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Ursula U. Müllera∗ , Anton Schickb and Wolfgang Wefelmeyerc

aDepartment of Statistics, Texas A&M University, College Station, TX
77843-3143, USA; bDepartment of Mathematical Sciences, Binghamton
University, Binghamton, NY 13902-6000, USA; cMathematical Institute,

University of Cologne, 50931 Cologne, Germany

(Received ; final version received )

The usual estimator for the expectation of a function of a random vector is the
empirical estimator. Assume that some of the components of the random vector
are conditionally independent given the other components. We construct a
plug-in estimator for the expectation that uses this information, prove a central
limit theorem for the estimator, and show that the estimator is asymptotically
efficient in the sense of a nonparametric version of the convolution theorem of
Hájek and Le Cam.
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1. Introduction

We want to estimate an expectation E[f(X)] from independent copies X1, . . . , Xn of
X. The usual estimator is the empirical estimator Ef = (1/n)

∑n
j=1 f(Xj). If we can

decompose Xj into d independent components Xj = (X1j , . . . , Xdj), then an improved
estimator of E[f(X)] is the von Mises statistic

M =
1
nd

n∑
j1=1

· · ·
n∑

jd=1

f(X1j1 , · · · , Xdjd).
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This estimator is the empirical estimator∫
. . .

∫
f(x1, . . . , xd)P1(dx1) · · ·Pd(dxd)

based on the marginal empirical distributions Pi(A) = (1/n)
∑n

j=1 1(Xij ∈ A) for i =
1, . . . , d. It makes use of the independence of the components of Xj and has a smaller
variance than the empirical estimator Ef . The von Mises statistic (or V -statistic) can
be viewed as a special case of a generalized U -statistic; see e.g. Serfling (1980, sec. 5.1.2
and sec. 5.1.3.).

In this paper we consider an intermediate estimation problem that has not been treated
in the literature before: We do not have independent components, but some of the com-
ponents are conditionally independent given the other components.

Two potential applications show why this problem is of interest. Firstly, we can have
conditional independence in regression models. Suppose the outcome is Y , and the co-
variates are X and Z. Assume that the covariate X is sufficient for predicting Y in
the sense that the conditional distribution of Y given (X,Z) does not depend on Z. See
Causeur and Dhorne (2003) for maximum likelihood estimation in this model. The model
is equivalent to the conditional independence of Y and Z given X.

Another application are graphical models. Then the joint density of a random vector
(X1, . . . , Xd) is expressed as a product of the one-dimensional marginal density of the first
component and d−1 one-dimensional conditional densities of the remaining components
of the vector given the first component. We refer to Lauritzen (1996) or Pearl (2000) for
graphical models and causal inference.

The problem of testing for conditional independence has been treated before. The
techniques are different. We refer to unpublished papers by Linton and Gozalo (1999) and
Fernandes and Flôres (1999), and to Delgado and González Manteiga (2001), Delgado,
Domı́nguez and Lavergne (2006), Su and White (2007, 2008), and Huang (2010).

For notational simplicity we will restrict attention to the simplest situation, in which
we assume that W1, . . . ,Wn are independent copies of a three-dimensional random vector
W = (X,Y, Z), and Y and Z are conditionally independent given X. How can we use this
information for estimating an expectation E[f(W )]? We assume that W has a density
p(x, y, z). Then X, (X,Y ) and (X,Z) also have densities, say m(x), s(x, y) and t(x, z),
respectively, and the conditional densities of Y given X and of Z given X are

q(y|x) =
s(x, y)
m(x)

, r(z|x) =
t(x, z)
m(x)

, (1.1)

respectively. The conditional independence of Y and Z given X means that the condi-
tional density of (Y,Z) given X factors as c(y, z|x) = q(y|x)r(z|x). We can therefore
express the expectation E[f(W )] as

E[f(W )] =
∫∫∫

f(x, y, z)q(y|x)r(z|x)m(x) dy dz dx

=
∫∫∫

f(x, y, z)
s(x, y)t(x, z)

m(x)
dx dy dz.

We estimate E[f(W )] by plugging kernel estimators m̂, ŝ, t̂ for m, s, t into this expression.
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Our main result is Theorem 2.1. It shows that the plug-in estimator

T =
∫∫∫

f(x, y, z)
ŝ(x, y)t̂(x, z)

m̂(x)
dx dy dz (1.2)

converges at the rate n−1/2 and is asymptotically normal. In Section 3 we prove that
our estimator is also asymptotically efficient. The asymptotic distribution of our esti-
mator will be unchanged if we use spline estimators or series estimators in place of the
kernel estimators; see Masri and Redner (2005) and Efromovich (1999) for convergence
results on such estimators. One could also use two Nadaraya–Watson estimators for con-
ditional expectations, or estimate the conditional densities q(y|x) and r(z|x) directly; see
Efromovich (2005, 2010) for such estimators.

If Y and Z are known to be independent, not just conditionally independent given X,
and f(x, y, z) does not depend on x, i.e., f(x, y, z) = g(y, z), then an efficient estimator
of E[g(Y,Z)] is the von Mises statistic (1/n2)

∑n
i=1

∑n
j=1 g(Yi, Zj). An example is P (Y <

Z). Suppose now that f(x, y, z) also depends on x. If Y and Z are again independent, with
densities ϕ and φ, and ρ(·|y, z) denotes the conditional density of X given (Y, Z) = (y, z),
then we can write E[f(X,Y, Z)] =

∫∫∫
f(x, y, z)ϕ(y)φ(z)ρ(x|y, z) dx dy dz and obtain an

efficient estimator of E[f(X,Y, Z)] by plugging in estimators for ϕ, φ and ρ. The proof
would be similar to that for our estimator T given above.

In order to describe the asymptotic variance of our estimator, we write conditional
expectations as

Qf(X,Z) = E(f(X,Y, Z)|X,Z) =
∫
f(X, y, Z)q(y|X) dy,

Rf(X,Y ) = E(f(X,Y, Z)|X,Y ) =
∫
f(X,Y, z)r(z|X) dz,

RQf(X) = E(f(X,Y, Z)|X) =
∫∫

f(X, y, z)q(y|X)r(z|X) dy dz.

Our Theorem 2.1 implies that the estimator T obeys the expansion

T =
1
n

n∑
j=1

(
Rf(Xj , Yj) +Qf(Xj , Zj)−RQf(Xj)

)
+ op(n−1/2).

By the central limit theorem, the standardized estimator n1/2(T−E[f(W )]) converges to
a centered normal distribution. The variance of this distribution is called the asymptotic
variance of T; it is equal to

E
[(
Rf(X,Y ) +Qf(X,Z)−RQf(X)− E[f(W )]

)2]
= E

[(
Rf(X,Y )−RQf(X)

)2]+ E
[(
Qf(X,Z)−RQf(X)

)2]+ Var(RQf(X)).

It is smaller than the asymptotic variance E[(f(W ) − E[f(W )])2] of the empirical esti-
mator by the amount

E
[(
f(X,Y, Z)−Rf(X,Y )−Qf(X,Z) +RQf(X)

)2]
,
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which is nonzero except when f(x, y, z) does not depend on both y and z. We shall
now show, by means of two examples, that this amount can be a substantial fraction of
asymptotic variance of the empirical estimator.

Let us first consider estimation of P (Y < Z). Our estimator is

T =
∫ β

α

∫∫
y<z

ŝ(x, y)t̂(x, z)
m̂(x)

dy dz dx,

where [α, β] is the support of X. Here we have Qf(X,Z) = F (Z|X) and Rf(X,Y ) =
1 − G(Y |X) with G(y|x) = P (Z ≤ y|X = x) and F (z|x) = P (Y ≤ z|X = x), and
RQf(X) = P (Y < Z|X). In particular, if the conditional distribution functions F and
G are identical, then conditionally given X, both 1−G(Y |X) and F (Z|X) have a uniform
distribution and are independent. Moreover, we have the identity P (Y < Z) = P (Y <
Z|X) = 1/2, and we find that our estimator has asymptotic variance 1/6. In contrast,
the asymptotic variance of the empirical estimator is 1/4. The reduction amount is 1/12
and equals 1/3 of the asymptotic variance of the empirical estimator.

Next we look at estimating H(y, z) = P (Y ≤ y, Z ≤ z) for fixed reals y and
z. The asymptotic variance of the empirical estimator is H(y, z)(1 − H(y, z)). We
have Rf(X,Y ) = 1[Y ≤ y]G(z|X), Qf(X,Z) = F (y|X)1[Z ≤ z] and RQf(X) =
F (y|X)G(z|X). The reduction amount simplifies to E[(F (y|X) − F 2(y|X))(G(z|X) −
G2(z|X))]. If F (y|X) = D(y/u(X)) and G(z|X) = D(z/v(X)) for a distribution func-
tion D and positive functions u and v, then the reduction amount for y = z = 0 becomes
(D(0) − D2(0))2. For D(0) = 1/2 the reduction amount is 1/16. This is 1/3 of the
asymptotic variance of the empirical estimator. The latter is 3/16 as H(0, 0) equals 1/4.

In the following table we list values of the relative reduction amount

%(y, z) =
E[(F (y|X)− F 2(y|X))(G(z|X)−G2(z|X))]

H(y, z)−H2(y, z)

for selected values of y and z with F (y|X) = Φ(y −X) and G(z|X) = Φ(z −X2), and
with X having a uniform distribution on [−1, 1]. Here Φ denotes the standard normal
distribution function. These values were obtained by numerical integration using the
function integrate in R. As can be seen, the improvements can be astonishingly large.

Table 1. Relative reduction amounts %(x, y)

y\z -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5 0.83 0.77 0.67 0.54 0.38 0.24 0.13
-1.0 0.73 0.67 0.59 0.47 0.33 0.21 0.11
-0.5 0.59 0.55 0.48 0.39 0.28 0.18 0.09
0.0 0.43 0.41 0.37 0.31 0.24 0.16 0.09
0.5 0.29 0.27 0.25 0.22 0.18 0.13 0.08
1.0 0.16 0.16 0.15 0.14 0.13 0.10 0.07
1.5 0.08 0.08 0.08 0.08 0.08 0.07 0.06

Simulations in Section 4 for these two examples show that even for a rather small
sample size such as n = 30, our estimator substantially improves on the empirical esti-
mator. Furthermore, our estimators are fairly insensitive to the choice of bandwidth. The
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simulated relative reduction amounts of the mean squared error of our estimator in the
second example, over that of the empirical estimator, can even be considerably better
than those suggested by the theoretical values in Table 1.

The proofs of our results are carried out under the assumption that the density m
is quasi-uniform on some compact interval [α, β], which means that m is bounded and
bounded away from zero on that interval and vanishes outside the interval. This requires
the use of boundary-adjusted kernel estimators. We assume that s and t have continuous
second derivatives with certain moment conditions.

Often we do not know the boundary points α and β. They can however be estimated
at a good rate. We therefore expect the correspondingly adjusted estimator for E[f(W )]
to behave like T.

There is a large literature on “plug-in estimators”, i.e., estimators that involve integrat-
ing a density estimator. Our estimator T integrates over more than one density estimator,
and one of them is in the denominator. This makes the proof more involved. The proof
also requires convergence of the density estimators in weighted L1-norms. Such results
have been obtained before, but not for boundary-adjusted density estimators. We refer
to Schick and Wefelmeyer (2004, 2007) and to Müller, Schick and Wefelmeyer (2005).

Our method also shows that under the assumption of conditional independence of Y
and Z given X, an expectation E[f(X,Y, Z)] can be estimated even if only pairs (X,Y )
and (X,Z) are observed, for example

(X1, Y1), . . . , (Xn1 , Yn1) and (Xn1+1, Zn1+1), . . . , (Xn1+n2 , Zn1+n2).

Since in this case no observations on the triple (X,Y, Z) are available, the usual empirical
estimator cannot be computed for functions f(X,Y, Z) depending on both Y and Z.

Our paper is organized as follows. In Section 2 we introduce the boundary-adjusted
kernel density estimators for m, s and t used in the plug-in estimator. Their asymptotic
behavior in suitable norms is described in two lemmas in Section 5. The asymptotic
distribution of our plug-in estimator is given in Theorem 2.1. In Section 3 we prove that
the plug-in estimator is asymptotically efficient. The results of a simulation study are
discussed in Section 4. Section 5 contains the aforementioned lemmas and the proof of
Theorem 2.1.

2. Stochastic expansion of the plug-in estimator

Let W = (X,Y, Z) have distribution P . Suppose that Y and Z are conditionally inde-
pendent given X. Then the conditional distribution of (Y,Z) given X factors into the
conditional distributions of Y given X, and Z given X,

C(dy, dz|X) = Q(dy|X)R(dz|X).

With M denoting the distribution of X, we have

P (dx, dy, dz) = M(dx)Q(dy|x)R(dz|x).

We want to estimate an expectation E[f(W )] for a bounded function f . Assume that
X, Y , Z are real-valued, and that W has a density p. Then the distributions M , S, T of
X, (X,Y ), (X,Z) have densities m, s, t, respectively, and the conditional distributions
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Q, R have densities q(y|x) and r(z|x) as in (1.1), and we can estimate E[f(W )] by the
plug-in estimator (1.2).

We assume for simplicity that M is supported on a finite interval [α, β] and has a
density that is bounded away from zero on that interval. This will require modifications
of the density estimators near the boundary. The usual estimator would be

m̃(x) =
1
n

n∑
j=1

kb(x−Xj)

with kb(x) = k(x/b)/b for a bounded symmetric kernel k with support [−1, 1] and a
bandwidth b. This estimator is not suitable near the endpoints α and β. The literature
on boundary-adjusted density estimators is large. Here, however, we need convergence
in a weighted L1-norm, for which results are not available. For this reason we will state
and prove the required convergence results in two lemmas in Section 5, see Lemmas 5.1
and 5.2. They are perhaps not of separate interest. So we will consider only the simplest
choice. We use m̃ only on the interval [α+ b, β− b], take kernel estimators with one-sided
kernels at the endpoints α and β, and interpolate linearly on the two remaining intervals
(α, α+ b) and (β − b, β). The resulting estimator can be written

m̂(x) =


m̃α + x−α

b (m̃(α+ b)− m̃α), α ≤ x < α+ b,

m̃(x), α+ b ≤ x ≤ β − b,
m̃(β − b) + x−β+b

b (m̃β − m̃(β − b)), β − b < x ≤ β,

where

m̃α =
1
n

n∑
j=1

hb(Xj − α) and m̃β =
1
n

n∑
j=1

hb(β −Xj),

with hb(x) = h(x/b)/b and h a bounded kernel with support [0, 1] and
∫
xh(x) dx = 0.

We can write

m̂(x) =
1
n

n∑
j=1

Kb(x,Xj)

with

Kb(x, y) =


(
1− x−α

b

)
hb(y − α) + x−α

b kb(α+ b− y), α ≤ x < α+ b,

kb(x− y), α+ b ≤ x ≤ β − b,
β−x
b kb(β − b− y) +

(
1− β−x

b

)
hb(β − y), β − b < x ≤ β.

Similarly, for a bandwidth c and x ∈ [α, β] we estimate s(x, y) by

ŝ(x, y) =
1
n

n∑
j=1

Kb(x,Xj)kc(y − Yj),
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and t(x, z) by

t̂(x, z) =
1
n

n∑
j=1

Kb(x,Xj)kc(z − Zj).

For other boundary adjustments of density estimators we refer to Müller (1993), Müller
and Stadtmüller (1999), Masri and Redner (2005), Efromovich (2010), Marshall and
Hazelton (2010), and Bouezmarni and Rombouts (2010).

For η ≥ 0, we let Hη denote the set of measurable functions ψ on the strip S = [α, β]×R
which satisfy

‖ψ‖Hη = sup
α≤x≤β

∫
(1 + |y|)η|ψ(x, y)| dy <∞.

We now state our main result, Theorem 2.1. The assumptions are explained subsequently
in Remarks 1 and 2. It is straightforward to show that conditions (2.1)–(2.4) are satisfied
for smooth f ; they also cover discontinuous f .

Theorem 2.1 : Assume that the density m vanishes outside a finite interval [α, β] and
is positive on [α, β]. Suppose the densities s and t are twice continuously differentiable
on S with gradients ṡ and ṫ and Hessians s̈ and ẗ, respectively, and that s, t, ‖s̈‖2 and
‖ẗ‖2 belong to Hη for some η > 1. Let f be bounded by 1 and

E[(f(X + u, Y + v, Z + w)− f(X,Y, Z))2]→ 0 as u, v, w → 0 (2.1)

and, for Ib = 1[α+ 2b ≤ X ≤ β − 2b] and some ξ ∈ (2, 3],

E
[
Ib

∫∫
Rf(X + bu, Y + cv)k(u)k(v) du dv

]
= E[IbRf(X,Y )] +O(bξ + cξ), (2.2)

E
[
Ib

∫∫
Qf(X + bu, Z + cv)k(u)k(v) du dv

]
= E[IbQf(X,Y )] +O(bξ + cξ), (2.3)

E
[
Ib

∫∫
RQf(X + bu)k(u) du

]
= E[IbRQf(X)] +O(bξ). (2.4)

Let the bandwidths b and c satisfy nb2c2 →∞, nb2ξ → 0, and nc2ξ → 0. Then

T =
1
n

n∑
j=1

(
Rf(Xj , Yj) +Qf(Xj , Zj)−RQf(Xj)

)
+ op(n−1/2).

Remark 1: If the assumptions of Theorem 2.1 hold with ξ = 3, then the conclusion
of the theorem holds with c ∼ b ∼ n−1/5. For simplicity in notation we have used the
same bandwidth c for estimating s and t. Our results continue to hold if we use different
bandwidths, as long as these bandwidths are proportional to c with c as in the theorem.
We should also point out that the assumptions on s and t imply that the moments E[|Y |η]
and E[|Z|η] are finite for the η in the theorem.
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Remark 2: The conditions (2.2)–(2.4) typically require the use of higher-order kernels.
For example, consider (2.2). Assume that the functions

Fb(u, v) = E[IbRf(X + u, Y + v)] = E[Ibf(X + u, Y + v, Z)], |u| ≤ b, |v| ≤ c,

are twice differentiable and their derivatives of order 2 are Lipschitz, uniformly in b and
c for small positive b and c. Then the use of a kernel of order 3 yields (2.2) with ξ = 3.
(By kernel of order 3 we mean a (signed) kernel whose first two moments vanish and
whose third moment is non-zero.)

Example 2.2 Our plug-in estimator of P (Y < Z) is

T =
∫ β

α

∫∫
y<z

ŝ(x, y)t̂(x, z)
m̂(x)

dy dz dx.

In this case we have f(X,Y, Z) = 1[Y < Z], Rf(y, z) = 1−G(y|x) = P (Z > y|X = x),
Qf(x, z) = F (z|x) = P (Y < z|X = x) and RQf(x) = P (Y < Z|X = x) = H(x). Let
m, s and t satisfy the assumptions of Theorem 2.1 and assume furthermore that F and
G have bounded continuous partial derivatives of order three and that H has a bounded
third derivative. Then (2.2)–(2.4) hold with ξ = 3, provided k is of order 3, while (2.1)
holds trivially. Thus Theorem 2.1 yields the stochastic expansion

T =
1
n

n∑
j=1

(
P (Yj < Zj |Xj , Yj) + P (Yj < Zj |Xj , Zj)− P (Yj < Zj |Xj)

)
+ op(n−1/2).

Example 2.3 Our plug-in estimator of the joint distribution function

H(y0, z0) = P (Y ≤ y0, Z ≤ z0)

of Y and Z at a fixed point (y0, z0) is

T =
∫ β

α

∫ y0

−∞

∫ z0

−∞

ŝ(x, y)t̂(x, z)
m̂(x)

dz dy dx.

Here we have Rf(x, y) = 1[y ≤ y0]G(z0|x), Qf(x, z) = F (y0|x)1[z ≤ z0], and RQf(x) =
F (y0|x)G(z0|x). Let m, s and t satisfy the assumptions of Theorem 2.1 and assume
furthermore that F and G have bounded continuous partial derivatives of order three.
Then one derives conditions (2.2)–(2.4) with ξ = 3 and k a kernel of order 3, while (2.1)
holds trivially. Thus Theorem 2.1 yields the stochastic expansion

T =
1
n

n∑
j=1

1[Yj ≤ y0]G(z0|Xj) + F (y0|Xj)1[Zj ≤ z0]− F (y0|Xj)G(z0|Xj) + op(n−1/2).

3. Efficiency of the plug-in estimator

For parametric models, Hájek (1970) and Le Cam (1972) introduced an asymptotic effi-
ciency concept for (regular) estimators of one-dimensional (differentiable) functionals on
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locally asymptotically normal families. The concept generalizes to infinite-dimensional
parameter spaces, using the observation of Stein (1956) that it suffices to look at the
one-dimensional submodel that is least favorable for the functional, in the sense that the
achievable lower variance bound is largest among all one-dimensional submodels.

In particular, Koshevnik and Levit (1976) show that the empirical estimator Ef =
(1/n)

∑
f(Wi) is efficient for E[f(W )] if the model is nonparametric, i.e., if no structural

assumptions are made on the distribution P of W . We briefly recall their result. Fix P .
The asymptotic efficiency concept depends only on first-order approximations, at P , of
the model and of the functional E[f(W )] =

∫
f(w)P (dw) that we want to estimate. The

one-dimensional submodels may be described by their likelihood ratios with respect to the
fixed P . For the nonparametric model, these are of the form Ptc(dw) = P (dw)(1+ tc(w))
with t running through R, where c is any function that fulfills E[c(W )] = 0. The latter
condition is needed for Ptc to be a probability distribution. We may and will assume
for convenience, and without loss of generality, that c is bounded. The functions c are
called local parameters at P . They form the tangent space of the model at P . For the
nonparametric model, the tangent space is dense in

L2,0(P ) = {c ∈ L2(P ) : E[c(W )] = 0}.

It suffices to consider t = n−1/2. Then we write Pnc for Pn−1/2c. For the joint law of n
observations (W1, . . . ,Wn) under P and Pnc we write Pn and Pnnc, respectively. A Taylor
expansion shows that we have local asymptotic normality at Pn,

log
dPnnc
dPn

= n−1/2
n∑
j=1

c(Wj)−
1
2
E[c2(W )] + op(n−1/2).

Proofs of local asymptotic normality under minimal assumptions are in Le Cam (1956,
1966, 1969); see also Bickel, Klaassen, Ritov and Wellner (1998, sec. 2.1, Proposition 2)
for a version that is uniform in the parameter.

The squared norm E[c2(W )] induces an inner product (c, c′) = E[c(W )c′(W )] on the
closure L2,0(P ) of the tangent space. The least favorable one-dimensional submodel for
E[f(W )] is given by the gradient of E[f(W )], i.e. the direction of steepest ascent, in
terms of this inner product. This is the function k ∈ L2,0(P ) such that

n1/2
(∫

f(w)Pnc(dw)−
∫
f(w)P (dw)

)
→ (k, c) for all c ∈ L2,0(P ).

It is easy to see that k = f − E[f(W )]. We will now show that the variance of the
gradient is a lower variance bound for “regular” estimators of E[f(W )]. An estimator κ̂
of E[f(W )] is called regular at P with limit L if L is a random variable such that

n1/2(κ̂− E[f(W )])⇒ L under Pnc for all c ∈ L2,0(P ).

The convolution theorem of Hájek and Le Cam says that L is distributed as a con-
volution M + σN , where M and N are independent and N is standard normal, and
σ2 = E[k2(W )] = Varf(W ). The random variable σN is more concentrated in symmet-
ric intervals than M + σN . This justifies calling κ̂ efficient at P if L is distributed as
σN . It follows from a version of the convolution theorem that an estimator κ̂ of E[f(W )]
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is regular and efficient for E[f(W )] at P if and only if

n1/2(κ̂− E[f(W )]) = n−1/2
n∑
j=1

k(Wj) + op(1).

We refer to Bickel et al. (1998, Section 3.3, Theorem 2), for this characterization of
efficient estimators. The empirical estimator κ̂ = (1/n)

∑
f(Wi) clearly obeys the char-

acterization and is therefore regular and efficient.
We turn now to our model W = (X,Y, Z) with Y and Z conditionally independent

given X. This is a submodel of the above nonparametric model. In order to obtain
a characterization of efficient estimators, we must determine the tangent space of this
submodel (which is a subspace of L2,0(P )), and the gradient of E[f(W )] in this tangent
space (which is the projection of the above gradient onto this tangent space).

The model can be parametrized in several ways, the simplest being the following.
Since X and Z are conditionally independent given Y , we can write the distribution of
W = (X,Y, Z) as P (dx, dy, dz) = S(dx, dy)R(dz|x). This means that P is conveniently
parametrized by just two parameters, S and R. To prove local asymptotic normality, we
introduce one-dimensional local models separately for S and R by setting

Sna(dx, dy) = S(dx, dy)(1 + n−1/2a(x, y)),

Rnb(dz|x) = R(dz|x)(1 + n−1/2b(x, z)).

Since Sna must be a probability distribution and Rnb a conditional distribution, we
take a in the space A of bounded functions a(x, y) with Sa = 0, and b in the
space B of bounded functions b(x, z) with Rb(X) = 0. The condition on b implies
that a(X,Y ) and b(X,Z) are orthogonal. Let Pn and Pnnab denote the joint distri-
bution of the observations (W1, . . . ,Wn) under P (dx, dy, dz) = S(dx, dy)R(dz|x) and
Pnab(dx, dy, dz) = Sna(dx, dy)Rnb(dz|x), respectively. As above we have local asymptotic
normality at Pn, now of the form

log
dPnnab
dPn

= n−1/2
n∑
j=1

(
a(Xj , Yj)+b(Xj , Zj)

)
− 1

2
(
E[a2(X,Y )]+E[b2(X,Z)]

)
+op(n−1/2).

Let Ā be the closure of A in L2(S) and B̄ the closure of B in L2(T ). The squared norm

‖(a, b)‖2 = E[a2(X,Y )] + E[b2(X,Z)]

induces an inner product on the closure in L2,0(P ) of the tangent space,

Ā+ B̄ = {a(X,Y ) + b(X,Z) : a ∈ Ā, b ∈ B̄}.

Since a and b are orthogonal, the inner product decomposes as

((a, b), (a′, b′)) = E[a(X,Y )a′(X,Y )] + E[b(X,Z)b′(X,Z)].

A real-valued functional κ of (S,R) is differentiable at (S,R) with gradient (g, h) ∈
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Ā× B̄ if

n1/2(κ(Sna, Rnb)− κ(S,R))→ ((g, h), (a, b)) for all (a, b) ∈ A×B.

An estimator κ̂ of κ is regular at (S,R) with limit L if L is a random variable such that

n1/2(κ̂− κ(Sna, Rnb))⇒ L under Pnab for all (a, b) ∈ A×B.

As in the nonparametric case we obtain the following characterization. An estimator κ̂
of κ is regular and efficient for κ at (S,R) if and only if

n1/2(κ̂− κ(S,R)) = n−1/2
n∑
j=1

(
g(Xj , Yj) + h(Xj , Zj)

)
+ op(1). (3.1)

We note that, by the Cramér–Wold device, the characterization (3.1) extends to d-
dimensional κ with a multivariate version of regularity and a componentwise definition of
differentiability. An efficient estimator for κ then has the asymptotic distribution Σ1/2Nd

with Nd a d-dimensional standard normal random vector and Σ = ((g, h), (g, h)>).
Here we are interested in the functional

κ(S,R) = E[f(W )] =
∫∫

f(x, y, z)S(dx, dy)R(dz|x)

for bounded f . For (a, b) ∈ A×B we write

n1/2(κ(Sna, Rnb)− κ(S,R))

= n1/2

∫∫
f(x, y, z)

(
Sna(dx, dy)Rnb(dz|x)− S(dx, dy)R(dz|x)

)
→
∫∫

f(x, y, z)
(
a(x, y) + b(x, z)

)
S(dx, dy)R(dz|x).

We rewrite the right-hand side as

E[f(X,Y, Z)
(
a(X,Y ) + b(X,Z)

)
] (3.2)

= E[Rf(X,Y )a(X,Y )] + E[Qf(X,Z)b(X,Z)]

= E[
(
Rf(X,Y )− E[f(W )]

)
a(X,Y )] + E[

(
Qf(X,Z)−RQf(X)

)
b(X,Z)].

The last equality uses the fact that Sa = 0 and Rb(X) = 0. This shows that the gradient
of E[f(W )] at (S,R) is (g, h) with

g(X,Y ) = Rf(X,Y )− E[f(W )], h(X,Z) = Qf(X,Z)−RQf(X).

Comparing with Theorem 2.1, we see that our plug-in estimator T = Tf is regular and
efficient for E[f(W )] at (S,R) by characterization (3.1). It follows that (Tf1 , . . . ,Tfd) is
regular and efficient for (E[f1(W )], . . . , E[fd(W )]) for each dimension d.



March 1, 2011 8:38 Journal of Nonparametric Statistics rev18

12 U. U. Müller et al.

4. Simulations and discussion

In this article we propose a method of estimating distributions with conditionally inde-
pendent components that actually uses the independence structure. The only competitor
(which does not use the assumed independence and which therefore cannot be efficient)
is the empirical estimator. In order to get a first idea about the practical performance of
our estimator, we performed a small simulation study using R. Since our approach and
the techniques are new, we have chosen the simplest boundary-adjusted kernel estimator,
namely a linearly interpolated boundary kernel. This allowed us to keep the proofs short.
For the simulations we chose the kernel more carefully. This makes a difference, espe-
cially when samples are very small, which is the situation here where we study samples of
size n = 30. We revisit the examples from the Introduction, i.e., we consider estimating
P (Y < Z) and H(y, z) = P (Y ≤ y, Z ≤ z). We take X to be uniformly distributed on
[−1, 1]. The simulations are based on 10, 000 iterations.

In order to describe the estimators, and to avoid notational confusion, we will write
ψ for the kernel k. Apart from that we will keep the notation from Section 2. For the
simulations we chose the fourth-order kernel

ψ(x) =
3− x2

2
φ(x), x ∈ R,

where φ is the standard normal density. This kernel does not have a compact support,
which we assume in Section 2 to prove our asymptotic results, but it works well in our
case where the sample size is small: working with a higher order kernel with compact
support [−1, 1] would produce more frequently small or even negative values for the
density estimators than a higher order kernel with infinite support. Now introduce

Ψ(u) =
∫ u

∞
ψ(x) dx =

1
4

(
6Φ(u)− 1− sign(u)χ(u2)

)
, u ∈ R,

where Φ is the standard normal distribution function and χ is the chi-square distribution
function with 3 degrees of freedom. Note that Ψ would be the distribution function
associated with ψ if ψ were a proper (non-negative) probability density. Our boundary
kernel h is

h(x) =
2π
π − 2

(
1− 2x√

2π

)
φ(x)1[x ≥ 0], x ∈ R.

Again, this kernel does not have a compact support, but it satisfies the integrability
condition

∫
xh(x) dx = 0.

Let us begin with estimating P (Y < Z). For our simulations the random variables Y
given X and Z given X were generated (independently) from centered normal distribu-
tions with variances 1 +X2 and 1, respectively. For this choice P (Y < Z) = 1/2. For our
kernel choice, the estimator from Example 2.2 computes to

T =
∫ 1

−1

1
n2

n∑
i=1

n∑
j=1

∫
Ψ
(Zj − Yi

c
+ u
)
ψ(u) duKb(x,Xi)Kb(x,Xj)

dx

m̂(x)
.
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In our simulations we used the simplified version

T1 =
∫ 1

−1

1
n2

n∑
i=1

n∑
j=1

Ψ
(Zj − Yi

c

)
Kb(x,Xi)Kb(x,Xj)

dx

m̂(x)
.

In the simulations the integral was approximated by a Riemann sum, using an equidistant
partition of width 0.01 and the midpoint rule. Table 2 lists the simulated mean square
errors (MSE) multiplied by the sample size n = 30 for several choices of bandwidth b
and c. The simulated values should be close to the theoretical value 1/6 ' 0.167. (See
the Introduction for details.) Our simulated MSE for the empirical estimator was 0.253,
which is close to the theoretical value 1/4 = 0.25. For all choices of b and c, our estimator
substantially improved on the empirical estimator.

Table 2. Simulated mean square errors multiplied by n for estimating P (Y < X)

c = 0.6 c = 0.75 c = 0.9 c = 1.05 c = 1.2
b = 0.30 0.178 0.172 0.166 0.159 0.151
b = 0.45 0.176 0.172 0.166 0.159 0.152
b = 0.60 0.180 0.175 0.170 0.163 0.155
b = 0.75 0.184 0.179 0.174 0.167 0.159
b = 0.90 0.184 0.180 0.174 0.168 0.160

Our second example is the distribution function H(y, z) = P (Y ≤ y, Z ≤ z). We
consider exactly the situation from the Introduction, where the conditional distributions
of Y and Z given X are normal with means X and X2, respectively, and variances 1. In
the Introduction we showed that, with regard to the asymptotic variance, our estimator
clearly outperforms the empirical estimator. The theoretical relative variance reduction
is given in Table 1 in the Introduction, for selected values of y and z. We are interested
in comparing the theoretical values with their simulated analogs. For the simulations we
again used the fourth-order kernel ψ(x) introduced above. Our estimator (see Example
2.3) based on this kernel can be written as

T(y, z) =
∫ 1

−1
F̂S(y|x)ĜS(z|x)

dx

m̂(x)
,

where F̂S and ĜS are the smoothed conditional distribution functions defined by

F̂S(y|x) =
1
n

n∑
j=1

Ψ
(y − Yj

c

)
Kb(x,Xj) and ĜS(z|x) =

1
n

n∑
j=1

Ψ
(z − Zj

c

)
Kb(x,Xj),

for x, y ∈ R. The simulated relative variance reduction %̃(y, z) is given in Table 3, for
y and z in the set {−1.5,−1,−0.5, 0, 0.5, 1.0, 1.5}, and with bandwidths b = 0.5 and
c = 0.8. We used the formula

%̃(y, z) =
MSEemp(y, z)−MSET(y, z)

MSEemp(y, z)
,
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where MSET(x, y) and MSEemp(x, y) denote the simulated MSE’s of our estimator and
the empirical estimator, respectively.

Table 3. Observed relative reduction amounts %̃(y, z)

y\z -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5 0.82 0.76 0.69 0.61 0.51 0.41 0.31
-1.0 0.74 0.70 0.65 0.59 0.51 0.42 0.33
-0.5 0.66 0.63 0.61 0.57 0.52 0.44 0.37
0.0 0.59 0.57 0.56 0.55 0.49 0.44 0.37
0.5 0.50 0.49 0.51 0.51 0.45 0.40 0.34
1.0 0.42 0.43 0.46 0.45 0.41 0.36 0.30
1.5 0.35 0.37 0.40 0.41 0.38 0.33 0.28

Comparing the simulated values in Table 3 with the theoretical values in Table 1 we
see that, perhaps surprisingly, our results are much better than the asymptotic theory
suggests, especially when y and z are both non-negative. (This may be less pronounced
with a data-driven choice of bandwidth.) We attribute the variance reduction to the fact
that our estimator T uses smoothed conditional distribution functions F̂S and ĜS , which
typically behave better for small sample sizes than their unsmoothed versions F̂ and Ĝ
given by

F̂ (y|x) =
1
n

n∑
j=1

1[Yj ≤ y]Kb(x,Xj) and Ĝ(z|x) =
1
n

n∑
j=1

1[Zj ≤ z]Kb(x,Xj).

This is indeed confirmed by further simulations, now using the unsmoothed version TU
of T,

TU (y, z) =
∫ 1

−1
F̂ (y|x)Ĝ(z|x)

dx

m̂(x)

obtained by replacing F̂S and ĜS by F̂ and Ĝ. The simulated relative variance reductions
are given in Table 4. We see that the values for this estimator are much closer to the
asymptotic values of Table 1.

Table 4. Observed relative reduction amounts %̃(y, z) for the unsmoothed estimator

y\z -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5 0.77 0.72 0.63 0.49 0.35 0.19 0.07
-1.0 0.67 0.63 0.55 0.44 0.31 0.17 0.06
-0.5 0.55 0.52 0.46 0.39 0.28 0.16 0.07
0.0 0.43 0.41 0.36 0.32 0.24 0.16 0.07
0.5 0.31 0.29 0.27 0.24 0.18 0.13 0.05
1.0 0.21 0.20 0.18 0.15 0.13 0.09 0.03
1.5 0.12 0.12 0.11 0.09 0.07 0.05 0.01
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5. Proof of Theorem 2.1

We need two auxiliary results on convergence rates for m̂, ŝ and t̂.

Lemma 5.1: Suppose m has support [α, β] and is positive and continuous on [α, β].
Then m̂ is a uniformly consistent estimator of m as b→ 0 and nb2 →∞,

sup
α≤x≤β

|m̂(x)−m(x)| = op(1).

If the restriction of m to [α, β] is differentiable and its derivative m′ is Lipschitz, then
we have the rate ∫ β

α
E[(m̂(x)−m(x))2] dx = O(b4 + 1/(nb)).

Proof of Lemma 5.1: The uniform convergence follows from standard results, using
the uniform continuity of m on [α, β]; see Parzen (1962). To prove the second conclusion,
we let

m̄(x) = E[m̂(x)] = E[Kb(x,X)].

Then we can write the left-hand side in the second assertion as the sum of the variance
term A =

∫ β
α E[(m̂(x)−m̄(x))2] dx and the squared bias term B =

∫ β
α (m̄(x)−m(x))2 dx.

For x in [α, β] we have

nbE[(m̂(x)− m̄(x))2] ≤ ‖m‖∞max{‖k2‖1, ‖h2‖1}.

This follows from the fact that the variance of a convex combination of two random
variables is bounded by the same convex combination of their variances, and from the
inequality

nbVar
( 1
nb

n∑
j=1

`
(x−Xj

b

))
≤ 1
b
E
[
`2
(x−X

b

)]
=
∫
`2(u)m(x− bu) du ≤ ‖m‖∞‖l2‖1,

valid for every square-integrable function `. This shows that A = O(1/(nb)).
Now we treat the squared bias B. For x in [α+ b, β − b], we have the identity

m̄(x)−m(x) =
∫

(m(x− bu)−m(x)− bum′(x))k(u) du

in view of the symmetry of k. By the assumption on m, there is a constant C such that

|m(y)−m(x)− (y − x)m′(x)| ≤ C|y − x|2, x, y ∈ [α, β].

This yields

sup
x∈[α+b,β−b]

|m̄(x)−m(x)| = O(b2).
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Similarly, one verifies |m̄(x)−m(x)| = O(b2) for x = α, β. For x ∈ (α, α+ b) we derive

m(x)− m̄(x) = m(x)− m̄(α)− x− α
b

(m̄(α+ b)− m̄(α))

= m(x)−m(α)− (x− α)m′(α) + (m(α)− m̄(α))

− x− α
b

(m(α+ b)−m(α)− bm′(α))

− x− α
b

(m̄(α+ b)−m(α+ b)− m̄(α) +m(α)).

Thus, by the above, we obtain

sup
x∈[α,α+b]

|m̄(x)−m(x)| = O(b2).

The same result holds for the interval [β − b, β]. From this we conclude that B = O(b4).

Remark 3: Using the inequality(∫
|χ(y)| dy

)2
≤
∫

1
(1 + |y|)η

dy

∫
(1 + |y|)ηχ2(y) dy,

valid for η > 1, and the identities

s(x+ h, y)− s(x, y)− hṡ1(x, y) = h2

∫
s̈11(x+ λh, y)(1− λ) dλ

and

ṡ1(x+ h, y)− ṡ1(x, y) = h

∫
s̈11(x+ λh, y) dλ,

valid for x and x+h in [α, β] and all real y, we see that the assumptions on s in Theorem
2.1 imply the smoothness assumptions on m in Lemma 5.1 with m′(x) =

∫
ṡ1(x, y) dy.

This is the reason why the smoothness assumptions of Lemma 5.1 are not mentioned in
the assumptions of Theorem 2.1.

Lemma 5.2: Suppose s is twice continuously differentiable on S with gradient ṡ and
Hessian s̈, and that s and ‖s̈‖2 belong to Hη for some η ≥ 0. Then

‖E[(ŝ− s)2]‖Hη = sup
α≤x≤β

∫
(1 + |y|)ηE[(ŝ(x, y)− s(x, y))2] dy = O(c4 + b4 + 1/(nbc)).

Proof of Lemma 5.2: Let s̄(x, y) = E[ŝ(x, y)]. Also set

A(x) =
∫

(1 + |y|)ηE[(ŝ(x, y)− s̄(x, y))2] dy,

B(x) =
∫

(1 + |y|)η(s̄(x, y)− s(x, y))2 dy.
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In what follows we need the following result. If ψ belongs to Hη and χ is an integrable
function with support [−1, 1], then the function ψc defined by

ψc(x, y) =
∫
ψ(x, y − cv)χ(v) dv

belongs to Hη in view of the inequality

‖ψc‖Hη ≤ (1 + c)η‖ψ‖Hη‖χ‖1. (5.1)

The latter follows from the substitution u = y − cv, the inequality 1 + |x + y| ≤ (1 +
|x|)(1 + |y|), valid for all x and y, and the fact that χ has support [−1, 1].

Since s(x, y) = 0 for x outside the interval [α, β], we have for a square-integrable
function `,

nbc

∫
(1 + |y|)ηVar

( 1
nbc

n∑
j=1

`
(x−Xj

b

)
k
(y − Yj

c

))
dy

≤
∫

(1 + |y|)η 1
bc
E
[(
`2
(x−X

b

)
k2
(y − Y

c

)]
dy

≤
∫∫∫

(1 + |y|)ηs(x− bu, y − cv)`2(u)k2(v) du dv dy

≤ ‖s‖Hη‖`2‖1(1 + c)η‖k2‖1.

In the last step we have used (5.1) with χ = k2. From this and the definition of ŝ we
derive, for x ∈ [α, β],

A(x) ≤ (1 + c)η

nbc
‖s‖Hη‖k2‖1 max{‖h2‖1, ‖k2‖1}. (5.2)

Now we treat B(x). We recall that, for a twice continuously differentiable function on
[0, 1], we have

g(1) = g(0) + g′(0) +
∫ 1

0
g′′(λ)(1− λ) dλ.

If the line segment {(x− λbu, y − λcv) : 0 ≤ λ ≤ 1} belongs to S, then we have

s(x− bu, y − cv) = s(x, y)− (bu, cv)ṡ(x, y) +
∫ 1

0
(bu, cv)s̈(x− λbu, y − λcv)(bu, cv)> dλ.

Thus, for x ∈ [α+ b, β − b], we have

s̄(x, y)− s(x, y) =
∫∫ ∫ 1

0
(bu, cv)s̈(x− λbu, y − λcv)(bu, cv)>(1− λ) dλ k(u)k(v) du dv.
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Applying the Cauchy–Schwarz inequality, we have

(s̄(x, y)− s(x, y))2 ≤ 4(b4 + c4)‖k‖21
∫ 1

0

∫∫
‖s̈(x− λbu, y − λcv)‖2|k(u)k(v)| du dv dλ.

Thus we obtain

sup
α+b≤x≤β−b

B(x) ≤ 4(b4 + c4)‖k‖41(1 + c)η‖‖s̈‖2‖Hη .

A similar argument yields∫
(1 + |y|)η(s̄(α, y)− s(α, y))2 dy ≤ 4(b4 + c4)(1 + c)η‖‖s̈‖2‖Hη‖h‖21‖k‖21.

By these two inequalities,

sup
α≤x≤α+b

∫
(1+ |y|)η(s̄(α, y)−sb(α, y))2 dy ≤ 4(b4 +c4)(1+c)η‖‖s̈‖2‖Hη‖k‖21(‖k‖21 +‖h‖21)

with

sb(x, y) = s(α, y) +
x− α
b

(s(α+ b, y)− s(α, y)).

In view of the identity

s(x, y) = s(α, y) + (x− α)ṡ1(α, y) + (x− α)2
∫ 1

0
s̈11(α+ λ(x− α), y)(1− λ) dλ,

we obtain, for x in [α, α+ b],

|sb(x, y)− s(x, y)| ≤ b2
∫ 1

0
(|s̈11(x+ λ(x− α), y)|+ |s̈11(x+ λb, y)|)(1− λ) dλ.

From this we immediately obtain

sup
α≤x≤α+b

∫
(sb(x, y)− s(x, y))2(1 + |y|)η dy ≤ 2b4‖s̈211‖Hη .

Arguing similarly for the interval [β − b, β], we finally arrive at the bound

sup
α≤x≤β

B(x) = O(b4 + c4). (5.3)

The conclusion follows from (5.2) and (5.3).

Proof of Theorem 2.1: The properties of m imply that µ = inf{m(x) : α ≤ x ≤ β} is
positive. From this and the first conclusion of Lemma 5.1 we obtain that 1/µ̂ = Op(1),
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where µ̂ = inf{|m̂(x)| : α ≤ x ≤ β}. We set

D1 =
∫∫

Rf(x, y)(ŝ(x, y)− s(x, y)) dx dy,

D2 =
∫∫

Qf(x, z)(t̂(x, z)− t(x, z)) dx dz,

D3 =
∫
RQf(x)(m̂(x)−m(x)) dx

and show

T = E[f(X,Y, Z)] +D1 +D2 −D3 + op(n−1/2), (5.4)

D1 =
1
n

n∑
j=1

Rf(Xj , Yj)− E[Rf(X,Y )] + op(n−1/2), (5.5)

D2 =
1
n

n∑
j=1

Qf(Xj , Zj)− E[Qf(X,Z)] + op(n−1/2), (5.6)

D3 =
1
n

n∑
j=1

RQf(Xj)− E[RQf(X)] + op(n−1/2). (5.7)

To prove (5.4) we use the relations between s, t, m and q, r to write

ŝ(x, y)t̂(x, z)
m̂(x)

=
s(x, y)t(x, z)

m(x)
+ (ŝ(x, y)− s(x, y))r(z|x)

+ (t̂(x, z)− t(x, z))q(y|x)− q(y|x)r(z|x)(m̂(x)−m(x)) + R̂(x, y, z)

with remainder term

R̂(x, y, z) = q(y|x)r(z|x)
(m2(x)
m̂(x)

− m2(x)
m(x)

+ m̂(x)−m(x)
)

+ (ŝ(x, y)− s(x, y))(t̂(x, z)− t(x, z)) 1
m̂(x)

+ (ŝ(x, y)− s(x, y))
( 1
m̂(x)

− 1
m(x)

)
m(x)r(z|x)

+ q(y|x)m(x)(t̂(x, z)− t(x, z))
( 1
m̂(x)

− 1
m(x)

)
.

To calculate T, we integrate f against the four leading terms and the four remainder terms
above. The four leading terms yield E[f(X,Y, Z)] +D1 +D2 −D3. Thus (5.4) follows if
we show that the integrals against the four remainder terms are of order op(n−1/2). For
this we use the following results which are consequences of Lemmas 5.1 and 5.2 and the



March 1, 2011 8:38 Journal of Nonparametric Statistics rev18

20 U. U. Müller et al.

properties of b and c, see also Remark 2:

∫ β

α

(
m̂(x)−m(x)

)2
dx = op(n−1/2), (5.8)

∫ β

α

∫
(1 + |y|)η

(
ŝ(x, y)− s(x, y)

)2
dy dx = op(n−1/2), (5.9)

∫ β

α

∫
(1 + |z|)η

(
t̂(x, z)− t(x, z)

)2
dz dx = op(n−1/2). (5.10)

Since f is bounded by 1, the integral against the first remainder term is bounded by

∫ ∣∣∣m2(x)
m̂(x)

− m2(x)
m(x)

+ m̂(x)−m(x)
∣∣∣ dx ≤ 1

µ̂

∫ β

α

(
m̂(x)−m(x)

)2
dx = op(n−1/2).

For two measurable functions γ and χ defined on R2, we have∫∫∫
|γ(x, y)χ(x, z)| dx dy dz

≤
∫∫ (∫

γ2(x, y) dx
∫
χ2(x, z) dx

)1/2
dy dz

=
∫∫ (∫

γ2(x, y) dx
∫
χ2(x, z) dx

)1/2 (1 + |y|)η/2(1 + |z|)η/2

(1 + |y|)η/2(1 + |z|)η/2
dy dz

≤
∫

du

(1 + |u|)η
(∫∫

(1 + |y|)ηγ2(x, y) dx dy
∫∫

(1 + |z|)ηχ2(x, z) dx dz
)1/2

.

In view of this inequality and (5.9) and (5.10), the integral of f against the second
remainder term is of order op(n−1/2). For measurable functions γ on R2 and χ on R, we
have∫∫

|γ(x, y)χ(x)| dx dy ≤
∫ (∫

γ2(x, y) dx
∫
χ2(x) dx

)1/2
dy

≤
(∫ dx

(1 + |x|)η

∫∫
(1 + |y|)ηγ2(x, y) dx dy

∫
χ2(x) dx

)1/2
.

In view of this inequality, (5.8)–(5.10), and 1/(µ̂µ) = Op(1), the integrals against the last
two remainder terms are of order op(n−1/2). This completes the proof of (5.4).

To prove (5.5), we set g = Rf and

gn(x, y) =
∫∫

g(u, y + cv)Kb(x, u)k(v) du dv.
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With s̄(x, y) = E[ŝ(x, y)] we have

∫∫
g(x, y)

(
ŝ(x, y)− s̄(x, y)

)
dx dy =

1
n

n∑
j=1

(
gn(Xj , Yj)− E[gn(X,Y )]

)
.

It follows from (2.1) that

E[
(
gn(X,Y )− g(X,Y )

)2]→ 0.

Indeed, since |g| ≤ 1, we have |gn| ≤ C = ‖k‖1(‖h‖1 +‖k‖1) and can bound the left-hand
side by (1 + C)2(1− E[Ib]) +Bn, where

Bn = E
[
Ib

(∫∫ (
g(X + bu, Y + cv)− g(X,Y )

)
k(u)k(v) du dv

)2]
≤ ‖k‖21E

[
Ib

∫∫ (
g(X + bu, Y + cv)− g(X,Y )

)2|k(u)k(v)| du dv
]

converges to zero by (2.1). The above shows that

∆ =
∫∫

g(x, y)
(
ŝ(x, y)− s̄(x, y)

)
dx dy − 1

n

n∑
j=1

(
g(Xj , Yj)− E[g(X,Y )]

)
= op(n−1/2).

Here we used nE[∆2] ≤ E[(gn(X,Y )− g(X,Y ))2]→ 0.
To obtain (5.5) it suffices to verify E[gn(X,Y )] = E[g(X,Y )] + o(n−1/2). In view of

(2.2) this follows if we show

Γ = E[(1− Ib)(gn(X,Y )− g(X,Y ))]

=
∫∫

1[x 6∈ [α+ 2b, β − 2b]]g(x, y)
(
s̄(x, y)− s(x, y)

)
dx dy = o(n−1/2).

An application of the Cauchy–Schwarz inequality yields∫
|s̄(x, y)− s(x, y)| dy ≤

(∫ dy

(1 + |y|)η
B(x)

)1/2
,

where B(x) =
∫

(1 + |y|)η(s̄(x, y) − s(x, y))2 dy. From this, |g| ≤ 1 and (5.3) we obtain
Γ = O(b3 + bc2). This completes the proof of (5.5). The proofs of (5.6) and (5.7) are
similar and will be omitted.
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