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Abstract. We consider nonlinear regression models and the usual estimators for
the regression parameter and the response distribution. We assume that the model
is partly misspecified in one of three ways: either the covariate is not independent of
the error, or the regression function is mismodelled, or the error is not centered. We
determine what the estimators then estimate, and calculate their influence function
and asymptotic variance.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed obser-
vations of a nonlinear regression model

Y = rϑ(X) + ε

in which the error ε is centered in the sense that Eε = 0, and also indepen-
dent of the covariate X. There are well-studied estimators for the regression
parameter ϑ and the response distribution. How do these estimators behave
when certain features of the model are misspecified? Do they remain consis-
tent? If so, how is their influence function and asymptotic variance affected?
If they do not remain consistent, what do the estimators then estimate, and
what is their influence function and asymptotic variance?

We answer these questions separately for three types of misspecification:
when the error is not independent of the covariate, when the parametric
model for the regression function is incorrect, and when the error is not
centered. We also consider the special case of linear regression.

Of course, these misspecifications could also happen simultaneously. We
will not consider this here.

We note that the behavior of the estimators depends only on features of
the true underlying distribution, not on properties of some true model that
contains this distribution.

To simplify the notation, we take the parameter ϑ one-dimensional. Gen-
eralization to higher dimensions is straightforward. Derivatives with respect



to the parameter will be denoted by a dot over the function, for example
ṙϑ(x) = ∂ϑrϑ(x).

2 Regression parameter

The classical estimator for the regression parameter ϑ is the least squares
estimator. It solves the estimating equation

n∑
i=1

ṙϑ(Xi)(Yi − rϑ(Xi)) = 0. (1)

Leaving questions of uniqueness aside, the least squares estimator converges
to the solution of the equation

E[ṙϑ(X)(Y − rϑ(X))] = 0. (2)

Correct model. For comparison with the misspecified case, we recall results
when the nonlinear regression model is correct. Then the true ϑ solves (2),
and hence the least squares estimator is consistent for ϑ. Moreover, a Taylor
expansion of (1) gives

0 =
1
n

n∑
i=1

ṙϑ̂(Xi)(Yi − rϑ̂(Xi))

=
1
n

n∑
i=1

ṙϑ(Xi)εi − (ϑ̂ − ϑ)
1
n

n∑
i=1

ṙ2
ϑ(Xi) + op(n−1/2).

Hence

ϑ̂ = ϑ + (Eṙ2
ϑ(X))−1 1

n

n∑
i=1

ṙϑ(Xi)εi + op(n−1/2). (3)

This means that the least squares estimator ϑ̂ is asymptotically linear with
influence function (Eṙ2

ϑ(X))−1ṙϑ(X)ε. By the central limit theorem, it is
therefore asymptotically normal with variance (Eṙ2

ϑ(X))−1Eε2. The least
squares estimator is not efficient. See Schick [2] for the construction of effi-
cient estimators.

For the linear regression model, with rϑ(X) = ϑX, we have ṙϑ(X) = X.
Then the influence function of ϑ̂ is (EX2)−1Xε, and the asymptotic variance
is (EX2)−1Eε2.

Error depends on covariate. Suppose that X and ε are dependent, but
that the model for the regression function is still correct. This means that
E(Y |X) = rϑ(X), so E(Y − rϑ(X)|X) = 0. It follows that the true ϑ still
solves (2), and hence the least squares estimator ϑ̂ remains consistent for



ϑ. Then its stochastic expansion (3) also remains valid, but the asymptotic
variance does not simplify as in our initial model with X and ε independent.
It now is

(Eṙ2
ϑ(X))−2E[ṙ2

ϑ(X)E(ε2|X)].

For the linear regression model rϑ(X) = ϑX, the influence function of ϑ̂
still is (EX2)−1Xε, now with asymptotic variance is (EX2)−2E[X2E(ε2|X)].

Misspecified regression function. For this subsection, compare also
White [4] and Stute et al. [3]. Suppose the true model is Y = r(X) + ε
with X and ε independent and Eε = 0, but the regression function is not
of the form rϑ for some ϑ. For a given distribution P of (X, Y ), let ϑ(P )
denote the solution of (2). The least squares estimator estimates ϑ(P ). Write
εP = Y − rϑ(P )(X). This decomposes as

εP = ε + r(X) − rϑ(P )(X).

In particular, εP is neither independent of X nor conditionally centered,

E(εP |X) = r(X) − rϑ(P )(X).

We have E[ṙϑ(X)ε] = 0 for all ϑ, so equation (2) defining ϑ(P ) can be
rewritten as

E[ṙϑ(X)(r(X) − rϑ(X))] = 0.

Hence ϑ = ϑ(P ) minimizes the mean squared distance E[(r(X) − rϑ(X))2].
The stochastic expansion of the estimating equation (1) now contains an
additional term that involves the second derivative of the regression function,

0 =
1
n

n∑
i=1

ṙϑ̂(Xi)(Yi − rϑ̂(Xi)) =
1
n

n∑
i=1

ṙϑ(P )(Xi)εPi

−(ϑ̂ − ϑ(P ))
( 1

n

n∑
i=1

ṙ2
ϑ(P )(Xi) −

1
n

n∑
i=1

r̈ϑ(P )(Xi)εPi

)
+ op(n−1/2),

hence

ϑ̂ = ϑ(P ) + c−1(P )
1
n

n∑
i=1

ṙϑ(P )(Xi)εPi + op(n−1/2)

with
c(P ) = Eṙ2

ϑ(P )(X) − E[r̈ϑ(P )(X)εP ].

Hence ϑ̂ is asymptotically linear with influence function c−1(P )ṙϑ(P )(X)εP .
With E(ε2

P |X)] = Eε2 + (r(X) − rϑ(P )(X))2, the asymptotic variance of ϑ̂
can be written as

c−2(P )
(
Eṙ2

ϑ(P )(X)Eε2 + E[ṙ2
ϑ(P )(X)(r(X) − rϑ(P )(X))2]

)
.



For the linear regression model rϑ(X) = ϑX we obtain ϑ(P ) as solution
of E[X(r(X) − ϑX)] = 0, so

ϑ(P ) = (EX2)−1E[Xr(X)].

We have r̈ϑ(X) = 0 and c(P ) = EX2, so the influence function of ϑ̂ is
(EX2)−1X(Y − ϑ(P )X), and its asymptotic variance is

(EX2)−1Eε2 + (EX2)−2E[X2(r(X) − ϑ(P )X)2].

Error is not centered. Suppose Eε is not zero. Then the true model can
be written as Y = rτ (X) + µ + ε with Eε = 0. This is a special case of a
misspecified regression function r(X) = rτ (X) + µ. The previous subsection
remains unchanged otherwise.

For the linear regression model rϑ(X) = ϑX we obtain ϑ(P ) as solution
of E[X(τX + µ − ϑX)] = 0, so

ϑ(P ) = τ + µEX/EX2.

We have r̈ϑ(X) = 0 and c(P ) = EX2, so the influence function of ϑ̂ is
(EX2)−1X(Y − ϑ(P )X), and its asymptotic variance is

(EX2)−1Eε2 + (EX2)−2E[X2(τX + µ − ϑ(P )X)2].

3 Response distribution

The usual estimator for an expectation M = Eh(Y ) is the empirical estimator
(1/n)

∑n
i=1 h(Yi). It does not use the regression model and is therefore robust

under any misspecification of the model. We can however estimate M using
the regression model as follows. Since X and ε are independent, Y = rϑ(X)+
ε is a convolution. Estimate ϑ by the least squares estimator. Estimate the
error εi by the residual ε̂i = Yi−rϑ̂(Xi). An estimator for M = Eh(rϑ(X)+ε)
is now given by the von Mises statistic

M̂ =
1
n2

n∑
i,j=1

h(rϑ̂(Xi) + ε̂j) =
1
n2

n∑
i,j=1

h(rϑ̂(Xi) − rϑ̂(Xj) + Yj).

Correct model. For comparison with the misspecified case, we recall results
when the nonlinear regression model is correct. We refer to Müller [1] who
considers, more generally, the case when responses are missing at random.
Then ϑ̂ converges to ϑ, so M̂ converges to Eh(rϑ(X) + ε) = Eh(Y ) = M .



Hence M̂ is consistent for M . In order to determine the influence function of
M̂ , we first consider M̂ as a function of ϑ̂ and expand it around ϑ,

M̂ =
1
n2

n∑
i,j=1

h(rϑ(Xi) + εj)

+(ϑ̂ − ϑ)
1
n2

n∑
i,j=1

(ṙϑ(Xi) − ṙϑ(Xj))h′(rϑ(Xi) + εj) + op(n−1/2)

=
1
n2

n∑
i,j=1

h(rϑ(Xi) + εj) + (ϑ̂ − ϑ)H + op(n−1/2) (4)

with

H = E[ṙϑ(X)h′(rϑ(X) + ε)] − Eṙϑ(X)Eh′(rϑ(X) + ε)
= E[ṙϑ(X)h′(Y )] − Eṙϑ(X)Eh′(Y ).

In order to obtain the influence function of M̂ , we use the Hoeffding decom-
position

1
n2

n∑
i,j=1

h(rϑ(Xi) + εj) = M +
1
n

n∑
i=1

(
hXi

−M + hεi
−M

)
+ op(n−1/2) (5)

with

hX = E(h(rϑ(X) + ε)|X) = E(h(Y )|X),
hε = E(h(rϑ(X) + ε)|ε) = E(h(Y )|ε).

The influence function of ϑ̂ was obtained as (Eṙ2
ϑ(X))−1ṙϑ(X)ε in Section 2.

Hence M̂ is asymptotically linear with influence function

hX − M + hε − M + H(Eṙ2
ϑ(X))−1ṙϑ(X)ε.

Since X and ε are independent, the conditional expectations can be written

hX =
∫

h(rϑ(X) + y)P ε(dy), hε =
∫

h(rϑ(x) + ε)dPX(dx). (6)

For the linear regression model rϑ(X) = ϑX, the influence function of ϑ̂
was obtained as (EX2)−1Xε. The influence function of M̂ is therefore

hX − M + hε − M +
(
E[Xh′(Y )] − EXEh′(Y )

)
(EX2)−1Xε

with hX =
∫

h(ϑX + y)dP ε(dy) and hε =
∫

h(ϑx + ε)dPX(dx).

Error depends on covariate. If X and ε are dependent, but the model
for the regression function is still correct, then the least squares estimator



ϑ̂ remains consistent, and its stochastic expansion (3) also remains valid.
The von Mises statistic M̂ is dominated by the terms with i 6= j. Hence it
converges to

M12 = Eh(rϑ(X1) + ε2) = Eh(Y2 + rϑ(X1) − rϑ(X2)).

Here the time indices 1 and 2 indicate that rϑ(X1) and ε2 are independent.
But X and ε are not independent any more, so in general M12 is now different
from M = Eh(Y ) = Eh(rϑ(X) + ε), and M̂ does not remain consistent for
M .

The stochastic expansion (4) of M̂ remains unchanged, but we must now
write

H = E[ṙ(X1)h′(rϑ(X1) + ε2)] − E[ṙ(X2)h′(rϑ(X1) + ε2)].

The Hoeffding decomposition (5) is valid with M12 in place of M . We must
now write

hX1 = E(h(rϑ(X1) + ε2)|X1), hε2 = E(h(rϑ(X1) + ε2)|ε2),

which is still the same as in (6).
For the linear regression model rϑ(X) = ϑX we have ṙϑ(X) = X, so

H = E[Xh′(Y )] and

hX = E(h(Y )|X) =
∫

h(ϑX + y)P ε(dy),

hε = E(h(Y )|ε) =
∫

h(ϑx + ε)PX(dx).

The influence function of ϑ̂ is (EX2)−1Xε, so the influence function of M̂ is

hX − M + hε − M + H(EX2)−1Xε.

Misspecified regression function. Suppose the true model is Y = r(X)+ε
with X and ε independent and Eε = 0, but the regression function is not
of the form rϑ for some ϑ. For a given distribution P of (X, Y ), let ϑ(P )
denote the solution of (2). As seen in Section 2, the least squares estimator ϑ̂
estimates ϑ(P ). Set εP = Y −rϑ(P )(X). Then ε̂j = Yj−rϑ̂(Xj) approximates
εPj = Yj − rϑ(P )(Xj). Since the von Mises statistic M̂ is dominated by the
terms with i 6= j, it converges to

M(P ) = Eh(rϑ(P )(X1) + εP2) = Eh(Y2 + rϑ(P )(X1) − rϑ(P )(X2)).

Here the different time indices 1 and 2 again indicate that the two random
variables are independent. But rϑ(P )(X) and εP = ε + r(X) − rϑ(P )(X)



are now in general dependent. Hence M(P ) differs from M = Eh(Y ) =
Eh(rϑ(P )(X) + εP ), and M̂ does not remain consistent for M .

In order to determine the influence function of M̂ , we proceed as in the
correct model. We first consider M̂ as a function of ϑ̂ and expand it around
ϑ(P ), now neglecting the terms with i = j,

M̂ =
1
n2

n∑
i,j=1

h(rϑ(P )(Xi) + εPj)

+(ϑ̂ − ϑ(P ))
1
n2

n∑
i,j=1

(ṙϑ(P )(Xi) − ṙϑ(P )(Xj))h′(rϑ(P )(Xi) + εPj)

+op(n−1/2)

=
1
n2

n∑
i,j=1

h(rϑ(P )(Xi) + εPj) + (ϑ̂ − ϑ(P ))H(P ) + op(n−1/2)

with

H(P ) = E[rϑ(P )(X1)h′(rϑ(P )(X1) + εP2)]
−E[rϑ(P )(X2)h′(rϑ(P )(X1) + εP2)].

Even though rϑ(P )(X) and εP = εj + r(X) − rϑ(P )(X) are now dependent,
rϑ(P )(Xi) and εPj = εj + r(Xj) − rϑ(P )(Xj) are still independent for i 6= j.
Hence we still have a Hoeffding decomposition

1
n2

n∑
i,j=1

h(rϑ(P )(Xi) + εPj)

= M(P ) +
1
n

n∑
i=1

(
hPXi − M(P ) + hPεP i

− M(P )
)

+ op(n−1/2)

with

hPX1 = E(h(rϑ(P )(X1) + εP2)|X1),
hPεP2 = E(h(rϑ(P )(X1) + εP2)|εP2).

The influence function of ϑ̂ was obtained in Section 2 as c−1(P )ṙϑ(P )(X)εP

with
c(P ) = Eṙ2

ϑ(P )(X) − E[r̈ϑ(P )(X)εP ].

Taken together, M̂ estimates M(P ) and is asymptotically linear with influ-
ence function

hPX − M(P ) + hPεP
− M(P ) + H(P )c−1(P )ṙϑ(P )(X)εP .



As seen in Section 2, for the linear regression model rϑ(X) = ϑX we have
ϑ(P ) = (EX2)−1E[Xr(X)]. So

M(P ) = Eh(ϑ(P )X1 + εP2)
= Eh(Y2 + (EX2)−1E[Xr(X)](X1 − X2)).

Furthermore, ϑ̂ estimates ϑ(P ) and has influence function (EX2)−1X(Y −
ϑ(P )X). With these notations, M̂ estimates M(P ) and is asymptotically
linear with influence function

hPX − M(P ) + hPεP
− M(P ) + H(P )(EX2)−1X(Y − ϑ(P )X)

with

hPX1 = E(h(ϑ(P )X1 + εP2)|X1), hPεP2 = E(h(ϑ(P )X1 + εP2)|εP2)

and

H(P ) = E[ϑ(P )X1h
′(ϑ(P )X1 + εP2)] − E[ϑ(P )X2h

′(ϑ(P )X1 + εP2)].

Error is not centered. If Eε is not zero, the true model can be written
Y = rτ (X) + µ + ε with Eε = 0. This is a special case of a misspecified
regression function r(X) = rτ (X) + µ. The previous subsection remains
unchanged otherwise.

For the linear regression model rϑ(X) = ϑX we have obtained ϑ(P ) =
τ + µEX/EX2. This means that M̂ now estimates

M(P ) = Eh
((

τ + µ
EX

EX2

)
X1 + εP2

)
= Eh

(
Y2 +

(
τ + µ

EX

EX2

)
(X1 − X2)

)
.

The results of the previous subsection concerning linear regression remain
unchanged otherwise.
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