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PLUG-IN ESTIMATORS FOR HIGHER-ORDER

TRANSITION DENSITIES IN AUTOREGRESSION ∗

Anton Schick1 and Wolfgang Wefelmeyer2

Abstract. In this paper we obtain root-n consistency and functional central limit theo-

rems in weighted L1-spaces for plug-in estimators of the two-step transition density in the

classical stationary linear autoregressive model of order one, assuming essentially only that

the innovation density has bounded variation. We also show that plugging in a properly

weighted residual-based kernel estimator for the unknown innovation density improves on

plugging in an unweighted residual-based kernel estimator. These weights are chosen to

exploit the fact that the innovations have mean zero. If an efficient estimator for the

autoregression parameter is used, then the weighted plug-in estimator for the two-step

transition density is efficient. Our approach generalizes to invertible linear processes.
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Introduction

Suppose we observe X0, . . . , Xn coming from a stationary linear autoregressive process of order
one:

Xt = ρXt−1 + εt, t ∈ Z,

with ρ ∈ (−1, 1) and independent and identically distributed innovations {εt, t ∈ Z} with mean
zero, finite variance σ2 and a density f . We are interested in estimating the two-step transition
density q of Xt+2 given Xt = x for some fixed x. We could estimate q(z) nonparametrically by
writing it as h(x, z)/g(z) with g and h the stationary densities of Xt and (Xt, Xt+2), respectively,
and plugging in kernel estimators for h and g; see Roussas (1969, 1988), Nguyen (1984) and Athreya
and Atuncar (1998). The rates would be those for estimating a two-dimensional density. We could
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use the Markov structure and write q(z) as
∫
s(x, y)s(y, z) dy with s the one-step transition density,

and plugging in nonparametric estimators for s. This would give better rates, because the problem
reduces to that of estimating one-dimensional functions, namely conditional expectations. This is
work in progress. Functional central limit theorems cannot be expected (except locally, on intervals
shrinking as the bandwidth) since for different values of z the estimators eventually use essentially
different parts of the observations.

Using the autoregressive structure, we can express the two-step transition density given x as

q(z) =
∫
f(z − ρy − ρ2x)f(y) dy, z ∈ R.

This is a smooth functional of f and ρ, and we shall show that plugging in appropriate estimators
for f and ρ leads to a root-n consistent estimator of q. We must of course exclude the degenerate
case ρ = 0.

First we discuss limitations and possible extensions of our approach. For the one-step transition
density f(· − ρx) of Xt+1 given Xt = x, the rate of the estimator f̂(· − ρ̂x) equals the rate of f̂ , and
we do not have root-n consistency. Our results generalize however to estimation of m-step transition
densities of Xt+m given Xt = x, which can be expressed as

∫
· · ·

∫
f(· − ρym−1 − · · · − ρm−1y1 − ρmx)f(y1) . . . f(ym−1) dy1 . . . dym−1.

Our results also generalize to higher-order autoregression. To keep the paper readable, we consider
only the simplest case.

Root-n consistent estimation of q is possible because q can be written as a convolution. This idea
has already been used for other estimation problems in time series. Saavedra and Cao (1999) obtain
pointwise root-n consistency of a plug-in estimator for the stationary density p of a moving-average
process of order one, Xt = ρεt−1 + εt, which can be expressed as p(y) =

∫
f(y − ρx)f(x) dx. Schick

and Wefelmeyer (2004a) prove that versions of this estimator are asymptotically normal and efficient.
Schick and Wefelmeyer (2004c) show that such estimators obey functional central limit theorems
in L1 and C0; they also consider higher-order moving average processes. — Estimating q is similar
to estimating the stationary density p of Xt, which can be expressed as p(y) =

∫
f(y − ρx)p(x) dx.

Root-n consistent estimators for the stationary density of general invertible linear processes are
derived Schick and Wefelmeyer (2007a, 2007c).

Similar results exist for i.i.d. observations X1, . . . , Xn and functionals not involving unknown
parameters like ρ. Frees (1994) shows that his local U-statistic estimators for densities of certain
functions q(X1, . . . , Xm) with m ≥ 2 are pointwise root-n consistent. Saavedra and Cao (2000)
consider the special case X1 + aX2 with a known. Schick and Wefelmeyer (2004b, 2007b) obtain
functional central limit theorems for plug-in estimators of densities of u1(X1) + · · · + um(Xm) and
X1 + X2 in L1 and C0. Giné and Mason (2007a, 2007b) prove functional central limit theorems
and laws of the iterated logarithm in Lp, 1 ≤ p ≤ ∞, for local U-statistic estimators of densities of
functions q(X1, . . . , Xm), under minimal conditions, and uniformly in the bandwidth.
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To describe our plug-in estimator, let ρ̂ denote the least squares estimator

ρ̂ =

∑n
j=1Xj−1Xj∑n

j=1X
2
j−1

.

Note that ρ̂ has the martingale approximation

ρ̂− ρ =

∑n
j=1 Xj−1εj∑n
j=1 X2

j−1

=
1

E[X2
0 ]

1
n

n∑
j=1

Xj−1εj + op(n−1/2)

and E[X2
0 ] = σ2/(1− ρ2). In particular, ρ̂ is asymptotically normal with variance 1− ρ2. We mimic

the innovation εj by the residual

ε̂j = Xj − ρ̂Xj−1, j = 1, . . . , n.

We can then estimate the innovation density f by the kernel estimator based on these residuals,

f̂(y) =
1
n

n∑
j=1

kb(y − ε̂j), y ∈ R,

where kb(y) = k(y/b)/b for some density k and some bandwidth b = bn. Substituting these estimators
for f and ρ in the expression for q yields the following plug-in estimator of q:

q̂(z) =
∫
f̂(z − ρ̂y − ρ̂2x)f̂(y) dy, z ∈ R.

In place of the kernel estimator f̂ we can use a weighted kernel estimator

f̂w(y) =
1
n

n∑
j=1

wjkb(y − ε̂j), y ∈ R.

This results in the plug-in estimator

q̂w(z) =
∫
f̂w(z − ρ̂y − ρ̂2x)f̂w(y) dy, z ∈ R.

Since the innovations have mean zero, we choose weights for which the weighted empirical distri-
bution of the residuals has mean zero. Motivated by Owen (1988, 2001), we take weights of the
form

wj =
1

1 + λ̂ε̂j

, (0.1)

where λ̂ is chosen such that the weights w1, . . . , wn are positive and
∑n

j=1 wj ε̂j = 0. This is possible
on the event {min1≤j≤n ε̂j < 0 < max1≤j≤n ε̂j}, which has probability tending to one; otherwise we
set λ̂ = 0.

We shall show that the estimators q̂ and q̂w are root-n consistent in the L1-norm and obey
functional central limit theorems in L1 with the weighted estimator resulting in a smaller asymptotic
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variance structure. To describe these results let us define functions χ0, χ1 and χ2 by

χ0(z) =
∫
f(z − ρy)f(y) dy,

χ1(z) =
∫
f(z − ρy)yf(y) dy,

χ2(z) =
∫

(z − ρy)f(z − ρy)f(y) dy, z ∈ R.

We shall require that f is of bounded variation. Then the first two of these functions will be shown
to be absolutely continuous with integrable a.e. derivatives χ′0 and χ′1. Now set χ = χ1 + χ2 and

q̇(z) = −2ρxχ′0(z)− χ′1(z), z ∈ R.

In the following, let ε and X be distributed as εt and Xt. Let fρ denote the density of ρε, i.e.
fρ(y) = f(y/ρ)/|ρ|. Define functions ψ and ψ∗ by

ψ(y, z) = fρ(z − y) + f(z − ρy) and ψ∗(y, z) = ψ(y, z)− σ−2yχ(z), y, z ∈ R.

These can be used to define processes

Ψ(z) =
1
n

n∑
j=1

(ψ(εj , z)− E[ψ(ε, z)]), z ∈ R,

Ψ∗(z) =
1
n

n∑
j=1

(ψ∗(εj , z)− E[ψ∗(ε, z)]), z ∈ R.

Finally, for t ∈ R, introduce the shift operator St which assigns to an integrable function h the
shifted version Sth defined by Sth(z) = h(z − t).

Theorem 1. Let ρ 6= 0. Suppose f has bounded variation and a finite moment of order greater than
16/7. Let k be the standard normal density and b ∼ (n log n)−1/4. Then

‖q̂ − q − Sρ2xΨ− (ρ̂− ρ)Sρ2xq̇‖1 = op(n−1/2),

‖q̂w − q − Sρ2xΨ∗ − (ρ̂− ρ)Sρ2xq̇‖1 = op(n−1/2).

Moreover, n1/2(q̂ − q) converges in distribution in L1 to Sρ2x(G∗ + σ−1Z1χ +
√

1− ρ2Z2q̇), while
n1/2(q̂w − q) converges in distribution in L1 to Sρ2x(G∗ +

√
1− ρ2Z2q̇), where Z1 and Z2 are inde-

pendent standard normal random variables independent of the centered L1-valued Gaussian process
G∗ that has the same covariance structure as ψ∗(ε, ·).

The rest of the paper is organized as follows. In Section 1 we describe our main result, a version of
Theorem 1 for certain weighted L1-norms. Theorem 1 then follows by taking the weight function to
be constant. Section 2 gives conditions under which q̂w is efficient for all finite-dimensional marginals
if an efficient estimator ρ̂ is used. Section 3 derives stochastic approximations for the residual-based
density estimators f̂ and f̂w used for plug-in. The proof of the stochastic approximations (1.6) and
(1.7) for q̂ and q̂w is in Section 4.
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1. A version of Theorem 1 in weighted L1-spaces

Let V be a positive measurable function. The V -norm of a measurable function h is defined by

‖h‖V =
∫
V (x)|h(x)| dx.

This is the usual L1-norm if V = 1. Let LV denote the space of all (equivalence classes of) measurable
functions with finite V -norm. In other words, LV is simply the L1-space for the measure that has
density V with respect to the Lebesgue measure. Throughout we always impose the following
assumptions on the function V .

Assumption 1. The function V is continuous at 0 with V (0) = 1 and satisfies

V (s+ t) ≤ V (s)V (t), s, t ∈ R, (1.1)

V (st) ≤ V (t), |s| ≤ 1, t ∈ R. (1.2)

Examples of such functions are V (y) = (1 + |y|)r and V (y) = exp(r|y|) for non-negative r. The
class of functions satisfying Assumption 1 is closed under multiplication and under taking positive
powers. Consequently, the following functions V∗ and Wα share Assumption 1 with V ,

V∗(y) = (1 + |y|)V (y) and Wα(y) = (1 + |y|)αV 2(y), y ∈ R,

with α ≥ 0.
Assumption 1 was introduced by Schick and Wefelmeyer (2007b). Property (1.1) is useful when

dealing with shifts and convolutions, while (1.2) is useful when dealing with rescaling. More precisely,
for functions g and h of finite V -norm we have

‖Sth‖V ≤ V (t)‖h‖V and ‖g ∗ h‖V ≤ ‖g‖V ‖h‖V

and, with hs(y) = h(y/s)/|s| for y ∈ R,

‖hs‖V ≤ ‖h‖V , 0 < |s| ≤ 1.

Furthermore, for each α > 1 we have the inequality

‖h‖2V ≤ Cα‖h2‖Wα (1.3)

with Cα =
∫

(1 + |y|)−α dy. See Schick and Wefelmeyer (2007b) for details.
To state our result for the space LV we need to strengthen the assumption that f has bounded

variation. Let h be an integrable function of bounded variation. Then there are finite measures µ1

and µ2 with equal mass µ1(R) = µ2(R) such that

h(x) = µ1((−∞, x])− µ2((−∞, x])
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for all but countably many x. This motivates the following definition. We say that an integrable
function h has bounded V -variation if h has bounded variation and the measures µ1 and µ2 can be
chosen such that

∫
V dµ1 and

∫
V dµ2 are finite.

In this section we no longer insist that ρ̂ is the least squares estimator. Instead we consider more
generally an estimator ρ̂ that satisfies a martingale approximation

ρ̂− ρ =
1
n

n∑
j=1

Xj−1φ(εj) + op(n−1/2) (1.4)

for some measurable function φ such that E[φ(ε)] = 0 and E[φ2(ε)] is finite. The least squares
estimator satisfies (1.4) with φ(y) = y/E[X2] = (1− ρ2)y/σ2, y ∈ R.

Theorem 2. Let ρ 6= 0. Suppose the density k has mean zero and is four times continuously
differentiable with bounded derivatives and k and its four derivatives have finite V 2

∗ -norms. Let
b ∼ (n log n)−1/4. Suppose f has bounded V -variation and∫ (

(1 + |y|)αV 2(y) + y2V (y) + |y|ξ
)
f(y) dy <∞ (1.5)

for some α > 1 and some ξ > 16/7. Let (1.4) hold and let γ denote the standard deviation of
X0φ(ε1). Then

‖q̂ − q − Sρ2xΨ− (ρ̂− ρ)Sρ2xq̇‖V = op(n−1/2), (1.6)

‖q̂w − q − Sρ2xΨ∗ − (ρ̂− ρ)Sρ2xq̇‖V = op(n−1/2). (1.7)

Moreover, n1/2(q̂−q) converges in distribution in LV to Sρ2x(G∗+σ−1Z1χ+γZ2q̇), while n1/2(q̂w−q)
converges in distribution in LV to Sρ2x(G∗ + γZ2q̇), where Z1 and Z2 are independent standard
normal random variables independent of the centered LV -valued Gaussian process G∗ that has the
same covariance structure as ψ∗(ε, ·).

We obtain Theorem 1 by taking V = 1, k the standard normal density, and ρ̂ the least squares
estimator, for which γ =

√
1− ρ2. If V (x) = (1 + |x|)r for some non-negative r, then (1.5) amounts

to a moment condition. For example, for r ≥ 1, (1.5) is equivalent to f having a finite moment of
order greater than 1 + 2r.

We shall defer the proof of the expansions (1.6) and (1.7) to Section 4. A proof of the weak
convergence of n1/2(q̂ − q) and n1/2(q̂w − q) is given next. For this let Z1, Z2 and G∗ be as in
Theorem 2. In view of the expansions (1.6) and (1.7) and the continuity of shifts and addition in
LV , it suffices to prove that An = n1/2(Ψ∗,Ψ − Ψ∗, (ρ̂ − ρ)q̇) converges in distribution in L3

V to
A = (G∗, σ

−1Z1χ, γZ2q̇). For this it is enough to show that the sequence An is tight in L3
V and

that Mh(An) converges to Mh(A) for every triplet h = (h1, h2, h3) of bounded measurable functions,
where Mh is the operator from L3

V to R defined by

Mh(g) =
∫ (

h1(z)g1(z) + h2(z)g2(z) + h3(z)g3(z)
)
dz, g = (g1, g2, g3) ∈ L3

V .
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Here we made use of the fact that the family Mh is a probability determining class on L3
V . In view

of (1.4) we obtain the expansion

Mh(An) = n−1/2
n∑

j=1

(
a1(εj)− E[a1(ε)]−

a2εj

σ2
+ a3Xj−1φ(εj)

)
+ op(n−1/2)

with a1(y) =
∫
h1(z)ψ∗(y, z) dz, a2 =

∫
h2(z)χ(z) dz and a3 =

∫
h3(z)q̇(z) dz. Note also that

E[X] = 0 and E[a1(ε)ε] = 0, the latter in view of (1.8). Thus the martingale central limit theorem
yields that Mh(An) is asymptotically normal with mean zero and variance

Var(a1(ε)) +
a2
2

σ2
+ a2

3γ
2.

This is also the variance of the centered normal random variable Mh(A). Thus we have shown
that Mh(An) converges to Mh(A) for each triplet h = (h1, h2, h3) of bounded measurable functions.
Hence we are left to establish tightness of An. For this we recall the central limit theorem for the
space LV ; see e.g. Ledoux and Talagrand (1991), Theorem 10.10.

Theorem 3. Let Y, Y1, Y2, . . . be independent and identically distributed LV -valued random vari-
ables with mean zero. Then n−1/2

∑n
j=1 Yj converges in distribution in the space LV to a centered

Gaussian process (with the same covariance structure as Y ) if and only if

lim
t→∞

t2P (‖Y ‖V > t) = 0 and
∫
V (z)(E[Y 2(z)])1/2 dz <∞.

A sufficient condition for this central limit theorem is that E[Y 2] has finite Wα-norm for some
α > 1; see Schick and Wefelmeyer (2007b).

Abbreviate Wα by W for the α of Theorem 2. For each z ∈ R, we calculate

E[ψ(ε, z)ε] =
∫
fρ(z − y)yf(y) dy + χ1(z) =

∫
(z − y)f(z − y)fρ(y) dy + χ1(z) = χ(z) (1.8)

and thus find

E[ψ2
∗(ε, z)] = E[ψ2(ε, z)]− σ−2χ2(z) ≤ E[ψ2(ε, z)] ≤ 2f2

ρ ∗ f(z) + 2f2 ∗ fρ(z).

Since f has finite W -norm and is bounded under the assumptions of Theorem 2, we obtain that

‖E[ψ2
∗(ε, ·)]‖W ≤ ‖E[ψ2(ε, ·)]‖W ≤ 2‖f2

ρ ∗ f‖W + 2‖f2 ∗ fρ‖W

≤ 2‖f2
ρ‖W ‖f‖W + 2‖f2‖W ‖fρ‖W ≤ 4D‖f‖2W

for some constant D. Thus n1/2Ψ and n1/2Ψ∗ obey a central limit theorem in LV . Since n1/2(ρ̂−ρ)
is tight, so is n1/2(ρ̂ − ρ)q̇ in view of the continuity of the map (s, h) 7→ sh from R × LV into LV .
This shows that the sequence An is tight in L3

V .
We end this section by stating some expansions in LV . We say a function h is LV -Lipschitz if

there is a constant C such that

‖Sth− h‖V ≤ C|t|V (t), t ∈ R.



8 TITLE WILL BE SET BY THE PUBLISHER

It was shown in Schick and Wefelmeyer (2007b), Lemma 8, that functions of bounded V -variation
are LV -Lipschitz.

Let A denote the set of functions g with finite V -norm that are absolutely continuous and whose
a.e. derivatives g′ have finite V -norms. Let AL = {g ∈ A : g′ is LV -Lipschitz} and A2 = {g ∈ A :
g′ ∈ A}.

Lemma 1. Let K be a measurable function with finite V∗-norm. Then νi =
∫
uiK(u) du is finite

for i = 0, 1, and the following are true.

(1) If g is LV -Lipschitz, then ‖g ∗Kb − ν0g‖V = O(b).
(2) If g belongs to A, then ‖g ∗Kb − ν0g + bν1g

′‖V = o(b).
(3) If g belongs to AL and

∫
V (u)u2|K(u)| du is finite, then ‖g ∗Kb − ν0g + bν1g

′‖V = O(b2).

Proof. The first assertion follows from Lemma 7(1) of Schick and Wefelmeyer (2007b) with γ = 1;
the last two assertions follow from their Lemma 6. �

2. Efficiency

In this section we recall a characterization of efficient estimators in autoregressive models and
use it to prove that q̂w is efficient if an efficient estimator ρ̂ is used. Fix ρ ∈ (−1, 1) and an
innovation density f . Assume that f is absolutely continuous with a.e. derivative f ′, and that the
Fisher information for location, J = E[`2(ε)], is finite, where ` = −f ′/f . Introduce perturbations
ρnr = ρ + n−1/2r, r ∈ R, and fnh = f(1 + n−1/2h) with h in the space H of bounded measurable
functions such that E[h(ε)] = E[εh(ε)] = 0. Let Pn+1 and Pn+1,rh denote the joint stationary law
of (X0, . . . , Xn) under (ρ, f) and (ρnr, fnh), respectively. Then we have local asymptotic normality
under Pn+1,

log
dPn+1,rh

dPn+1
= n−1/2

n∑
j=1

(
rXj−1`(εj) + h(εj)

)
− 1

2
(
r2E[X2]J + E[h2(ε)]

)
+ op(1);

see e.g. Koul and Schick (1997). Let H̄ denote the closure of H in L2(f). The squared norm on
the right-hand side defines an inner product on R× H̄. A real-valued functional κ of (ρ, f) is called
differentiable at (ρ, f) with gradient (rκ, hκ) ∈ R× H̄ if

n1/2(κ(ρnr, fnh)− κ(ρ, f)) → rκrE[X2]J + E[hκ(ε)h(ε)], (r, h) ∈ R×H.

An estimator κ̂ of κ is called regular at (ρ, f) with limit L if L is a random variable such that

n1/2(κ̂− κ(ρnr, fnh)) ⇒ L under Pn+1,rh, (r, h) ∈ R×H.

The convolution theorem of Hájek and LeCam says that L is distributed as the convolution of
some random variable with a normal random variable N that has mean 0 and variance r2κE[X2]J +
E[h2

κ(ε)]. This justifies calling κ̂ efficient if L is distributed as N .
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An estimator κ̂ of κ is called asymptotically linear at (ρ, f) with influence function g if g ∈ L2(P2)
with E(g(X0, X1)|X0) = 0 and

n1/2(κ̂− κ(ρ, f)) = n−1/2
n∑

j=1

g(Xj−1, Xj) + op(1).

It follows from a version of the convolution theorem that an estimator κ̂ is regular and efficient if
and only if it is asymptotically linear with influence function g(X0, X1) = rκX0`(ε1) + hκ(ε1). We
refer to Bickel et al. (1998) for these results.

We read off immediately the well-known result that an estimator for ρ is regular and efficient if
(and only if) it is asymptotically linear with influence function rρX0`(ε1), where 1/rρ = E[X2]J ,
i.e. expansion (1.4) holds with φ(y) = rρ`(y). Efficient estimators for parameters of time series are
constructed in Kreiss (1987a), (1987b), Jeganathan (1995), Drost et al. (1997) and Koul and Schick
(1997). If we use an efficient estimator ρ̂ for q̂w, then, by Theorem 2, q̂w(z) has influence function
rzX0`(ε1) + Sρ2x(ψ∗(ε1, z)− E[ψ∗(ε, z)]) with rz = rρSρ2xq̇(z). To prove that q̂w(z) is efficient, we
need only check that (rz, Sρ2x(ψ∗(ε1, z) − E[ψ∗(ε, z)])) is the gradient of κ(ρ, f) = q(z). Note first
that for (r, h) ∈ R×H we can write

n1/2(κ(ρnr, fnh)− κ(ρ, f))

= n1/2
( ∫

fnh(z − ρnry − ρ2
nrx)fnh(y) dy −

∫
f(z − ρy − ρ2x)f(y) dy

)
.

By Taylor expansion this converges to

− r2ρx
∫
f(z − ρy − ρ2x)`(z − ρy − ρ2x)f(y) dy

− r

∫
f(z − ρy − ρ2x)y`(z − ρy − ρ2x)f(y) dy

+
∫
f(z − ρy − ρ2x)h(z − ρy − ρ2x)f(y) dy

+
∫
f(z − ρy − ρ2x)h(y)f(y) dy

which can be rewritten as

− r
(
2ρxSρ2xχ

′
0(z) + Sρ2xχ

′
1(z)

)
+ Sρ2x

∫
fρ(z − y)h(y)f(y) dy + Sρ2x

∫
f(z − ρy)h(y)f(y) dy

= rSρ2xq̇(z) + E[Sρ2xψ(ε, z)h(ε)]

= rzrE[X2]J + E[Sρ2x(ψ∗(ε, z)− E[ψ∗(ε, z)])h(ε)].

This shows that κ(ρ, f) = q(z) has the desired gradient. In the last step we have used that ψ∗(ε, z)−
E[ψ∗(ε, z)] is the projection of ψ(ε, z) onto H̄.
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3. The behavior of the density estimators

In this section we derive convergence rates and stochastic expansions for residual-based density
estimators. Throughout the section we let K denote a measurable function with finite V -norm and
set

νK =
∫
K(y) dy and Kb(y) = K(y/b)/b, y ∈ R.

For z ∈ R let

Ĥw(z) =
1
n

n∑
j=1

wjKb(z − ε̂j), Ĥ(z) =
1
n

n∑
j=1

Kb(z − ε̂j),

H̃(z) =
1
n

n∑
j=1

Kb(z − εj), H̄(z) = E[H̃(z)] = Kb ∗ f(z).

Now fix an α with 1 < α ≤ 2 and set W = Wα. Since f has a finite second moment, so do the
stationary random variables Xt, and this yields

max
1≤j≤n

|Xj−1| = op(n1/2). (3.1)

The root-n consistency of ρ̂ then implies that

τn := max
1≤j≤n

|ε̂j − εj | = |ρ̂− ρ| max
1≤j≤n

|Xj−1| = op(1). (3.2)

From Lemma 1 we obtain the following result.

Lemma 2. Let f have finite V -norm and be LV -Lipschitz. Let K have finite V∗-norm. Then

‖H̄ − νKf‖V = O(b).

Lemma 3. Let f and K2 have finite W -norms. Then

‖H̃ − H̄‖V = Op(n−1/2b−1/2).

Proof. We calculate

nVar(H̃(y)) ≤ E[K2
b (y − ε)] = K2

b ∗ f(y), y ∈ R,

and thus obtain in view of (1.3) the bound

nE[‖H̃ − H̄‖2V ] ≤ Cα‖K2
b ∗ f‖W ≤ Cα‖f‖W ‖K2

b ‖W .

This yields the desired result as ‖K2
b ‖W ≤ b−1‖K2‖W for b ≤ 1. �

Lemma 4. Suppose that f is LV -Lipschitz and has finite W -norm. Let K be twice continuously
differentiable, let (K ′)2 and (K ′′)2 have finite W -norms, and let K ′ and K ′′ have finite V∗-norms.
Let nb4 → 0. Then

‖Ĥ − H̃‖V = Op(n−1b−2).
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Proof. We may assume that b ≤ 1. In view of V ≤ V∗ ≤W , the functions f , K ′ and K ′′ have finite
V -norms. Let K ′

b and K ′′
b denote the first and second derivative of Kb. Then K ′

b(x) = K ′(x/b)/b2

and K ′′
b (x) = K ′′(x/b)/b3. Using this it is easy to see that

‖K ′
b‖V = O(b−1), ‖K ′′

b ‖V = O(b−2), ‖(K ′
b)

2‖W = O(b−3), ‖(K ′′
b )2‖W = O(b−5).

Since f is LV -Lipschitz and K ′ and K ′′ have finite V∗-norms, and since the integrals
∫
K ′(u) du and∫

K ′′(u) du equal zero, part (i) of Lemma 1 implies that

‖f ∗K ′
b‖V = O(1) and ‖f ∗K ′′

b ‖V = O(b−1). (3.3)

Set

Γ (y) =
1
n

n∑
j=1

Xj−1K
′
b(y − εj), Γ̄ (y) =

1
n

n∑
j=1

Xj−1K
′
b ∗ f(y), y ∈ R.

Then we have

‖Γ̄‖V = Op

( 1
n

n∑
j=1

Xj−1

)
= Op(n−1/2) = op(n−1b−2).

Note that nE[(Γ (y)− Γ̄ (y))2] = E[X2](K ′
b)

2 ∗ f(y). Using this and (1.3) we obtain that

nE[‖Γ − Γ̄‖2V ] ≤ CαE[X2]‖(K ′
b)

2 ∗ f‖W ≤ CαE[X2]‖f‖W ‖(K ′
b)

2‖W = O(b−3).

The above shows that
‖(ρ̂− ρ)Γ‖V = Op(n−1b−3/2).

Thus it suffices to show that

‖Ĥ − H̃ − (ρ̂− ρ)Γ‖V = Op(n−1b−2).

A Taylor expansion shows that Ĥ(y)− H̃(y)− (ρ̂− ρ)Γ (y) equals

1
n

n∑
j=1

(ρ̂− ρ)2X2
j−1

∫ 1

0

K ′′
b

(
y − εj + u(ρ̂− ρ)Xj−1

)
(1− u) du.

Using ‖Sth‖V ≤ V (t)‖h‖V and V (s+ t) ≤ V (s)V (t) we obtain

‖Ĥ − H̃ − (ρ̂− ρ)Γ‖V ≤ 1
n

n∑
j=1

(ρ̂− ρ)2X2
j−1V (εj)V (τn)‖K ′′

b ‖V .

This gives the desired result in view of the bounds

(ρ̂− ρ)2‖K ′′
b ‖V = Op(n−1b−2), V (τn) = 1 + op(1),

1
n

n∑
j=1

X2
j−1V (εj) = Op(1),

the latter by the finiteness of E[X2
0V (ε1)]. �

A stronger result is possible under an additional moment assumption.
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Lemma 5. Let the assumptions of Lemma 4 hold with b ∼ (n log n)−1/4. Let f have a finite moment
of order ξ > 16/7. Then

‖Ĥ − H̃‖V = op(n−1/2).

Proof. We may assume that b ≤ 1 and ξ < 4. It follows from the moment assumption on f that the
stationary random variables Xt also have finite moments of order ξ. This implies that

max
1≤j≤n

|Xj−1| = op(n1/ξ). (3.4)

In view of the results in the proof of Lemma 4 it suffices to show that

‖Ĥ − H̃ − (ρ̂− ρ)Γ‖V = op(n−1/2).

Set rnj = n−1/2Xj−1 and ∆̂ = n1/2(ρ̂− ρ). Then ε̂j − εj = −(ρ̂− ρ)Xj−1 = −∆̂rnj . This allows us
to write Ĥ(y)− H̃(y)− (ρ̂− ρ)Γ (y) as R∆̂(y), where

R∆(y) =
1
n

n∑
j=1

(
Kb(y − εj + ∆rnj)−Kb(y − εi)−∆rnjK

′
b(y − εj)

)
.

In view of the n1/2-consistency of ρ̂, it suffices to show that, for each (large) constant C,

sup
|∆|≤C

‖R∆‖V = op(n−1/2). (3.5)

Now fix such a C. A Taylor expansion shows that

R∆(y) =
1
n

n∑
j=1

(∆rnj)2
∫ 1

0

K ′′
b (y − εj + u∆rnj)(1− u) du

and that

R∆+∆̃(y)−R∆(y) =
1
n

n∑
j=1

∆̃rnj

∫ 1

0

(∆ + v∆̃)rnj

∫ 1

0

K ′′
b

(
y − εj + u(∆ + v∆̃)rnj

)
du dv.

Let a = an be a sequence of positive numbers such that C ≥ a and a ∼ (log n)−1. It follows from
‖Sth‖V ≤ V (t)‖h‖V and the properties of V that

sup
|∆|≤C

sup
|∆̃|≤a

‖R∆+∆̃ −R∆‖V ≤ a(C + a)V
(
(C + a) max

1≤j≤n
|rnj |

)
‖K ′′

b ‖V
1
n2

n∑
j=1

X2
j−1V (εj).

Since max1≤j≤n |rnj | = op(1) and E[X2
j−1V (εj)] = E[X2]‖f‖V , we see that

sup
|∆|≤C

sup
|∆̃|≤a

‖R∆+∆̃ −R∆‖V = Op(an−1b−2) = Op((n log n)−1/2). (3.6)

Let now R∗∆(y) be defined as R∆(y), but with rnj replaced by r∗nj = rnj1[|Xj−1| ≤ n1/ξ]. Then
R∗∆(y) and R∆(y) can differ only on the event {max1≤j≤n |Xj−1| > n1/ξ} which has probability
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tending to zero. This shows that

sup
|∆|≤C

‖R∗∆ −R∆‖V = op(n−1/2). (3.7)

Now set

R̄∗∆(y) =
1
n

n∑
j=1

(∆r∗nj)
2

∫ 1

0

∫
K ′′

bn

(
y − z + u∆r∗nj

)
f(z) dz (1− u) du.

In view of (3.3) and (1.1) we obtain

sup
|∆|≤C

‖R̄∗∆‖V ≤ 1
n

n∑
j=1

(
∆r∗nj

)2
V

(
C max

1≤j≤n
|rnj |

)
‖K ′′

b ∗ f‖V = Op(n−1b−1) = op(n−1/2). (3.8)

Next,

E[‖(R∗∆ − R̄∗∆)2‖W ] ≤
∫ 1

0

∫
W (y)E[Γ2

∆(y, u)] dy du,

with

Γ∆(y, u) =
1
n

n∑
j=1

(∆r∗nj)
2
(
K ′′

bn

(
y − εj + u∆r∗nj

)
−

∫
K ′′

bn

(
y − z + u∆r∗nj

)
f(z) dz

)
a martingale. Since

E[Γ 2
∆(y, u)] ≤ n−3|∆|4E[|X0|41[|X0| ≤ n1/ξ](K ′′

bn
(y − ε1 + u∆n−1/2X0))2],

we obtain from (1.1) with W in place of V that

n sup
|∆|≤C

E[‖(R∗∆ − R̄∗∆)2‖W ] ≤W (Cn−1/2+1/ξ)C4n−2+(4−ξ)/ξb−5
n E[|X|ξ]‖f‖W ‖(K ′′)2‖W .

Since −2 + (4− ξ)/ξ + 5/4 < 0 in view of ξ > 16/7, we arrive at the rate

n sup
|∆|≤C

E[‖(R∗∆ − R̄∗∆)2‖W ] = Op(n−ζ)

for some ζ > 0. In view of (1.3) we then have, for every finite subset Dn of the interval (−C,C)
with Mn elements,

P
(

max
∆∈Dn

n1/2‖R∗∆ − R̄∗∆‖V > η
)
≤

∑
∆∈Dn

P (n1/2‖R∗∆ − R̄∗∆‖V > η)

≤
∑

∆∈Dn

P (nCα‖(R∗∆ − R̄∗∆)2‖W > η2)

≤
∑

∆∈Dn

nCα

η2
E[‖(R∗∆ − R̄∗∆)2‖W ], η > 0.

This shows that, for every η > 0 and every finite subset Dn as above,

P
(

max
∆∈Dn

n1/2‖R∗∆ − R̄∗∆‖V > η
)

= O(Mnn
−ζ). (3.9)
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Now take Dn to be such that the intervals of length an centered at elements of Dn cover the interval
[−C,C]. We can choose Dn such that Mn = O(a−1

n ) = O(log n). The desired (3.5) follows from
(3.6)–(3.9). �

Lemma 6. Let the assumptions on f and K of Lemmas 2 to 4 hold. Let nb4 → 0 and nb8/3 →∞.
Then we have

‖Ĥ − νKf‖V = op(n−1/4).

In addition, if K has finite W -norm and
∫
u2|K(u)| du is finite, then

‖Ĥ − νKf‖V∗ = op(n−1/16).

If also
∫
y2V (y)f(y) dy is finite, then

‖Ĥ − νKf‖V∗ = op(n−1/8).

Proof. The first conclusion is a consequence of Lemmas 2 to 4. Since α > 1, we have

(1 + |y|)V 3/2(y) ≤W (y), y ∈ R,

and hence the inequality

‖h‖2V∗ =
∫

(1 + |y|)V 3/2(y)|h(y)| dy
∫

(1 + |y|)V 1/2(y)|h(y)| dy ≤ ‖h‖W ‖h‖1/2
U ‖h‖1/2

V

where U(y) = (1 + |y|)2, y ∈ R. The second conclusion now follows from the facts that ‖f‖W

and ‖f‖U are finite and that ‖Ĥ‖W = Op(1) and ‖Ĥ‖U = Op(1). For example, using ‖Sth‖W ≤
W (t)‖h‖W and W (x+ y) ≤W (x)W (y), we find

‖Ĥ‖W ≤ 1
n

n∑
j=1

∫
|Kb(z − ε̂j)|W (z) dz ≤ ‖Kb‖W

1
n

n∑
j=1

W (ε̂j) ≤ ‖K‖WW (τn)
1
n

n∑
j=1

W (εj)

for b ≤ 1 and thus ‖Ĥ‖W = Op(1) in view of (3.2) and finiteness of E[W (ε)] = ‖f‖W .
The third conclusion is proved similarly using instead the inequality

‖h‖2V∗ ≤
∫

(1 + |y|)2V (y)|h(y)| dy
∫
V (y)|h(y)| dy

�

Let ι denote the identity map on R.

Lemma 7. Under all the assumptions of Lemma 6 except the very last, we have

‖Ĥw − Ĥ + λ̂νKιf‖V = op(n−1/2).
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Proof. It was shown in Müller et al. (2005) that

λ̂ = σ−2 1
n

n∑
j=1

εj + op(n−1/2) = Op(n−1/2), (3.10)

w∗ = max
1≤j≤n

|wj − 1| = op(1), (3.11)

and that wj − 1 = −λ̂ε̂jwj for j = 1, . . . , n. Thus we obtain the identity

Ĥw(y)− Ĥ(y) + λ̂yf(y) = −λ̂y(Ĥw(y)− f(y)) + bλ̂
1
n

n∑
j=1

wj(ιK)b(y − ε̂j).

Since ιK has finite V -norm, we obtain∥∥∥ 1
n

n∑
j=1

wj(ιK)b(· − ε̂j)
∥∥∥

V
≤ 1
n

n∑
j=1

wjV (ε̂j)‖ιK‖V = Op(1).

Thus it suffices to show that ‖Ĥw − νKf‖V∗ = op(1). But this follows from

‖Ĥw − Ĥ‖V∗ ≤ w∗
1
n

n∑
j=1

V∗(ε̂j)‖K‖V∗ = op(1)

and ‖Ĥ − νKf‖V∗ = op(1) in view of Lemma 6. �

All the assumptions on K appearing in the previous lemmas are met if K is twice continuously
differentiable with bounded derivatives and if K and its derivatives K ′ and K ′′ have finite V 2

∗ -norms.
Now let f̃ be the kernel estimator based on the actual observations,

f̃(y) =
1
n

n∑
j=1

kb(y − εj), y ∈ R,

and set f̄ = f ∗ kb. If we take K = k, then we have νK = 1, Ĥw = f̂w, Ĥ = f̂ , H̃ = f̃ and
H̄ = f ∗ kb = f̄ ; if we take K = k′, then νK = 0, Ĥw = bf̂ ′w, Ĥ = bf̂ ′, H̃ = bf̃ ′ and H̄ = bf̄ ′; and if
we take K = k′′ we have νK = 0, Ĥw = b2f̂ ′′w, Ĥ = b2f̂ ′′, H̃ = b2f̃ ′′ and H̄ = b2f̄ ′′. Thus we have
the following results.

Proposition 1. Suppose the density k is four times continuously differentiable with bounded deriva-
tives and k and its four derivatives have finite V 2

∗ -norms. Let b ∼ (n log n)−1/4. Suppose f has finite
W -norm and a finite moment of order greater than 16/7 and is LV -Lipschitz, and ι2f has finite
V -norm. Then

‖f̂w − f‖V = op(n−1/4), ‖f̂w − f‖V∗ = op(n−1/8),

‖f̂w − f̃ + λ̂ιf‖V = op(n−1/2), ‖f̂w − f̃‖V = op(n−1/2 log n),

‖f̂ ′w − f̄ ′‖V = op(n−1/8 log n), ‖f̂ ′′w − f̄ ′′‖V = op(n1/8 log n).

Moreover,
‖f̂w‖V + ‖ιf̂w‖V + ‖ι2f̂w‖V = Op(1) and ‖f̂ ′′w‖V = op(n1/4 log n).
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4. Proofs of (1.6) and (1.7)

For the proofs of (1.6) and (1.7) we need some smoothness results for convolutions. For r in
(−1, 1) and integrable functions g and h, let us denote by Br(g, h) the integrable function defined
by

Br(g, h)(z) =
∫
g(z − ry)h(y) dy, z ∈ R.

It is easy to check that if g and h have finite V -norms, so does Br(g, h), and

‖Br(g, h)‖V ≤ ‖g‖V ‖h‖V .

Since Br(ḡ, h̄)−Br(g, h) = Br(ḡ − g, h̄) +Br(g, h̄− h), we find that

‖Br(ḡ, h̄)−Br(g, h)‖V ≤ ‖ḡ − g‖V ‖h̄‖V + ‖g‖V ‖h̄− h‖V ,

for ḡ, g, h̄, h with finite V -norms.

Lemma 8. Let g and h have finite V -norms and |r|, |ρ| < 1 with ρ 6= 0. Then the following are
true.

(1) If g has bounded V -variation, then Bρ(g, h) belongs to A.
(2) If h has bounded V -variation, then Bρ(g, h) belongs to A.
(3) If g and h have bounded V -variation, then Bρ(g, h) belongs to AL.
(4) If g belongs to A and ιh has finite V -norm, then, for |r − ρ| ≤ 1− |ρ|,

‖Br(g, h)−Bρ(g, h)‖V ≤ |r − ρ|‖g′‖V ‖ιh‖V .

(5) If g belongs to A2, then

‖StBr(g, h)−Br(g, h)− tBr(−g′, h)‖V ≤ t2V (t)‖g′′‖V ‖h‖V

and, if also ι2h has a finite V -norm, then, for |r − ρ| ≤ |ρ|,

‖Br(g, h)−Bρ(g, h)− (r − ρ)Br(−g′, ιh)‖V ≤ (r − ρ)2‖g′′‖V ‖ι2h‖V .

Proof. The proof of (1) is contained in the proof of Lemma 8 in Schick and Wefelmeyer (2007b). The
proof of (2) is essentially the same. To prove (3), recall first that a function of bounded V -variation
is LV -Lipschitz. Then (3) follows from Lemma 4.6 in Schick and Wefelmeyer (2006). To prove (4),
write

Br(g, h)(z)−Bρ(g, h)(z) = −(r − ρ)
∫ ∫ 1

0

g′(z − ρy − t(r − ρ)y) dt yh(y) dy

to obtain

‖Br(g, h)−Bρ(g, h)‖V ≤ |r − ρ|
∫
V (z)

∫ ∫ 1

0

|g′(z − ρy − u(r − ρ)y)| du |yh(y)| dy dz

= |r − ρ|
∫ 1

0

∫ ∫
V (z + ρy + u(r − ρ)y)|g′(z)| dz |yh(y)| dy du.



TITLE WILL BE SET BY THE PUBLISHER 17

Then use V (s+ t) ≤ V (s)V (t). The proof of (5) is similar. �

We are now ready to prove (1.7). The proof of (1.6) is similar. Set ∆̂ = (ρ̂2 − ρ2)x. We have the
identities

q̂w = Sρ̂2xBρ̂(f̂w, f̂w) and q = Sρ2xBρ(f, f).

Since ‖Sth‖V ≤ V (t)‖h‖V and St+u = StSu, it suffices to prove

‖S∆̂Bρ̂(f̂w, f̂w)−Bρ(f, f)−Ψ∗ − (ρ̂− ρ)q̇‖V = op(n−1/2).

Let us set

An,1(z) =
1
n

n∑
j=1

(fρ(z − εj)− E[fρ(z − ε)]),

An,2(z) =
1
n

n∑
j=1

(f(z − ρεj)− E[f(z − ρε)]), z ∈ R.

Then we have

Ψ∗ = An,1 + An,2 − σ−2 1
n

n∑
j=1

εjχ.

We can show that An,1 ∗kb = Bρ(f̃− f̄ , f) and An,2 ∗kb = Bρ(f, f̃− f̄). By the tightness of n1/2An,i,
we obtain ‖n1/2An,i ∗ kb − n1/2An,i‖V = op(1) for i = 1, 2. In view of this and (3.10) it is enough to
show that

‖S∆̂Bρ̂(f̂w, f̂w)−Bρ(f, f)−Bρ(f̃ − f̄ , f)−Bρ(f, f̃ − f̄)− (ρ̂− ρ)q̇ + λ̂χ‖V = op(n−1/2).

We have the identities

q̇ = 2ρxBρ(−f, f)′ +Bρ(−f, ιf)′ and χ = Bρ(f, ιf) +Bρ(ιf, f).

Thus the desired result will follow if show

‖S∆̂Bρ̂(f̂w, f̂w)−Bρ̂(f̂w, f̂w)− (ρ̂− ρ)2ρxBρ(−f, f)′‖V = op(n−1/2), (4.1)

‖Bρ̂(f̂w, f̂w)−Bρ(f̂w, f̂w)− (ρ̂− ρ)Bρ(−f, ιf)′‖V = op(n−1/2), (4.2)

‖Bρ(f̂w, f̂w)−Bρ(f̃ , f̂w) + λ̂Bρ(ιf, f)‖V = op(n−1/2), (4.3)

‖Bρ(f̃ , f̂w)−Bρ(f̃ , f̃) + λ̂Bρ(f, ιf)‖V = op(n−1/2), (4.4)

‖Bρ(f̃ , f̃)−Bρ(f̄ , f̄)−Bρ(f̃ − f̄ , f)−Bρ(f, f̃ − f̄)‖V = op(n−1/2), (4.5)

‖Bρ(f̄ , f̄)−Bρ(f, f)‖V = O(b2) = op(n−1/2). (4.6)
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Since
∫
k′(u) du = 0 and

∫
uk′(u) du = −1, Lemma 1 yields ‖g ∗ k′b‖V = O(1) if g is LV -Lipschitz

and ‖g ∗ k′b − g′‖V = o(1) if g belongs to A. In view of Lemma 8 and Proposition 1 we have

‖S∆̂Bρ̂(f̂w, f̂w)−Bρ̂(f̂w, f̂w)− ∆̂Bρ̂(−f̂ ′w, f̂w)‖V ≤ ∆̂2V (∆̂)‖f̂ ′′w‖V ‖f̂w‖V = op(n−1/2),

‖Bρ̂(f̂ ′w, f̂w)−Bρ(f̂ ′w, f̂w)‖V ≤ |ρ̂− ρ|‖f̂ ′′w‖V ‖ιf̂w‖V = op(1),

‖Bρ(f̂ ′w, f̂w)−Bρ(f̄ ′, f)‖V ≤ ‖f̂ ′w − f̄ ′‖V ‖f̂w‖V + ‖f̄ ′‖V ‖f̂w − f‖V = op(1),

‖Bρ(f̄ ′, f)−Bρ(f, f)′‖V = ‖Bρ(f, f) ∗ k′b −Bρ(f, f)′‖V → 0.

These four bounds and the fact that ∆̂ = (ρ̂− ρ)2ρx+ op(n−1/2) show that (4.1) holds.
Using again Lemma 8 and Proposition 1, we find

‖Bρ̂(f̂w, f̂w)−Bρ(f̂w, f̂w)− (ρ̂− ρ)Bρ(−f̂ ′w, ιf̂w)‖V ≤ (ρ̂− ρ)2‖f̂ ′′w‖V ‖ι2f̂w‖V = op(n−1/2),

‖Bρ(−f̂ ′w, ιf̂w)−Bρ(−f̄ ′, ιf‖V ≤ ‖f̂ ′w − f̄ ′‖V ‖ιf̂w‖V + ‖f̄ ′‖V ‖ι(f̂w − f)‖V = op(1),

‖Bρ(−f̄ ′, ιf)−Bρ(−f, ιf)′‖V = ‖Bρ(−f, ιf) ∗ k′b −Bρ(−f, ιf)′‖V → 0.

These three bounds show that (4.2) holds.
Since

‖Bρ(f̂w, f̂w)−Bρ(f̃ , f̂w)−Bρ(f̂w − f̃ , f)‖V ≤ ‖f̂w − f̃‖V ‖f̂w − f‖V = op(n−1/2),

‖Bρ(f̂w − f̃ , f) + λ̂Bρ(ιf, f)‖V ≤ ‖f‖V ‖f̂w − f̃ + λ̂ιf‖V = op(n−1/2),

we obtain (4.3). A similar argument yields (4.4).
The inequalities

‖Bρ(f̃ , f̃)−Bρ(f̄ , f̃)−Bρ(f̃ − f̄ , f)‖V ≤ ‖f̃ − f̄‖V ‖f̃ − f‖V = op(n−1/2),

‖Bρ(f̄ , f̃)−Bρ(f̄ , f̄)−Bρ(f, f̃ − f̄)‖V ≤ ‖f̃ − f̄‖V ‖f̃ − f‖V = op(n−1/2)

imply (4.5).
It is easy to check that Bρ(f̄ , f̄) = Bρ(f, f)∗kb ∗kρb = Bρ(f, f)∗ (k ∗kρ)b. Since Bρ(f, f) belongs

to AL by Lemma 8 and K = k ∗ kρ has finite V 2
∗ -norm, part (iii) of Lemma 1 gives (4.6).
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