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Abstract. The stationary density of an invertible linear processes can be estimated at

the parametric rate by a convolution of residual-based kernel estimators. We have shown

elsewhere that the convergence is uniform and that a functional central limit theorem holds

in the space of continuous functions vanishing at infinity. Here we show that analogous

results hold in weighted L1-spaces. We do not require smoothness of the innovation density.
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1. Introduction.

Kernel estimators for the stationary density of linear processes are well-studied; see
Chanda (1983), Hall and Hart (1990), Tran (1992), Hallin and Tran (1996), Coulon-Prieur
and Doukhan (2000), Honda (2000), Lu (2001), Hallin, Lu and Tran (2001), Wu and Miel-
niczuk (2002), Bryk and Mielniczuk (2005) and Schick and Wefelmeyer (2006).

Kernel estimators are nonparametric estimators that do not use the structure of the
underlying model. Sometimes the structure of the model can be exploited to construct
estimators that converge at faster and even parametric rates. This was observed by Frees
(1994) when estimating densities of certain functions q(X1, . . . , Xm) on the basis of in-
dependent observations X1, . . . , Xn. Saavedra and Cao (2000) consider the special case
q(X1, X2) = X1 + aX2. Schick and Wefelmeyer (2004b, 2007a) prove functional conver-
gence for q(X1, . . . , Xm) = u1(X1) + · · ·+um(Xm) and q(X1, X2) = X1 +X2, viewing their
estimators as elements of L1 or of the space C0 of continuous functions on R vanishing
at infinity. Giné and Mason (2007a, 2007b) obtain functional results and laws of the it-
erated logarithm in Lp, 1 ≤ p ≤ ∞, and locally uniformly in the bandwidth, for general
q(X1, . . . , Xm). Du and Schick (2007) obtain functional results in C0 and Lp for estimators
of derivatives of convolutions.

Special cases of the semiparametric time series model considered here have also been
studied. Saavedra and Cao (1999) consider pointwise convergence of plug-in estimators for
the stationary density of moving average processes of order one. Schick and Wefelmeyer
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(2004a) obtain asymptotic normality and efficiency, and Schick and Wefelmeyer (2004c)
generalize this result to higher order moving average processes and to functional convergence
in L1 and C0.

For general invertible linear processes, Schick and Wefelmeyer (2007b) construct n1/2-
consistent estimators and prove functional convergence in C0. Here we obtain an analogous
result in weighted L1-spaces. We denote by LV the space of functions with finite V -norm
‖a‖V =

∫
V (x)|a(x)| dx. Our main result is formulated for V (x) = Vr(x) = (1 + |x|)r for

some non-negative r. Functional results for density estimators in LV are useful if we want to
estimate expectations under the stationary law of functions dominated by V by plugging in
our density estimator, like moments and absolute moments. The choice V = 1 corresponds
to the natural distance between densities.

As in Schick and Wefelmeyer (2007b), we consider a stationary linear process with infinite-
order moving average representation

(1.1) Xt = εt +
∞∑

s=1

ϕsεt−s, t ∈ Z,

with summable coefficients,
∑∞

s=1 |ϕs| < ∞, and i.i.d. innovations εt, t ∈ Z, that have
mean zero and finite variance. Suppose the innovations have a density f . Then X0 has
a density, say h. The usual estimator of this density from observations X1, . . . , Xn of the
linear process is a kernel density estimator h̃(x) = (1/n)

∑n
j=1 kbn(x − Xj), where bn is a

sequence of bandwidths and kb = k(x/b)/b for some kernel k and some b > 0. In order to
construct a n1/2-consistent estimator of h, we follow Schick and Wefelmeyer (2007b) and
set

Yt = Xt − εt =
∞∑

s=1

ϕsεt−s, t ∈ Z.

We must assume that the representation X0 = ε0 + Y0 is nondegenerate:

(C) At least one of the moving average coefficients ϕs is nonzero.

Then Y0 has a density, say g. Since Y0 is independent of ε0, we can express the density
h of X0 as the convolution h = f ∗ g of f and g. We obtain an estimator of h as ĥ = f̂ ∗ ĝ,
where f̂ and ĝ are estimators of f and g. We base f̂ and ĝ on estimators of the innovations.
For this we require invertibility of the process.

(I) The function φ(z) = 1 +
∑∞

s=1 ϕsz
s is bounded and bounded away from zero on the

complex unit disk D = {z ∈ C : |z| ≤ 1}.

Then ρ(z) = 1/φ(z) = 1 −
∑∞

s=1 %sz
s is also bounded and bounded away from zero on

D. Hence the innovations have the infinite-order autoregressive representation

(1.2) εt = Xt −
∞∑

s=1

%sXt−s, t ∈ Z.
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Let pn be positive integers with pn/n→ 0. For j = pn +1, . . . , n we mimic the innovation
εj by the residual

ε̂j = Xj −
pn∑
i=1

%̂iXj−i,

where %̂i is an estimator of %i for i = 1, . . . , pn. We then estimate the innovation density by
a kernel estimator based on the residuals,

f̂(x) =
1

n− pn

n∑
j=pn+1

kbn(x− ε̂j), x ∈ R,

and we estimate the density g by a kernel estimator based on the differences Ŷj = Xj − ε̂j ,

ĝ(x) =
1

n− pn

n∑
j=pn+1

kbn(x− Ŷj), x ∈ R.

Our estimator is then ĥ = f̂ ∗ ĝ. This estimator can be written as a V-statistic, see Schick
and Wefelmeyer (2007b), and is therefore easy to calculate.

In addition to (C) and (I) we use the following assumptions.

(Q) The autoregression coefficients fulfill
∑

s>pn
|%s| = O(n−1/2−ζ) for some ζ > 0.

If the autoregression coefficients are known to decay exponentially, condition (C) holds
if pn/ log n tends to infinity. If the coefficients are known to decay polynomially, |%s| =
O(%−β−1), then (Q) holds with ζ = γβ − 1/2 if pn is proportional to nγ and γ > 1/(2β). It
would be interesting to find a data-driven selection of pn.

(R) The estimators %̂i of the autoregression coefficients %i fulfill

pn∑
i=1

(%̂i − %i)2 = Op(qnn−1)

for some qn with 1 ≤ qn ≤ pn.

(S+) The moving average coefficients satisfy
∑∞

s=1 s
β|ϕs| <∞ for some β > 1.

If f also has a finite fourth moment and npn
∑

s>pn
%2

s → 0 holds, then condition (R) with
qn = pn is met by the least squares estimators %̂1, . . . , %̂pn which minimize

∑n
j=pn+1(Xj −∑pn

i=1 %iXj−i)2. Condition (R) can even be met with qn = 1 in smooth parametric models
for the autoregression coefficients. See Schick and Wefelmeyer (2007b) for details.

We say that a function a has finite V -variation if there are measures µ1 and µ2 of equal
mass with

∫
V d(µ1 + µ2) finite such that a(x) = µ1((−∞, x]) − µ2((−∞, x]) for Lebesgue

almost all x. In this case, we call
∫
V d(µ1 + µ2) the V -variation of a. Our assumptions

on the innovation density are quite weak. Aside from moment conditions, we require only
that f has finite Vr+1-variation. In particular, f need not be continuous.
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(F) The density f has mean zero, a finite moment of order ξ > 2r + 3 and finite Vr+1-

variation.

We formulate our assumptions on the kernel and the bandwidth in terms of the moment
order ξ and a positive integer m. This integer m plays the role of a (known) lower bound
on the number N of non-zero coefficients among ϕs, s ≥ 1,

N =
∞∑

s=1

1[ϕs 6= 0].

Note that (C) is equivalent to N ≥ 1. Thus we can always take m = 1. But this choice may
lead to an undersmoothed estimator. A possible solution is to select a data-driven lower
bound m by testing whether the first few coefficients are non-zero.

(K) The kernel k is twice continuously differentiable with bounded derivatives and k, k′

and k′′ have finite V2r+2-norms. Furthermore, k has finite Vr+m+1-norm and satisfies∫
tik(t) dt = 0 for i = 1, . . . ,m.

(B) The bandwidth bn satisfies

nb2m+2
n → 0, n−1/4−ζb−1

n → 0, n−1/4b−1/2
n → 0,

and the sequences bn, qn and pn satisfy

n−3/4pnqnb
−2
n → 0, n−1/2pnqnb

−1
n → 0 and pnqnn

−1+2/ξ = O(1).

Under (B) we also have n−1/4q
1/2
n → 0 and bmn q

1/2
n → 0, conditions that appear in some

of our results. If bn ∼ (n log n)−1/(2m+2), then (B) is implied by log n pnqnn
−β → 0 with β

the smaller of m/(2m+ 2) and 1− 2/ξ.
To describe our results, we define the processes Fn and Gn by

Fn(x) =
1

n− pn

n∑
j=pn+1

(
f(x− Yj)− E[f(x− Yj)]

)
, x ∈ R,

Gn(x) =
1

n− pn

n∑
j=pn+1

(
g(x− εj)− E[g(x− εj)]

)
, x ∈ R,

and functions ν1, ν2, . . . by

νi(x) = E[X0f(x− Yi)], x ∈ R.

We shall see that these functions are differentiable under our assumptions on f .
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Theorem 1. Let r be non-negative, m a positive integer and N ≥ m. Suppose (I), (Q),
(R), (S+), (F), (K) and (B) hold. Then∥∥∥ĥ− h− Fn −Gn +

pn∑
i=1

(%̂i − %i)ν ′i
∥∥∥

Vr

= op(n−1/2).

If we use the least squares estimators we have a more explicit result. With Xj−1 =
(Xj−1, . . . , Xj−pn)> and Mn = E[X0X>

0 ], let

(1.3) ∆̃ =
1

n− pn

n∑
j=pn+1

M−1
n Xj−1εj .

Theorem 2. In addition to the assumptions of Theorem 1, suppose that f has a finite
fourth moment and npn

∑
s>pn

%2
s → 0 holds, and that we use the least squares estimators

%̂i. Then ∥∥∥ĥ− h− Fn −Gn +
pn∑
i=1

∆̃iν
′
i

∥∥∥
Vr

= op(n−1/2),

and n1/2(ĥ−h) is tight in LVr and converges weakly in LVr to a centered Gaussian process.

Of special interest is the case when we have a parametric model for the autocorrelation
coefficients: There are functions r1, r2, . . . from an open subset Θ of Rd into R such that
%i = ri(ϑ) for all i and some unknown ϑ in Θ. Then we can take %̂i = ri(ϑ̂) for all i and
some estimator ϑ̂ of ϑ. Now let us impose the following conditions.

(R1) The estimator ϑ̂ of ϑ is n1/2-consistent: ϑ̂− ϑ = Op(n−1/2).

(R2) The functions r1, r2, . . . are differentiable at ϑ with gradients ṙ1(ϑ), ṙ2(ϑ), . . . , and

∞∑
i=1

(
ri(ϑ+ s)− ri(ϑ)− ṙi(ϑ)>s

)2 = o(|s|2) and
∞∑
i=1

|ṙi(ϑ)|2 <∞.

These conditions imply (R) with qn = 1. As in Schick and Wefelmeyer (2007b) we obtain
the expansion

(1.4)
∥∥∥ĥ− h− Fn −Gn + (ϑ̂− ϑ)>

∞∑
i=1

ṙi(ϑ)ν ′i
∥∥∥

Vr

= op(n−1/2)

and hence tightness of n1/2(ĥ − h). Weak convergence of n1/2(ĥ − h) holds if ϑ̂ is asymp-
totically linear with influence function J , say,

ϑ̂− ϑ =
1
n

n∑
j=1

J(Xj−1, εj) + op(n−1/2),
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where E(J(X0, ε1)|X0) = 0 and E[J(X0, ε1)J>(X0, ε1)] is positive definite and finite. A
simple example is the AR(1) process Xt = ϑXt−1 + εt with |ϑ| < 1 and ϑ 6= 0. Then
r1(ϑ) = ϑ and rs(ϑ) = 0 for s > 1, and

∑∞
i=1 ṙi(ϑ)ν ′i simplifies to ν ′1, where

ν1(x) = E[X0f(x− ϑX0)] =
∫
yf(x− ϑy)h(y) dy.

Other examples include MA(q) and ARMA(p, q).
The paper is organized as follows. In Section 2 we give some inequalities for V -norms.

In Section 3 we study the space LV . We characterize the compact subsets and consider
continuity and Taylor expansions for shifts of functions. Section 5 presents conditions for
tightness of sequences of LV -valued random variables. In Sections 6 and 7 these results
are applied to sequences of the form n1/2Gn and n1/2Fn, respectively. Section 8 gives
bounds on certain linear operators on LV . In Section 9 we study how well the residuals
approximate the true innovations, and obtain stochastic expansions in LV for residual-based
averages (1/(n− pn))

∑n
j=pn+1 an(x− ε̂j) and (1/(n− pn))

∑n
j=pn+1 an(x− Ŷj). The results

of Sections 6–9 are used in Sections 10 and 11 to obtain convergence rates of f̂ and ĝ in LV ,
stochastic expansions in LV for linear functionals of the form a ∗ f̂ and a ∗ ĝ, and tightness
of n1/2

∑pn

i=1(%̂i − %i)ν ′i in LV . Section 12 contains the proofs of Theorems 1 and 2 and of
Lemma 13. Section 13 gives a variance bound used in Section 9.

2. The V -norm.

Throughout this paper, V is a continuous function on R satisfying V (0) = 1 and

V (x+ y) ≤ V (x)V (y), x, y ∈ R;(2.1)

V (sx) ≤ V (x), |s| ≤ 1, x ∈ R.(2.2)

It follows from (2.2) that V (x) ≥ V (0) = 1 for all x in R, that V is symmetric in the sense
that V (x) = V (−x) for all x in R, and that V (x) ≥ V (y) if |x| ≥ |y|. These properties and
(2.1) yield

(2.3) |V (x+ s)− V (x)| ≤ V (x)(V (s)− 1), x, s ∈ R.

Possible choices for V are V (x) = exp(|x|) and V = Vr with r ≥ 0.
For α > 1, we set Wα = VαV

2 so that

Wα(x) = (1 + |x|)αV 2(x), x ∈ R.

The function Wα has the same properties as V .
We now present some inequalities for V -norms. It follows from the Cauchy–Schwarz

inequality that ( ∫
V (x)|a(x)| dx

)2
≤ Kα

∫
Wα(x)a2(x) dx
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with Kα =
∫

(1 + |x|)−α dx. In other words,

(2.4) ‖a‖2
V ≤ Kα‖a2‖Wα .

In view of (2.1) the V -norm satisfies

(2.5) ‖a ∗ b‖V ≤ ‖a‖V ‖b‖V , a, b ∈ LV .

Moreover, since (a ∗ b)2 ≤ ‖b‖1(a2 ∗ |b|) by the Cauchy–Schwarz inequality, we obtain the
inequality

(2.6) ‖(a ∗ b)2‖V ≤ ‖a2‖V ‖b‖2
V , a2 ∈ LV , b ∈ LV .

3. The space LV .

In this section we study properties of the (Banach) space LV of all (equivalence classes
of) measurable functions a with finite V -norm. We begin by recalling the characterization
of compact subsets given in Lemma 4 of Schick and Wefelmeyer (2007a). Introduce the
shift Sta = a(· − t).

Lemma 1. A closed subset A of LV is compact if and only if

sup
a∈A

‖a‖V <∞,(3.1)

lim
t→0

sup
a∈A

‖Sta− a‖V = 0,(3.2)

lim
K↑∞

sup
a∈A

∫
|x|>K

V (x)|a(x)| dx = 0.(3.3)

From this one immediately obtains the following result. See Lemma 5 in Schick and
Wefelmeyer (2007a).

Lemma 2. Let k be a kernel with finite V -norm. Then supa∈A ‖a∗kbn −a‖V → 0 for every
compact subset A of LV .

Let us now give some simple sufficient conditions for compactness.

Lemma 3. A closed subset A of LV is compact if

(3.4) sup
a∈A

∫
(1 + |x|)βV (x)|a(x)| dx <∞ for some β > 0

and

(3.5) sup
a∈A

∫
|x|≤K

|a(x− t)− a(x)| dx→ 0 as t→ 0

for all finite K.
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Proof. We show that the present conditions imply (3.1) to (3.3). Condition (3.4) implies
(3.1). It also implies (3.3) since∫

|x|≥K
V (x)|a(x)| dx ≤ (1 +K)−β

∫
|x|≥K

(1 + |x|)βV (x)|a(x)| dx

for all positive K. With gt(x) = a(x− t)− a(x) we have

‖gt‖V ≤ V (K)
∫
|x|≤K

|gt(x)| dx+
∫
|x|>K

V (x)|gt(x)| dx, K > 0.

Since V (x) ≤ V (t)V (x− t) for all x and t, we also have∫
|x|>K

V (x)|gt(x)| dx ≤ (1 + V (t))
∫
|x|>K−|t|

V (x)|a(x)| dx.

This shows that, in the presence of (3.3), condition (3.2) is equivalent to (3.5). �

In the remainder of this section we collect several convergence results for the space LV .
Let a be in LV . Then (2.1) yields

(3.6) ‖Sta‖V =
∫
V (x+ t)|a(x)| dx ≤ V (t)‖a‖V , t ∈ R,

and this and (2.2) imply

(3.7) sup
|w|≤1

‖Swta‖V ≤ V (t)‖a‖V , t ∈ R.

A measurable function a is called V -Lipschitz (with constant L) if

(3.8) ‖Sta− a‖V ≤ L|t|V (t), t ∈ R.

We have the following connections between this concept and finite V -variation; see Schick
and Wefelmeyer (2006, 2007a) for some of the details.

Lemma 4. If a has finite V -variation M , then a is V -Lipschitz with constant M , and V a
is bounded by M .

Lemma 5. If a is absolutely continuous and its a.e. derivative a′ has finite V -norm, then
a has finite V -variation M = ‖a′‖V .

Lemma 6. If a is V -Lipschitz with constant L and b has finite V -norm, then a ∗ b is
V -Lipschitz with constant L‖b‖V .

Lemma 7. If a is Vr-Lipschitz with constant L and has finite Vs-norm, where 0 ≤ s ≤ r,
then a is Vs-Lipschitz with constant LVr(1) + 2‖a‖Vs.
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A measurable function a is called V -Lipschitz of order m (with constant L) if there are
measurable functions a(1), . . . , a(m−1) such that

(3.9)
∥∥∥Sta− a−

m−1∑
i=1

(−t)i

i!
a(i)

∥∥∥
V
≤ L|t|mV (t), t ∈ R.

If the functions a(1), . . . , a(m−1) have finite V -norms, then we say a is strongly V -Lipschitz
of order m. Note that a is V -Lipschitz of order one if and only if a is V -Lipschitz.

We say that a is absolutely continuous of order m if a is (m − 1) times differentiable
and its (m − 1)-derivative is absolutely continuous. A sufficient condition for a to be V -
Lipschitz of orderm is that a is V -regular of order m: the function a is absolutely continuous
of order m− 1 and its (m− 1)-derivative a(m−1) is V -Lipschitz. In this case the functions
a(1), . . . , a(m−1) appearing in (3.9) are the derivatives of a, and the L in (3.9) is the Lipschitz
constant of a(m−1). If, in addition, the derivatives a(1), . . . , a(m−1) have finite V -norms, then
we say a is strongly V -regular of order m. In this case a is strongly V -Lipschitz of order m.

The following lemmas summarize results from Schick and Wefelmeyer (2006). The first
provides a sufficient condition for a convolution to be V -Lipschitz of order two.

Lemma 8. Let a have finite V -variation M , and let b have finite V -norm. Then a ∗ b is
absolutely continuous, an a.e. derivative is given by

(a ∗ b)′(x) =
∫
b(x− y)(µ1(dy)− µ2(dy)), x ∈ R,

and ‖(a ∗ b)′‖V ≤ M‖b‖V . Moreover, if V b is bounded by B, then V (a ∗ b)′ is bounded by
BM , and if b is V -Lipschitz with constant L, then (a ∗ b)′ is V -Lipschitz with constant ML

and a ∗ b is strongly V -Lipschitz of order two with constant ML.

Lemma 9. Let a1, . . . , am and b belong to LV . If a1, . . . , am have finite V -variation, then
the function a = a1 ∗· · ·∗am ∗b is absolutely continuous of order m with all m derivatives in
LV and is hence strongly V -regular of order m. If also b is V -Lipschitz, then the function
a is strongly V -regular of order m+ 1.

We say a kernel k has V -order m if

(3.10)
∫
tik(t) dt = 0, i = 1, . . . ,m− 1,

and

(3.11)
∫
|t|mV (t)|k(t)| dt <∞.

The next lemma is a special case of Lemma 4.1 in Schick and Wefelmeyer (2006).
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Lemma 10. Let a be V -Lipschitz of order m and let k be an integrable function that satisfies
the integrability conditions (3.10) and (3.11). Then∥∥∥a ∗ kbn − a

∫
k(t) dt

∥∥∥
V
≤ Lbmn

∫
|t|mV (bnt)|k(t)| dt.

In particular, for a kernel k of V -order m, we have ‖a ∗ kbn − a‖V = O(bmn ).

Lemma 11. Let a be V V1-Lipschitz with constant L and have finite V V1-norm. Then the
map b defined by b(x) = xa(x) belongs to LV and is V -Lipschitz with constant 2L+5‖a‖V V1.

Proof. We have ‖Stb − b‖V ≤ |t|‖Sta‖V + ‖Sta − a‖V V1 . By Lemma 4.3 of Schick and
Wefelmeyer (2006) we have ‖Sta − a‖V V1 ≤ |t|V (t)(2L + 4‖a‖V V1) and thus ‖Stb − b‖V ≤
|t|V (t)‖a‖V + |t|V (t)(2L+ 4‖a‖V V1). The desired result is now immediate. �

4. A central limit theorem in LV .

We recall the central limit theorem for L1-spaces; see Ledoux and Talagrand (1991,
Theorem 10.10) or van der Vaart and Wellner (1996, page 92).

Theorem 3. Let µ be a σ-finite measure on the Borel-σ-field on R. Let Z1, Z2, . . . be
independent and identically distributed zero-mean random elements in L1(µ). Then the
sequence n−1/2

∑n
i=1 Zi converges in distribution (in L1(µ)) to a centered Gaussian process

if and only if

lim
t→∞

t2P
( ∫

|Z1(x)|µ(dx) > t
)

= 0 and
∫
E[Z2

1 (x)]1/2 µ(dx) <∞.

We now formulate a special case more suitable to our needs in the space LV .

Lemma 12. Let U1, U2, . . . be independent and identically distributed random variables, a
be a measurable function and

H(x) =
1
n

n∑
j=1

(a(x− Uj)− E[a(x− Uj)]), x ∈ R.

If ‖a2‖Wα and E[Wα(U1)] are finite for some α > 1, then
√
nH converges in distribution

in the space LV to a centered Gaussian process whose covariance structure matches that of
a(· − U1).

Proof. We apply the previous theorem with µ(dx) = V (x) dx and Zi(x) = a(x − Ui) −
E[a(x− Ui)]. Using (2.4) we find that

E
[( ∫

|Z1(x)|V (x) dx
)2]

= E[‖Z1‖2
V ] ≤ Kα

∫
Wα(x)E[Z2

1 (x)] dx

and ( ∫
E[Z2

1 (x)]1/2V (x) dx
)2
≤ Kα

∫
Wα(x)E[Z2

1 (x)] dx.
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Since t2P (X > t) ≤ E[X21[X > t]] for t > 0, we need only show that
∫
Wα(x)E[Z2

1 (x)] dx
is finite. Since E[Z2

1 (x)] ≤ E[a2(x − U1)], the integral in question can be bounded by
E[Wα(U1)]‖a2‖Wα and is thus finite by our assumptions. �

5. Tightness in LV .

The compactness conditions of Section 3 are now applied to obtain tightness of sequences
of random variables in LV . These will be used in Sections 6 and 7 to obtain tightness for
averages of dependent LV -valued random elements. Lemma 1 immediately implies the
following characterization.

Proposition 1. A sequence An of LV -valued random variables is tight if and only if the
following three conditions hold.
(T1) For every η > 0 there is a finite M such that for all (large) n,

P (‖An‖V > M) < η.

(T2) For every η > 0 there is a δ > 0 such that for all (large) n,

P
(

sup
|t|<δ

‖StAn − An‖V > η
)
< η.

(T3) For every η > 0 there is a finite K such that for all (large) n,

P
( ∫

|x|>K
V (x)|An(x)| dx > η

)
< η.

From Lemma 3 we can derive the following sufficient conditions for tightness.

Proposition 2. A sequence An of LV -valued random variables is tight if the following two
conditions are met.
(T1′) For some β > 0 and every η > 0 there is a finite M such that for all (large) n,

P (‖VβAn‖V > M) < η.

(T2′) For every η > 0 and finite K there is a δ > 0 such that for all (large) n,

P
(

sup
|t|<δ

∫
|x|≤K

|An(x− t)− An(x)| dx > η
)
< η.

Let us now derive simple sufficient conditions for (T1′) and (T2′). The inequality (2.4)
and the Markov inequality show that a sufficient condition for (T1′) is given by

(5.1) sup
n

∫
Wα(x)E[A2

n(x)] dx <∞

for some α > 1. Since the process Xn defined by

Xn(t) =
∫
|x|≤K

|An(x− t)− An(x)| dx, t ∈ [−1, 1],
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has continuous sample paths, we can obtain sufficient conditions for (T2′) from sufficient
conditions for tightness of the sequence Xn. Since Xn(0) = 0, one such condition is that
E[|Xn(t)−Xn(s)|2] ≤ A|t− s|β for some finite A, some β > 1 and all t and s in [−1, 1]; see
Theorem 12.3 in Billingsley (1968). Another condition is that E[(Xn(t)−Xn(t1))2(Xn(t2)−
Xn(t))2] ≤ A|t2 − t1|β for some finite A, some β > 1 and all −1 ≤ t1 ≤ t ≤ t2 ≤ 1; see
Problem 7 on page 102 in Billingsley (1968). Since (Xn(t) − Xn(s))2 ≤ 2K

∫
(An(x − t) −

An(x − s))2 dx = 2K
∫

(An(x − |t − s|) − An(x))2 dx, we see that (T2′) follows if for some
finite A and some β > 1 we have

(5.2)
∫
E[(An(x− t)− An(x))2] dx ≤ Atβ, 0 ≤ t ≤ 1,

or

(5.3)
∫∫

E[(An(x− s)− An(x))2(An(y − t)− An(y))2] dxdy ≤ Atβ , 0 ≤ s ≤ t ≤ 1.

Let us summarize this in the following theorem.

Theorem 4. A sequence An of LV -valued random variables is tight if (5.1) holds for some
α > 1 and if either (5.2) or (5.3) holds for some finite A and some β > 1.

In the next two sections we use this theorem to establish tightness of some important
sequences of random variables.

6. A class of tight sequences.

Let Z1, Z2, . . . be i.i.d. random variables with distribution function D. Let U1, U2, . . . be
stationary random variables with U1, . . . , Uj independent of Zj , Zj+1, . . . for all j ≥ 1, and
let a1, a2, . . . be measurable functions. Set

An(x) = n−1/2
n∑

j=1

(
an(x− Uj − Zj)−

∫
an(x− Uj − z) dD(z)

)
, x ∈ R.

Let W = Wα for some α > 1. Then, with U = U1 and Z = Z1, we calculate∫
W (x)E[A2

n(x)] dx ≤
∫
W (x)E[Var(an(x− U − Z)|U)] dx

≤ E[W (U)]
∫
W (x) Var(an(x− Z)) dx

and ∫
E[(An(x− t)− An(x))2] dx ≤

∫
E[(an(x− t− U − Z)− an(x− U − Z))2] dx

=
∫

(an(x− t)− an(x))2 dx.

Thus Theorem 4 yields the following result.
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Proposition 3. The sequence An is tight if the sequence
∫
Wα(x) Var(an(x − Z)) dx is

bounded and E[Wα(U)] is finite for some α > 1, and if

(6.1) sup
n

∫
(an(x− t)− an(x))2 dx ≤ Btκ, 0 < t < 1,

for some finite B and some κ > 1.

Let us now establish the bound (5.3). For this we first state the following bound. Its
proof is deferred to Section 12.

Lemma 13. Assume that (6.1) holds with κ > 0. Then for any random variables Ukij =
Ukji that are independent of (Zi, Zj , Zk), the left-hand side of (5.3) is bounded by

C = 5(4B)2t2κ + 8(4B)2t3κ/2 1
n2

∑
1≤i<j<k≤n

√
E[min{tκ, |Uk − Ukij |κ}].

Let us mention some consequences of this inequality.

Proposition 4. Suppose the sequences U1, U2, . . . and Z1, Z2, . . . are independent. Then
the sequence An is tight if E[Wα(U)] is finite and the sequence

∫
Wα(x) Var(an(x− Z)) dx

is bounded for some α > 1 , and if (6.1) holds with κ > 1/2.

Proof. If κ > 1, the result follows from Proposition 3. For 1/2 < κ ≤ 1, use Ukij = Uk in
Lemma 13. Then C = 5(4B)2t2κ, and (5.3) holds as κ > 1/2. �

Proposition 5. Suppose that the random variables Ukij of Lemma 13 fulfill

(6.2) |Uk − Ukij | ≤ ck−i|Zi|+ ck−j |Zj |, 1 ≤ i < j ≤ k,

with positive numbers c1, c2, . . . satisfying

(6.3)
∞∑

j=1

√
cj <∞.

Let Z have a finite mean. Then the sequence An is tight if E[Wα(U)] is finite and the
sequence

∫
Wα(x) Var(an(x − Z)) dx is bounded for some α > 1, and if (6.1) holds with

κ = 1.

Proof. Since κ = 1, condition (5.3) will follow if we show that

1
n2

∑
1≤i<j<k≤n

√
E[ck−i|Zi|+ ck−j |Zj |] = O(1).
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Since Z has a finite mean and
√
a+ b ≤

√
a+

√
b for positive a and b, this follows as

1
n2

∑
1≤i<j<k≤n

√
ck−i + ck−j

≤ 1
n2

∑
1≤i<k≤n

(k − i)
√
ck−i +

1
n2

∑
1≤j<k≤n

(j − 1)
√
ck−j

=
1
n2

∑
1≤i<k≤n

(k − 1)
√
ck−i ≤

∞∑
j=1

√
cj .

�

Remark 1. A sufficient condition for (6.3) is that
∑∞

j=1 j
β |cj | is finite for some β > 1.

Example 1. If we take an(x) = 1[x ≥ 0], then the process An becomes the empirical
process Dn defined by

Dn(x) = n−1/2
n∑

j=1

(
1[Zj − Uj ≤ x]−D(x− Uj)

)
, x ∈ R.

In this case,
∫
W (x) Var(an(x − Z1)) dx =

∫
W (x)D(x)(1 − D(x)) dx = ‖D(1 − D)‖W

and an(x − t) − an(x) = −1[0 ≤ x < t], so that inequality (6.1) holds with B = 1 and
κ = 1. Now assume that Uk =

∑∞
j=1 djZk−j with coefficients dj such that

∑∞
j=1

√
|dj | is

finite. Upon taking Ukij = Uk − dk−iZi − dk−jZj , we see that (6.2) and (6.3) hold with
cj = |dj |. Consequently, the empirical process Dn is tight in LV if D(1−D) has finite W -
norm and E[W (U)] is finite. For V = Vm with m a non-negative integer, these conditions
are equivalent to D having a finite moment of order 2m+ 1 + α.

7. A second class of tight sequences.

Consider a linear process

Ut =
∞∑

s=1

dsZt−s, t ∈ Z,

with independent and identically distributed innovations Zt, t ∈ Z, with finite mean and
coefficients d1, d2, . . . such that

(7.1)
∞∑

j=1

j|dj | <∞.

For bounded functions a and a′ set

An(x) = n−1/2
n∑

j=1

(
a(x− Uj)− E[a(x− Uj)]

)
, x ∈ R,

A′
n(x) = n−1/2

n∑
j=1

(
a′(x− Uj)− E[a′(x− Uj)]

)
, x ∈ R.
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Now assume that a is absolutely continuous with a.e. derivative a′. Then we have

An(x− t)− An(x) = −t
∫ 1

0
A′

n(x− st) ds, t, x ∈ R.

Hence Theorem 4 shows that the sequence An is tight in LVr if

(7.2) sup
n

∫
(1 + |x|)νE[A2

n(x)] dx <∞

for some ν > 2r + 1, and if

(7.3) sup
n

∫
E[(A′

n(x))2] dx <∞.

Sufficient conditions for (7.2) and (7.3) are given in Schick and Wefelmeyer (2007b) and are
recalled in Section 13. More precisely, Lemma 23 applied with h = a and q = r + 1 and
q > p > r, Lemma 24 applied with h = a′, and Lemmas 4 and 5 yield the following result.

Proposition 6. Let r be a non-negative number. Assume (7.1) holds and E[|Z0|ν ] is finite
for some ν > 2r + 1. Then the sequence An is tight in LVr if a and its a.e. derivative a′

have finite Vr+1-norms and a′ is bounded and 1-Lipschitz.

8. Some operators on LV .

We now return to the linear process introduced in (1.1). Throughout this section we
assume that

E[|X0|V (Yi)] <∞, i = 1, 2, . . .

A sufficient condition for this is that E[V 2(Y1)] and E[X2
0 ] are finite. For the special case

V = Vr it suffices that ε0 has a finite moment of order r+1. This follows from the following
lemma.

Lemma 14. Let m be a positive integer. For i = 0, . . . ,m, let ξi =
∑

s∈Z cisεs with
C =

∑
s∈Z

∑m
i=0 |cis| finite. Let r, r1, . . . , rm be non-negative numbers and t = max(1, r +

r1 + · · ·+ rm). Then

E
[
Vr(ξ0)

m∏
i=1

|ξi|ri

]
≤ 2t−1(1 + CtE[|ε0|t]).

Proof. For 0 ≤ p ≤ 1 ≤ q one has

Vp(x) ≤ Vq(x) ≤ 2q−1(1 + |x|q), x ∈ R.

Let Z =
∑

s∈Z
∑m

i=1 |cis||εs|. Then |ξi| ≤ Z for all i = 0, . . . ,m and

Vr(ξ0)
m∏

i=1

|ξi|ri ≤ Vt(Z) ≤ 2t−1(1 + Zt).

The desired result follows now from the Minkowski inequality. �
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Now we investigate some linear operators on LV . For i = 1, 2, . . . , we let Ti denote the
operator which maps a in LV to Tia in LV defined by

Tia(x) = E[X0a(x− Yi)], x ∈ R.

These operators are bounded since

(8.1) ‖Tia‖V ≤ E[|X0|V (Yi)]‖a‖V .

If N is finite, there is an integer τ such that ϕs = 0 for s > τ . In this case Tia = 0 for all
i > τ , as X0 and Yi are independent for such i and E[X0] = 0.

With ϕ0 = 1, we can express Tia as

Tia(x) =
∞∑

s=0

ϕsE[ε−sa(x− Yi)] =
∞∑

s=0

ϕsDs+ia(x)

where Dja(x) = E[ε0a(x−Yj ]. Let m be a positive integer less than or equal to N . Denote
by τ1, . . . , τm the indices of the first m non-zero coefficients and set φi = ϕτi . Then we
can write Yt = φ1εt−τ1 + · · · + φmεt−τm + Ut with Ut =

∑
s>τm

ϕsεt−s, and obtain the
representation

Dja(x) =
m∑

i=1

1[j = τi]āi(x− Uj) + 1[j > τm]E[ε0ā0(x− Uj)]

with
ā0(x) = E[a(x− φ1ε1 − · · · − φmεm)]

and
āi(x) = E[εia(x− φ1ε1 − · · · − φmεm)], i = 1, . . . ,m.

We can express āi as the convolution a ∗ ψi, where ψi = ψi1 ∗ · · · ∗ ψim and

ψij(x) =
1
|φj |

f
( x

φj

)(
1[j 6= i] + 1[j = i]

x

φj

)
, x ∈ R,

for i = 0, . . . ,m and j = 1, . . . ,m.
Assume now that f has finite Vr+1-norm and finite Vr+1-variation and that a has finite Vr-

norm. Then ψij has finite Vr+1-norm and finite Vr+1-variation for i 6= j, while ψii has finite
Vr-norm and is Vr-Lipschitz; see Lemma 11. Thus, by Lemma 9, the functions ψ0, . . . , ψm

are strongly Vr-regular of order m with a common constant Λ; ψ0 is even strongly Vr+1-
regular of order m. This implies that the functions ā0, . . . , ām are also strongly Vr-regular
of order m with common constant Λ‖a‖Vr . From this we derive that Dja is Vr-regular of
order m with constant E[(1 + |ε0|)Vr(Uj)]Λ‖a‖Vr . For i = 1, . . . ,m − 1, the i-th (almost
everywhere) derivative (Dja)(i) of Dja is given by

(Dja)(i)(x) =
m∑

l=1

1[j = τl]ā
(i)
l (x− Uj) + 1[j > τm]E[ε0ā

(i)
0 (x− Uj)]
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and satisfies

‖(Dja)(i)‖Vr ≤ E[(1 + |ε0|)Vr(Uj)] max
l=0,...,m

‖ā(i)
l ‖Vr .

An alternative bound is available for large j. Indeed, for j > τm, we have (Dja)(i) =
E[ε0ā

(i)
0 (x − Uj)] = E[ε0(ā

(i)
0 (x − Uj) − ā

(i)
0 (x − Uj + ϕjε0))] and obtain, since ā(i)

0 is Vr-
Lipschitz with constant Li, that

‖(Dja)(i)‖Vr ≤ |ϕj |E[ε20]E[Vr(Uj − ϕjε0)]Li.

If a has finite Vr-variation, then the functions ā0, . . . , ām are strongly Vr-regular of order
m + 1 and so are the functions Dja, and the above holds also for i = m. It follows from
Lemma 14 that supj≥0E[(1 + |ε0|)Vr(Uj)] <∞ and supj≥0E[Vr(Uj − ϕjε0)] <∞ as f has
finite Vr+1-norm. Thus we have proved the following results.

Lemma 15. Let r ≥ 0 and let m be a positive integer. Suppose f has finite Vr+1-norm
and finite Vr+1-variation. Let N ≥ m. Then there is a constant C such that, for each
a of finite Vr-norm, the functions T1a, T2a, . . . are Vr-regular of order m with a common
constant C‖a‖Vr , and

(8.2) sup
0≤j≤m−1

∞∑
i=1

‖(Tia)(j)‖Vr ≤ C‖a‖Vr .

There is also a constant K such that, for all a with finite Vr-norm and finite Vr-variation
M , the functions T1a, T2a, . . . are Vr-regular of order m + 1 with common constant KM
and

∞∑
i=1

‖(Tia)(m)‖Vr ≤ KM.

Lemma 16. Let r ≥ 0. Suppose a and f have finite Vr+1-variation, a has a finite Vr+1-
norm and f a finite Vr+2-norm. Let N ≥ 4. Then the functions T1a, T2a, . . . are absolutely
continuous of order three and

sup
0≤j≤3

∞∑
i=1

‖(Tia)(j)‖Vr+1 <∞.

Proof. The above considerations with m = 4 show that ā0, . . . , ā4 have finite Vr+1-norms
and are strongly Vr+1-regular of order four. The desired result is now immediate. �

Corollary 1. Let r ≥ 0 and let f have finite Vr+1-norm and finite Vr+1-variation. Let
the kernel k have finite Vr-norm and be continuously differentiable with k′ having finite
Vr+1-norm. Then

(8.3)
∞∑
i=1

‖Tik
′
bn
‖Vr = O(1).
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Proof. Note that Tik
′
bn

= (Tikbn)′. Thus the desired result follows from Lemma 15 with
m = 2 if N ≥ 2. If N = 1, the left-hand side of (8.3) simplifies to ‖k′bn

∗ ψ11‖Vr and is
bounded by L

∫
|t|V (bnt)|k′(t)| dt with L the Vr-Lipschitz constant of ψ11; here we used

Lemma 10 with m = 1 and
∫
k′(t) dt = 0. �

9. Behavior of residual-based processes.

Let X1, . . . , Xn be observations from the linear process (1.1). Throughout this section let
an be twice continuously differentiable functions such that a′n and a′′n have finite V -norms.
Then we have the following inequalities.

‖Stan − an‖V ≤ ‖a′n‖V |t|V (t), t ∈ R,(9.1)

‖Sta
′
n − a′n‖V ≤ ‖a′′n‖V |t|V (t), t ∈ R,(9.2)

‖Stan − an + ta′n‖V ≤ ‖a′′n‖V t
2V (t), t ∈ R.(9.3)

Set ∆̂ = (%̂1 − %1, . . . , %̂pn − %pn)>. Recall that Xj−1 = (Xj−1, . . . , Xj−pn)>. We first
study the processes An1 and Bn1 defined by

An1(x) =
1

n− pn

n∑
j=pn+1

(
an(x− ε̂j)− an(x− εj)

)
,

Bn1(x) =
1

n− pn

n∑
j=pn+1

Xj−1a
′
n(x− εj), x ∈ R.

For this we introduce the following condition.

(F0) The density f has a finite moment of order ξ > 2 and pnqnn
−1+2/ξ is bounded.

From Schick and Wefelmeyer (2007b) we recall some properties of the average

X =
1

n− pn

n∑
j=pn+1

Xj−1

and of the residuals ε̂j and the closely related quantities

(9.4) ε̂∗j = εj − ∆̂>Xj−1 = ε̂j −
∞∑

i=pn+1

%iXj−i, j = pn + 1, . . . , n.

Lemma 17. Suppose (I), (Q) and (R) hold. Then∑n
j=pn+1(ε̂j − εj)2 = Op(pnqn),(9.5) ∑n
j=pn+1(ε̂j − ε̂∗j )

2 = Op(n−2ζ),(9.6)

∆̂>X = Op(n−1p
1/2
n q

1/2
n ).(9.7)
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If also (F0) holds, then

(9.8) max
pn+1≤j≤n

|ε̂j − εj | = op(1),

Lemma 18. Suppose (I), (Q), (R) and (F0) hold and f has finite V 2-norm. Then

‖An1 − ∆̂>Bn1‖V = Op(n−1/2−ζ‖a′n‖V ) +Op(n−1pnqn‖a′′n‖V ).

Proof. By continuity of V we have

(9.9) max
pn+1≤j≤n

V (ηj) = 1 + op(1) if max
pn+1≤j≤n

|ηj | = op(1).

The properties of f imply that E[V 2(ε1)] is finite and E[V (ε1)|X0|2] = ‖f‖VE[‖X0‖2] =
O(pn). Thus (2.1), (9.8) and (9.9) imply

Un1 =
1

n− pn

n∑
j=pn+1

V 2(ε̂j) ≤
1

n− pn

n∑
j=pn+1

V 2(εj)V 2(ε̂j − εj) = Op(1),

Un2 =
1

n− pn

n∑
j=pn+1

V (εj)|Xj−1|2 = Op(pn).

Let A∗
n1 be defined as An1, but with ε̂j replaced by ε̂∗j given in (9.4). Then, by (3.6) and

(9.1),

‖An1 − A∗
n1‖V ≤ 1

n− pn

n∑
j=pn+1

‖an(· − ε̂j)− an(· − ε̂∗j )‖V

≤ ‖a′n‖V
1

n− pn

n∑
j=pn+1

V (ε̂j)|ε̂j − ε̂∗j | max
pn+1≤j≤n

V (ε̂j − ε̂∗j )

≤ ‖a′n‖V

(
Un1

1
n− pn

n∑
j=pn+1

(ε̂j − ε̂∗j )
2
)1/2

max
pn+1≤j≤n

V (ε̂j − ε̂∗j ).

Since (9.6) implies maxpn+1≤j≤n |ε̂∗j − ε̂j | = op(1), relations (9.6) and (9.9) give

‖An1 − A∗
n1‖V = Op(n−1/2−ζ‖a′n‖V ).

From (3.6) and (9.3) we obtain the bound

‖A∗
n1 − ∆̂>Bn1‖V ≤ 1

n− pn

n∑
j=pn+1

V (εj)‖a′′n‖V (ε̂∗j − εj)2V (ε̂∗j − εj).

Note that assumption (R) implies that |∆̂|2 = Op(n−1qn). Thus (9.6), (9.8), (9.9) and the
identity ε̂∗j − εj = −∆̂>Xj−1 give

‖A∗
n1 − ∆̂>Bn1‖V = Op(‖a′′n‖V |∆̂|2Un2) = Op(n−1pnqn‖a′′n‖V ).

The desired result is now immediate. �



20 ANTON SCHICK AND WOLFGANG WEFELMEYER

Lemma 19. Suppose (I), (Q) and (R) hold. Let f and (a′n)2 have finite Wα-norms for
some α > 1. Then

‖∆̂>Bn1‖V = Op

(
n−1p1/2

n q1/2
n ‖(a′n)2‖1/2

Wα

)
.

Proof. Let W = Wα. Set B̄n1(x) = X(a′n ∗ f)(x) for x ∈ R. In view of (9.7), (2.5) and (2.4)
we have

‖∆̂>B̄n1‖V = Op(n−1p1/2
n q1/2

n ‖a′n ∗ f‖V ) = Op

(
n−1p1/2

n q1/2
n ‖(a′n)2‖1/2

W

)
.

Since Bn1(x)− B̄n1(x) is a martingale, we have

(n− pn)E[|Bn1(x)− B̄n1(x)|2] ≤ E[|X0|2]
∫

(a′n(x− z))2f(z) dz

and thus, as W (x+ y) ≤W (x)W (y) and E[|X0|2] ≤ pnE[X2
0 ],∫

W (x)E[|Bn1(x)− B̄n1(x)|2] dx ≤
pn

n− pn
E[X2

0 ]‖(a′n)2‖W ‖f‖W .

This and (2.4) show that

‖∆̂>(Bn1 − B̄n1)‖V = Op(n−1p1/2
n q1/2

n ‖(a′n)2‖1/2
W ).

This completes the proof. �

The previous two lemmas will be applied to f̂ . For ĝ we need analogous results with
Yj = Xj − εj and Ŷj = Xj − ε̂j in place of εj and ε̂j . The corresponding processes are now

An2(x) =
1

n− pn

n∑
j=pn+1

(
an(x− Ŷj)− an(x− Yj)

)
,

Bn2(x) =
1

n− pn

n∑
j=pn+1

Xj−1a
′
n(x− Yj), x ∈ R.

Lemma 20. Suppose (I), (Q), (R) and (F0) hold. Let E[V (Y1)|X0|2] = O(pn) and let
E[V 2(Y1)] be finite. Then

‖An2 + ∆̂>Bn2‖V = Op

(
n−1/2−ζ‖a′n‖V

)
+Op

(
n−1pnqn‖a′′n‖V

)
.

Proof. Stationarity, finiteness of E[V 2(Y1)], and (2.1) and (9.9) give

1
n− pn

n∑
j=pn+1

V 2(Ŷj) = Op(1),

while stationarity and E[V (Y1)|X0|2] = O(pn) give

1
n− pn

n∑
j=pn+1

V (Yj)|Xj−1|2 = Op(pn).

The desired result now follows as in the proof of Lemma 18. �
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For r ≥ 0, E[V 2
r (Y1)] is finite and E[Vr(Y1)|X0|2] = O(pn) if ε0 has a finite moment of

order ξ ≥ max(2r, r + 2). This follows from Lemma 14.

Lemma 21. Suppose (C), (I), (Q) and (R) hold. Let
∑

s>0 s|ϕs| be finite and r be a non-
negative number. Suppose that f has a finite moment of order ξ > 2r + 3, and that a′n and
a′′n have finite Vr+1-norms. Then

‖∆̂>(Bn2 − E[Bn2])‖Vr = Op

(
n−1p1/2

n q1/2
n

(
‖a′n‖Vr+1 + ‖a′′n‖Vr+1

))
.

Proof. Lemmas 4 and 5 imply that a′n is Vr+1-Lipschitz with constant ‖a′′n‖Vr+1 and that
Vr+1a

′
n is bounded by ‖a′′n‖Vr+1 . We may assume that ξ < 2r + 4. Then α = ξ − 2r − 2

satisfies 1 < α < 2. By (2.4),

‖∆̂>(Bn2 − E[Bn2])‖2
Vr
≤ Kα|∆̂|2

pn∑
i=1

∫
V2r+α(x)B2

i (x) dx

with Bi(x) the i-th coordinate of Bn2(x)−E[Bn2(x)]. It now follows from Lemma 25 applied
with h = a′n, q = r + 1 and p = r + α− 1 < r + 1 that

pn∑
i=1

∫
V2r+α(x)(n− pn)E[B2

i (x)] dx ≤ Cpn

n
‖Vpa

′
n‖∞(‖a′n‖Vr+1 + ‖a′′n‖Vr+1)

for some C > 0. The above inequalities and the rate |∆̂|2 = Op(n−1qn) yield the desired
result. �

10. Estimating the innovation density.

In this section we study rates of convergence in LV of the residual-based kernel estimator
f̂ and of functionals a ∗ f̂ . We impose the following conditions on the innovation density f
and the kernel k.

(F1) The density f has finite Wα-norm for some α > 1.

(K1) The kernel k is twice continuously differentiable with bounded derivatives. Moreover,

k, k′ and k′′ have finite W2-norms.

Under (K1) the i-th derivative k(i)
bn

of kbn satisfies

(10.1) ‖k(i)
bn
‖W2 = O(b−i

n ) and ‖(k(i)
bn

)2‖W2 = O(b−1−2i
n ), i = 0, 1, 2.

These rates stay valid if we replace W2 by V , V V1, V V2 or Wα with α < 2. Since k′ and k′′

have finite V V2-norms,
∫
k′(t) dt =

∫
k′′(t) dt = 0, and

∫
|t|V (t)V1(t)|k(i)

bn
(t)| dt = O(b1−i

n )
for i = 1, 2, Lemma 10 yields the following rates.

Lemma 22. Let (K1) hold and let U = V Vβ with 0 ≤ β ≤ 1. Suppose a has finite U -norm
and is U -Lipschitz. Then ‖a ∗ k′bn

‖U = O(1) and ‖a ∗ k′′bn
‖U = O(b−1

n ).
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Theorem 5. Suppose that (I), (Q), (R), (F0), (F1) and (K1) hold. Then

‖f̂ − f ∗ kbn‖V = Op(n−1/2−ζb−1
n ) +Op(n−1pnqnb

−2
n ) +Op(n−1/2b−1/2

n ).

Proof. We may assume that α ≤ 2. Set W = Wα. Let f̄ = f ∗ kbn and let f̃ denote the
kernel estimator based on the actual innovations εpn+1, . . . , εn,

f̃(x) =
1

n− pn

n∑
j=pn+1

kbn(x− εj), x ∈ R.

Then E[f̃(x)] = f̄(x) and nVar f̃(x) ≤ k2
bn
∗ f(x), and in view of inequalities (2.4) and

(2.5) (the latter applied with W in place of V ) we have nE[‖f̃ − f̄‖2
V ] ≤ Kα‖k2

bn
‖W ‖f‖W =

O(b−1
n ). This shows that ‖f̃ − f̄‖V = Op(n−1/2b

−1/2
n ). Thus we are left to show that

‖f̂ − f̃‖V = Op(n−1/2−ζb−1
n ) +Op(n−1pnqnb

−2
n ).

But this follows from Lemmas 18 and 19, applied with an = kbn , and from the rates
‖k′bn

‖V = O(b−1
n ), ‖k′′bn

‖V = O(b−2
n ) and ‖(k′bn

)2‖Wα = O(b−3
n ) shown above. �

Theorem 6. Suppose that (I), (Q), (R), (F0), (F1) and (K1) hold. Let n−1/2pnqnb
−1
n → 0.

Suppose a is V -Lipschitz and ‖a2‖Wα is finite. Then

‖a ∗ (f̂ − f ∗ kbn)− An‖V = op(n−1/2)

and n1/2An is tight in LV , where

An(x) =
1

n− pn

n∑
j=pn+1

(
a(x− εj)− E[a(x− εj)]

)
, x ∈ R.

Proof. We may assume that α ≤ 2. Let f̄ and f̃ be as in the previous proof. It is easy to
check that a∗(f̃− f̄) = An∗kbn . It follows from Lemma 12 and the finiteness of ‖a2‖Wα and
‖f‖Wα that n1/2An is tight in LV . Then Lemma 2 gives ‖n1/2(An ∗ kbn − An)‖V = op(1).
In other words,

‖a ∗ (f̃ − f̄)− An‖V = op(n−1/2).

One verifies that

a ∗ (f̂ − f̃) =
1

n− pn

n∑
j=pn+1

(
an(x− ε̂j)− an(x− εj)

)
with an = a ∗ kbn . Since a′n = a ∗ k′bn

and a′′n = a ∗ k′′bn
, Lemma 22 yields ‖a′n‖V = O(1) and

‖a′′n‖V = O(b−1
n ). Using (2.6) and (10.1) we find ‖(a′n)2‖Wα ≤ ‖a2‖Wα‖k′bn

‖2
Wα

= O(b−2
n ).

Thus Lemmas 18 and 19 yield

‖a ∗ (f̂ − f̃)‖V = Op(n−1/2−ζ) +Op(n−1pnqnb
−1
n ) = op(n−1/2).

The desired result follows from the above. �
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In the above proof we have seen that ‖n1/2(An ∗ kbn − An)‖V = op(1). Thus we obtain
the following result.

Corollary 2. Under the assumptions of the previous theorem we have∥∥∥kbn ∗ a ∗ (f̂ − f ∗ kbn)− An‖V = op(n−1/2).

11. Estimating the density g.

Now we study convergence rates in LV of the kernel estimator ĝ based on Ŷj = Xj − ε̂j ,
j = pn +1, . . . , n, and of functionals of the form a ∗ ĝ. Here we restrict ourselves to the case
V = Vr for some non-negative r. Then Wα = V2r+α.

Theorem 7. Suppose that (C), (I), (Q) and (R) hold, that
∑

s>0 s|ϕs| is finite, that (K1)
holds with W2 = V2r+2 and that (F0) holds with ξ > 2r+3. Let f have finite Vr+1-variation.
Then, with mn = n−1pnqnb

−2
n ,

‖ĝ − g ∗ kbn‖Vr = Op(n−1/2−ζb−1
n ) +Op(mn) +Op(n−1/2b−1/2

n ) +Op(n−1/2q1/2
n ).

Proof. Let g̃ denote the kernel density estimator based on Ypn+1, . . . , Yn,

g̃(x) =
1

n− pn

n∑
j=pn+1

kbn(x− Yj), x ∈ R.

We may assume that α ≤ 2. Then ‖f‖Wα , ‖k2‖Wα , ‖k‖Vr+1 and
∑

s>0 s|ϕs| are finite and f
has finite Vr+1-variation. Thus Proposition 3.3 and Corollary 5.1 in Schick and Wefelmeyer
(2006) yield the rate

‖g̃ − g ∗ kbn‖Vr = Op(n−1/2b−1/2
n ).

Let Γ̄n(x) = E[X0k
′
bn

(x− Y1)]. It suffices to show

‖ĝ − g̃ + ∆̂>Γ̄n‖Vr = Op(n−1/2−ζb−1
n ) +Op(n−1pnqnb

−2
n ),(11.1)

‖∆̂>Γ̄n‖Vr = Op(n−1/2q1/2
n ).(11.2)

Statement (11.1) follows from Lemmas 20 and 21 applied with an = kbn and the rates
‖k′bn

‖Vr+1 = O(b−1
n ) and ‖k′′bn

‖Vr+1 = O(b−2
n ); see (10.1) for the latter.

The i-th component of Γ̄n is Tik
′
bn

. Thus the Cauchy–Schwarz inequality yields the bound

‖∆̂>Γ̄n‖2
Vr
≤ |∆̂|2

∞∑
i=1

‖Tik
′
bn
‖2

Vr
.

Thus statement (11.2) follows from Corollary 1 and (R). �

By assumption (C) we have N ≥ 1. Thus the following result always applies with m = 1.
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Theorem 8. Suppose that (C), (I) (Q), (R) and (S+) hold, that (K1) holds with W2 =
V2r+2 and that (F0) holds with ξ > 2r+ 3. Let f have finite Vr+1-variation, and let a have
finite Vr+1-variation and finite V2r+α-norm for some α > 1. Assume the kernel k is of
Vr-order m for some positive integer m. Let bmn q

1/2
n → 0 and n−1/2pnqnb

−1
n → 0. Then, if

N ≥ m, ∥∥∥a ∗ (ĝ − g ∗ kbn)−Kn +
pn∑
i=1

(%̂i − %i)(Tia)′
∥∥∥

Vr

= op(n−1/2)

and n1/2Kn is tight in LVr , where

Kn(x) =
1

n− pn

n∑
j=pn+1

(
a(x− Yj)− E[a(x− Yj)]

)
, x ∈ R.

Proof. We may assume that α ≤ 2. Set W = Wα. Let τ = inf{s ≥ 1 : ϕs 6= 0}. Write
Yt = Zt+Ut with Zt = ϕτεt−τ and Ut =

∑∞
s=1 dsZt−s, where ds = ϕτ+s/ϕτ . We can express

Kn = Kn1 + Kn2 with

Kn1(x) =
1

n− pn

n∑
j=pn+1

(
a(x− Zj − Uj)− ā(x− Uj)

)
,

Kn2(x) =
1

n− pn

n∑
j=pn+1

(
ā(x− Uj)− E[ā(x− Uj)]

)
,

and ā(x) = E[a(x − Zτ )]. Then ā = a ∗ ψ, where ψ is the density of Zτ = ϕτε0. Let
us now show that n1/2Kn1 and n1/2Kn2 (and hence n1/2Kn) are tight in LVr . We use
Proposition 5 to establish tightness of n1/2Kn1. The assumptions of this proposition hold
with Ukij = Uk − dk−iZi − dk−jZj and cj = |dj |. Indeed, (6.3) holds in view of (S+) and
Remark 1, the moment assumptions on ε0 and Lemma 14 yield that E[W (U)] and E[W (Z)]
are finite, and so is ∫

W (x) Var(a(x− Z)) dx ≤ ‖a2‖WE[W (Z)],

and (6.1) holds with κ = 1 as a is bounded and 1-Lipschitz. Thus Proposition 5 yields
tightness of n1/2Kn1.

We use Proposition 6 to establish tightness of n1/2Kn2. Since a and f , and hence ψ, have
finite Vr+1-norms and have finite Vr+1-variations, ā has finite Vr+1-norm and is absolutely
continuous, ā′ is Vr+1-Lipschitz and has finite Vr+1-norm, and Vr+1ā

′ is bounded; see Lem-
mas 4 and 8. This, (S+) and the moment assumptions on f give the required assumptions
for this proposition, and thus tightness of n1/2Kn2.

Let g̃ be as in the previous proof and set ḡ = E[g̃] = g ∗ kbn . It is easy to check
that a ∗ (g̃ − ḡ) = Kn ∗ kbn . Since n1/2Kn is tight in LVr , we obtain from Lemma 2 that
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‖n1/2(Kn ∗ kbn −Kn)‖Vr = op(1). In other words,

‖a ∗ (g̃ − ḡ)−Kn‖Vr = op(n−1/2).

Next, one verifies that a ∗ (ĝ − g̃) equals An2 with an = a ∗ kbn . We obtain from Lemma 22
that ‖a′n‖Vr+1 = O(1) and ‖a′′n‖Vr+1 = O(b−1

n ). Thus Lemmas 20 and 21 yield∥∥∥a ∗ (ĝ − g̃) +
pn∑
i=1

(%̂i − %i)Tia
′
n

∥∥∥
Vr

= Op(n−1/2−ζ) +Op(n−1pnqnb
−1
n ) = op(n−1/2).

We have Tia
′
n = Ti(a ∗ k′bn

) = (Tia) ∗ k′bn
= (Tia)′ ∗ kbn . Let us now show that

(11.3)
∞∑
i=1

‖(Tian)′ − (Tia)′‖Vr =
∞∑
i=1

‖(Tia)′ ∗ kbn − (Tia)′‖Vr = Op(bmn ).

By Lemma 15 the functions (T1a)′, (T2a)′, . . . are Vr-regular of order m with constants
L1, L2, . . . (bounded by some L), so that Lemma 10 yields

‖(Tia)′ ∗ kbn − (Tia)′‖Vr ≤ LiVr(bn)bmn

∫
Vr(t)|tmk(t)| dt.

This is the desired result if N is finite as in this case Tia = 0 for all but finitely many i. If N
is infinite, then we obtain again from Lemma 15 that the Lipschitz constants are summable
as we can take Li = ‖(Tia)(m+1)‖Vr .

Note that (R) implies max1≤i≤pn |%̂i − %i| = Op(q
1/2
n n−1/2). This, (11.3) and bmn q

1/2
n → 0

yield ∥∥∥ pn∑
i=1

(%̂i − %i)
(
Tia

′
n − (Tia)′

)∥∥∥
Vr

= O(bmn q
1/2
n n−1/2) = op(n−1/2).

Combining the above yields the desired result. �

In the above proof we have seen that ‖n1/2(Kn∗kbn−Kn)‖Vr = op(1) and that ‖
∑pn

i=1(%̂i−
%i)((Tia)′ ∗ kbn − (Tia)′)‖Vr = op(n−1/2). Thus we obtain the following result.

Corollary 3. Under the assumptions of the previous theorem we have∥∥∥kbn ∗ a ∗ (ĝ − g ∗ kbn)−Kn +
pn∑
i=1

(%̂i − %i)(Tia)′
∥∥∥

Vr

= op(n−1/2).

To simplify notation let γi = (Tia)′. Let us now take a closer look at the term

J =
pn∑
i=1

(%̂i − %i)γi.

We shall first look at the case when we are dealing with a parametric model for the au-
toregressive coefficients, say %i = ri(ϑ) for a differentiable function ri defined on an open
subset Θ of Rd for i = 1, 2, . . . , where ϑ is an unknown parameter. Then it is natural to
take %̂i = ri(ϑ̂) with ϑ̂ a n1/2-consistent estimator of ϑ. Let (R2) hold. Then under the
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assumptions of the previous theorem
∑∞

i=1 ‖γi‖Vr is finite and so is
∑∞

i=1 ‖γi‖2
Vr

. Thus we
obtain that

‖J −D>(ϑ̂− ϑ)‖Vr = op(n−1/2)

with D =
∑∞

i=1 ṙi(ϑ)γi. It is now easy to see that n1/2D>(ϑ̂− ϑ) is tight.
Let us now look at the nonparametric situation. Let Mn = E[X0X>

0 ]. Then Mn is
invertible, and the operator norm of its inverse M−1

n is bounded by some C. We consider
the case when ∆̂− ∆̃ = op(n−1/2) with ∆̃ as given in (1.3).

Theorem 9. Suppose that (C), (I) and (R) hold, that a and f have finite Vr+1-variation,
a has a finite Vr+1-norm and f a finite Vr+2-norm. Let ∆̂ = ∆̃ + op(n−1/2) with ∆̃ as in
(1.3). Then

(11.4)
∥∥∥n1/2

pn∑
i=1

(∆̂i − ∆̃i)γi

∥∥∥
Vr

= op(1),

and n1/2
∑pn

i=1 ∆̃iγi is tight in LVr .

Proof. Note that γi = 0 if for some τ we have ϕs = 0 for all s > τ . In this case N is finite
and the conclusion is obvious. Now assume that N ≥ 4. Then, in view of Lemma 15, we
have ∥∥∥ pn∑

i=1

(∆̂i − ∆̃i)γi

∥∥∥
Vr

≤
∞∑
i=1

‖γi‖Vr max
1≤i≤pn

|∆̂i − ∆̃i| = Op(|∆̂− ∆̃|) = op(n−1/2).

This proves (11.4).
In view of Lemma 16, we have

Bj =
∞∑
i=1

‖γ(j)
i ‖Vr+1 <∞, j = 0, 1, 2.

Thus the functions γi and γ′i are of finite Vr+1-variation bounded by B1 and B2, respectively,
see Lemma 5. Hence, by Lemma 4, Vr+1γi is bounded by B1 and Vr+1γ

′
i is bounded by B2,

and

(11.5)
∞∑
i=1

‖γ2
i ‖W2 ≤ B1

∞∑
i=1

‖γi‖Vr+1 = B0B1.

Moreover, we have∫
(γi(x− t)− γi(x))2 dx ≤ t2

∫ ( ∫ 1

0
γ′i(x− st) ds

)2
dx

≤ t2
∫ 1

0

∫
(γ′i(x− st))2 dx ds ≤ t2‖γ′i‖∞‖γ′i‖1
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and thus

(11.6)
∞∑
i=1

∫
(γi(x− t)− γi(x))2 dx ≤ t2B1B2.

We can write n1/2
∑pn

i=1 ∆̃iγi = n1/2∆̃>γ̃ where γ̃ = (γ1, . . . , γpn)>. The matrix E[n∆̃∆̃>]
is given by σ2M−1

n with σ2 the variance of ε0. Since the spectral norm of M−1
n is bounded

by some C for all n, we obtain that

E[n(∆̃>γ̃(x))2] = E[γ̃>(x)n∆̃∆̃>γ̃(x)] = σ2γ̃>(x)M−1
n γ̃(x) ≤ σ2C|γ̃(x)|2.

Using this, (11.5) and (11.6), we derive∫
W2(x)E[(n1/2∆̃>γ̃(x))2] dx ≤ σ2CB0B1,∫

E[(n1/2∆̃>(γ̃(x− t)− γ̃(x))2] dx ≤ σ2CB1B2t
2.

Thus tightness of n1/2∆̃>γ follows from Theorem 4. �

12. Some proofs.

This section contains the proofs of Theorems 1 and 2 and of Lemma 13. Under (C) and
(F), the density g inherits the properties of f , see Lemmas 4, 5, 8 and 14. In particular, g
is bounded and ‖g‖Vξ

is finite.

Proof of Theorem 1. Set f̄ = f ∗ kbn , ḡ = g ∗ kbn and h̄ = f̄ ∗ ḡ. Write

(12.1) ĥ− h = h̄− h+ ḡ ∗ (f̂ − f̄) + f̄ ∗ (ĝ − ḡ) + (f̂ − f̄) ∗ (ĝ − ḡ).

We study the four right-hand terms, beginning with the last. Condition (B) and Theorems
5 and 7 imply ‖f̂ − f̄‖Vr = op(n−1/4) and ‖ĝ− ḡ‖Vr = op(n−1/4). Inequality (2.5) then gives

(12.2) ‖(f̂ − f̄) ∗ (ĝ − ḡ)‖Vr ≤ ‖f̂ − f̄‖Vr‖ĝ − ḡ‖Vr = op(n−1/2).

An application of Corollary 3 with a = f gives

(12.3)
∥∥∥f̄ ∗ (ĝ − ḡ)− Fn +

pn∑
i=1

(%̂i − %i)ν ′i
∥∥∥

Vr

= op(n−1/2).

An application of Corollary 2 with a = g yields

(12.4) ‖ḡ ∗ (f̂ − f̄)−Gn‖Vr = op(n−1/2).

Since h is Vr-smooth of order m+ 1 by Lemma 9 and k has Vr-order m+ 1, we obtain from
Lemma 10 and nb2m+2

n → 0 that

‖h ∗ kb − h‖Vr = O(bm+1
n ) = o(n−1/2).

This completes the proof.
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Proof of Theorem 2. The least squares estimators %̂i fulfill (R) and ∆̂− ∆̃ = op(n−1/2); see
Lemma 1 in Schick and Wefelmeyer (2007b). Theorem 9, applied with a = f , now implies
that n1/2

∑pn

i=1 ∆̃iν
′
i is tight in LVr , and that ‖n1/2

∑pn

i=1(∆̂i − ∆̃i)ν ′i‖Vr = op(1). The latter
and Theorem 1 now give the stochastic expansion of Theorem 2. The sequences n1/2Fn and
n1/2Gn are tight in LVr by Theorems 8 and 6, applied with a = f and a = g, respectively.
This establishes the desired tightness.

Proof of Lemma 13. It follows from (6.1) that∫ (
an(x− s− t)− an(x− s)− an(x− t) + an(x)

)2
dx ≤ 4Bmin{|s|κ, |t|κ}

for all s and t in [−1, 1]. Let ds(x) = an(x− s)− an(x) and d̄s(x) = E[ds(x− Z1)], and set
ξj(x, s) = ds(x−Zj)− d̄s(x). Then we can express the i-th summand in An(x− s)−An(x)
as ξi(x− Ui, s). The left-hand side of (5.3) can be expressed as (1/n2)

∑
Tijkl, where

Tijkl =
∫∫

E[ξi(x− Ui, s)ξj(x− Uj , s)ξk(y − Uk, t)ξl(y − Ul, t)] dx dy

and the summation is over all four indices, each ranging from 1 to n. Since multiplication
is commutative, the term Tijkl does not change its value if we switch i and j or k and l. It
is easy to see that Tijkl = 0 if one index is larger than the other three indices. Since∫

ξk(y − Uk, t)2 dy =
∫
ξ2k(y, t) dy =

∫
(dt(y − Zk)− d̄t(y))2 dy

is independent of (ξi(y − Ui, t), ξj(y − Uj , t)) for i and j less than k, we have

Tijkk =
∫
E[ξi(x− Ui, s)ξj(x− Uj , s)] dx

∫
E[ξ2k(y, t)] dy = 0, i < j < k.

By the same argument, Tkkij = 0 for the same indices. Thus we have∑
Tijkl =

∑
i

Tiiii +
∑
i<j

(4Tijij + 2Tijjj + 2Tjjij + Tiijj + Tjjii) +
∑

i<j<k

4(Tikjk + Tjkik).

We have∫
(dt(y − Zk)− d̄t(y))2 dy ≤

∫
(2d2

t (y − Zk) + 2E[d2
t (y − Zk)]) dy = 4

∫
d2

t (x) dx.

With (6.1) we therefore get

(12.5)
∫
ξk(y − Uk, t)2 dy ≤ 4Btκ.

From this we immediately obtain that each term whose four indices take on at most two
distinct values, is bounded by (4B)2sκtκ. This is clear for Tiiii, Tiijj and Tjjii, but requires
an application of the Cauchy–Schwarz inequality for the other terms; for example, T 2

ijij ≤
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TiijjTjjii and T 2
ijjj ≤ TiijjTjjjj . Now let us look at the term Tikjk with i < j < k. Since

Ukij is independent of (Zi, Zj , Zk), we have

Tikjk =
∫∫

E[ξi(x− Ui, s)ξj(y − Uj , s)∆kij(x, y)] dx dy

with

∆kij(x, y) = ξk(x− Uk, s)ξk(y − Uk, t)− ξk(x− Ukij , s)ξk(y − Ukij , t),

and thus we get from the Cauchy–Schwarz inequality and (12.5) that

T 2
ikjk ≤ 2(4B)2(st)κ

∫∫
E[(ξk(x− Uk, s)− ξk(x− Ukij , s))2(ξj(y − Uj , t))2] dx dy

+ 2(4B)2(st)κ

∫∫
E[(ξk(y − Uk, t)− ξk(y − Ukij , t))2(ξi(x− Ui, s))2] dx dy

≤ 2(4B)3sκt2κMkij(s) + 2(4B)3s2κtκMkij(t),

where

Mkij(u) =
∫
E[(ξk(x− Uk, u)− ξk(x− Ukij , u))2] dx

≤
∫
E[(du(x− Uk − Zk)− du(x− Ukij − Zk))2] dx

≤ E
[ ∫

(du(x− Uk + Ukij)− du(x))2 dx
]

≤ 4BE[min{|Uk − Ukij |κ, uκ}], u > 0.

This establishes the bound |Tikjk| ≤ 2(4B)2t3κ/2
√
E[min{|Uk − Ukij |κ, tκ}], since s < t.

This is also a bound for |Tkikj |. This completes the proof of the desired bound.

13. A bound.

Let Ut, t ∈ Z, be independent and identically distributed random variables with finite
mean. For summable coefficients c0, c1, . . . and d0, d1, . . . , with d0 6= 0, let us consider the
linear processes

St =
∞∑

s=0

csUt−s and Tt =
∞∑

s=0

dsUt−s, t ∈ Z,

and let us set

‖c‖ =
∞∑

j=0

|cj |, ‖d‖ =
∞∑

j=0

|dj |,

Dc =
∞∑

j=0

(j + 1)|cj |, Dd =
∞∑

j=0

(j + 1)|dj |.
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For a measurable function h and x ∈ R we define

K(x) = n−1/2
n∑

j=1

(
h(x− Tj)− E[h(x− Tj)

)
,

H(x) = n−1/2
n∑

j=1

(
Sjh(x− Tj)− E[Sjh(x− Tj)]

)
.

Set
A(α, β) = 2β−1(1 + αβE[|U0|β]), α > 0, β ≥ 1,

Schick and Wefelmeyer (2006) have shown the following two results.

Lemma 23. Let p and q be non-negative and q∗ = max(q, 1). Suppose h has finite Vq-norm
and is Vq-Lipschitz with constant L, Vph is bounded, and U0 has a finite moment of order
p+ q∗. Let Dd be finite. Then∫

Vp+q(x)E[K2(x)] dx ≤ 8Λ‖Vph‖∞DdA
4,

where Λ = max(L, 2‖h‖Vq) and A = A(max(1, 2‖c‖), p+ q∗).

Lemma 24. Suppose h is bounded and 1-Lipschitz with constant L. Let Dd be finite. Then∫
E[K2(x)] dx ≤ 4L‖h‖∞DdE[|U0|].

We shall now obtain similar results for the process H.

Lemma 25. Let p and q be non-negative and q∗ = max(q, 1). Suppose h has finite Vq-norm
and is Vq-Lipschitz with constant L, Vph is bounded, and U0 has a finite moment of order
β = p+ 2 + q∗. Let D = Dc +Dd be finite. Then∫

Vp+q(x)E[H2(x)] dx ≤ 8Λ‖Vph‖∞DA4

where Λ = max(L, 2‖h‖Vq) and A = A(α, p+ 2 + q∗) with α = max(1, 2‖c‖+ 2‖d‖).

Proof. We can write H(x) = n−1/2
∑n

j=1(Zj(x)− E[Zj(x)]) where

Zj(x) = Sjh(x− Tj), x ∈ R.

Now set

S∗j =
j−1∑
s=0

csUj−s, S̄j =
∞∑

s=j

csUj−s, T ∗j =
j−1∑
s=0

dsUj−s, T̄j =
∞∑

s=j

dsUj−s.

Then we have the bounds |S∗j |+ |S̄j | ≤ Rj and |T ∗j |+ |T̄j | ≤ Rj with

Rj =
∞∑

s=0

αs|Uj−s| and αj = max(|cj |, |dj |).
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Set R = R0 and U = U0. By Lemma 14, for every t ∈ [0, β],

E[Vt(Rj)] ≤ E[Vt(R+Rj)] ≤ E[Vβ(R+Rj)] ≤ A

and

E[Vt(αU)] ≤ E[Vβ(αU)] ≤ A.

Next we can write

Zj(x) = S∗j h(x− T ∗j − T̄j) + S̄jh(x− T ∗j − T̄j)

and obtain, with F denoting the σ-field generated by {Ut : t ≤ 0}, that

(13.1) Z̄j(x) = E(Zj(x)|F) = h∗j (x− T̄j) + S̄jhj(x− T̄j)

where h∗j and hj are the functions defined by

h∗j (x) = E[S∗j h(x− T ∗j )] and hj = E[h(x− T ∗j )], x ∈ R.

These functions have finite Vq-norm and inherit the Vq-Lipschitz property of h. More
precisely, with Bj = E[Vq(T ∗j )] and B∗j = E[|S∗j |Vq(T ∗j )], we obtain the bounds

‖hj‖Vq ≤ Bj‖h‖Vq and ‖h∗j‖Vq ≤ B∗j ‖h‖Vq ,

and find that hj is Vq-Lipschitz with constant LBj and h∗j is Vq-Lipschitz with constant LB∗j .
Since |T ∗j | ≤ Rj , |S∗j | ≤ Rj and q ≤ β − 1, we obtain the inequalities Bj ≤ E[Vq(Rj)] ≤ A

and B∗j ≤ E[Vq+1(Rj)] ≤ E[Vβ(Rj)] ≤ A. Thus, by Lemma 4.3 in Schick and Wefelmeyer
(2006), we have

(13.2) ‖h∗j (· − t)− h∗j‖Vq ≤ B|t|Vq∗−1(t) and ‖hj(· − t)− hj‖Vq ≤ B|t|Vq∗−1(t)

with B = 2AΛ. To simplify notation, we abbreviate S0 by S, T0 by T , and Z0 by Z. Using
stationarity and a conditioning argument, we obtain

E[H2(x)] = Var(Z(x)) +
2
n

n−1∑
j=1

(n− j) Cov(Z(x), Z̄j(x)).

Thus ∫
Vp+q(x)E[H2(x)] dx ≤ 2

n−1∑
j=0

Γj

where

Γj =
∫
Vp+q(x)E

[
|Z(x)|

∣∣Z̄j(x)− E[Z̄j(x)]
∣∣] dx.

Since Vph is bounded, Vp(x+ y) ≤ Vp(x)Vp(y), |S| ≤ R ≤ V1(R) and |T | ≤ R, we derive the
bound

Vp(x)|Z(x)| ≤ |S|Vp(T )Vp(x− T )|h(x− T )| ≤ Vp+1(R)‖Vph‖∞, x ∈ R.
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Thus we get

Γj ≤ ‖Vph‖∞
∫
Vq(x)E

[
Vp+1(R)|Z̄j(x)− E[Z̄j(x)]|

]
dx.

Using the expression (13.1) for Z̄j(x), we obtain the bound

(13.3) Γj ≤ ‖Vph‖∞(Γj1 + Γj2 + Γj3 +AΓj4 +AΓj5 +A‖hj‖VqE[|S̄j |]),

where

Γj1 =
∫
Vq(x)E[Vp+1(R)|h∗j (x− T̄j)− h∗j (x)|] dx,

Γj2 =
∫
Vq(x)E[Vp+1(R)|S̄j ||hj(x− T̄j)− hj(x)|] dx,

Γj3 =
∫
Vq(x)E[Vp+1(R)|S̄j ||hj(x)|] dx = ‖hj‖VqE[Vp+1(R)|S̄j |],

Γj4 =
∫
Vq(x)E[|h∗j (x− T̄j)− h∗j (x)|] dx,

Γj5 =
∫
Vq(x)E[|S̄j ||hj(x− T̄j)− hj(x)|] dx.

Now use Fubini’s theorem, the inequalities (13.2) and Vq∗−1(T̄j)(1 + |S̄j |) ≤ Vq∗(Rj) to
obtain Γj1 + Γj2 ≤ BE[Vp+1(R)Vq∗(Rj)|T̄j |] ≤ BE[Vβ−1(R + Rj)|T̄j |] and Γj4 + Γj5 ≤
BE[Vq∗(Rj)|T̄j |] ≤ BE[Vβ−1(R + Rj)|T̄j |]. We also have E[|S̄j |] ≤ E[Vp+1(Rj)|S̄j |] ≤
E[Vβ−1(R + Rj)|S̄j |] and ‖hj‖Vq ≤ A‖h‖Vq ≤ B. Plugging these inequalities into (13.3)
yields

Γj ≤ ‖Vph‖∞(1 +A)BE[Vβ−1(R+Rj)(|T̄j |+ |S̄j |)].

Using (2.1) with V = Vβ−1, the independence of Uij = (αi + αi+j)|U−i| and R + Rj − Uij

for i ≥ 0, and the inequalities αi + αi+j ≤ α and 0 ≤ R+Rj − Uij ≤ R+Rj , we obtain

E[Vβ−1(R+Rj)|U−i|] ≤ E[|U−i|Vβ−1(Uij)]E[Vβ−1(R+Rj − Uij)]

≤ E[Vβ(αU)]E[Vβ−1(R+Rj)] ≤ A2

and thus

E[Vβ−1(R+Rj)|T̄j |+ |S̄j |] ≤
∞∑
i=0

(|di+j |+ |ci+j |)E[Vβ−1(R+Rj)|U−i|]

≤ A2
∞∑
i=0

(|di+j |+ |ci+j |).

Thus we have the bound

Γj ≤ ‖Vph‖∞(1 +A)BA2
∞∑

s=j

(|cs|+ |ds|), j ≥ 0.
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Since B = 2ΛA, A ≤ A2, and

∞∑
j=0

∞∑
s=j

(|cs|+ |ds|) =
∞∑

j=0

(j + 1)(|cj |+ |dj |) = D,

the desired result follows. �
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