i), i = 1, . . . , nm, with residuals ε̃jm+k = (Xjm+k−
rkϑ̃(Xjm+k−1))/skϑ̃(Xjm+k−1), j = 1, . . . , n, k = 1, . . . ,m. The conditional

moments can be estimated by plugging t̃ into T (x, ei) =
∫
t(x, y)yi dy, or

by potentially density weighted Nadaraya–Watson estimators based on the
residuals.

When we know that T1 = · · · = Tm, then the asymptotic covariance
matrix of an efficient estimator of ϑ is Λ−1

∗ . This is strictly smaller than
the smallest asymptotic covariance matrix Λ−1 of estimators that do not use
this information, unless Λ∗k = Λk for k = 1, . . . ,m, or equivalently, unless

E
[(
Mk(Xk−1)−M∗(Xk−1)

)(
Mk(Xk−1)−M∗(Xk−1)

)>]
= 0, k = 1, . . . ,m.

This may happen in degenerate cases only.
One is that J∗ = 0. This is the case if T (x, ·) is standard normal, which

means that the innovations εi are independent and standard normal. Then
`1(x, y) = y, so λ = ψ and hence T (x, ψψ>) = T (x, ψλ>), which implies
that A is the 2× 2 identity matrix. Then λ∗ = 0 and therefore J∗ = 0.

Another degenerate case is that Mk − M∗ = 0 for k = 1, . . . ,m, i.e.
M1ϑ = · · · = Mmϑ, so ṙkϑ/skϑ and ṡkϑ/skϑ do not depend on k. This
happens of course when the time series is not alternating. It can also happen
for alternating time series, for example when the conditional variances s2

kϑ of
the innovations do not depend on ϑ, so ṡkϑ = 0; and the conditional means
do not alternate, r1ϑ = · · · = rmϑ.
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