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ABSTRACT

The stationary density of a centered invertible linear processes can be represented as a

convolution of innovation-based densities, and it can be estimated at the parametric rate

by plugging residual-based kernel estimators into the convolution representation. We have

shown elsewhere that a functional central limit theorem holds both in the space of contin-

uous functions vanishing at infinity, and in weighted L1-spaces. Here we show that we can

improve the plug-in estimator considerably, exploiting the information that the innovations

are centered, and replacing the kernel estimators by weighted versions, using the empirical

likelihood approach.

1 INTRODUCTION

For independent and identically distributed (i.i.d.) observations X1, . . . , Xn, Frees (1994)

has shown that densities of certain functions q(X1, . . . , Xm) with m ≥ 2 can be estimated

pointwise at the parametric rate n−1/2 by local U-statistics

1(
n
m

) ∑
1≤i1<···<im≤n

kbn(x− q(Xi1 , . . . , Xim)),
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where kbn = k(x/bn)/bn for some kernel k (an integrable function that integrates to 1) and

some bandwidth bn (tending to 0). Giné and Mason (2007a,b) prove functional central limit

theorems and laws of the iterated logarithm in Lp for p ∈ [1,∞].

Independently of Frees (1994), Saavedra and Cao (2000) have considered the special

case q(X1, X2) = X1 + aX2 and obtained the pointwise rate n−1/2 for the convolution∫
f̂(x−ay)f̂(y) dy of kernel estimators, i.e. by a plug-in estimator for the functional

∫
f(x−

ay)f(y) dy of the density f of the observations. Such a plug-in estimator is asymptot-

ically equivalent to the corresponding local U-statistic with kernel of the form K(x) =∫
k(x − ay)k(y) dy. Schick and Wefelmeyer (2004b, 2007a) prove functional central limit

theorems for plug-in estimators of the density of q(X1, . . . , Xm) = u1(X1) + · · · + um(Xm)

and q(X1, X2) = X1 + X2 in L1 and in the space C0 of continuous functions vanishing

at infinity. — Du and Schick (2007) obtain similar results for derivatives of convolutions.

Schick and Wefelmeyer (2008b,c) show that the rate n−1/2 may not be attained for plug-in

estimators of densities of q(X1, X2) = |X1|ν + |X2|ν with ν ≥ 2.

The results on density estimation for sums of independent random variables carry over to

estimation of the stationary density of linear processes. Saavedra and Cao (1999) consider

pointwise convergence of plug-in estimators for the stationary density of moving average

processes of order one. Schick and Wefelmeyer (2004a) obtain pointwise asymptotic normal-

ity and efficiency in this case, and Schick and Wefelmeyer (2004b) generalize the result to

higher order moving average processes and strengthen it to functional convergence in L1 and

C0. Schick and Wefelmeyer (2007b, 2008a) consider observations X1, . . . , Xn of a stationary

linear process with infinite-order moving average representation

Xt = εt +
∞∑

s=1

ϕsεt−s, (1.1)

where the coefficients ϕs are summable and the innovations εt are i.i.d. with density f ,

mean zero and finite variance. They base their estimator for the stationary density on the

convolution representation Xt = εt + Yt. In order to obtain n1/2-consistency, Yt must have a

density, say g. Hence the case Yt = 0 must be excluded by assuming that at least one of the

moving average coefficients ϕs is nonzero. Then the stationary density has the convolution

representation f ∗ g and is estimated by plugging in residual-based kernel estimators f̂ and

ĝ. Invertibility of the linear process is used to construct residuals, i.e. estimators for the

innovations.

These kernel estimators do not use the information that the innovations εt, and therefore

also the series Yt, have mean zero. In the present paper we will show how to make use of

this information. We do this by applying the empirical likelihood approach of Owen (1988,

2001) to density estimation as follows. Consider first the simplest case of a kernel estimator
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f̂(x) = (1/n)
∑n

j=1 kbn(x−Xj) based on i.i.d. observations X1, . . . , Xn with density f having

mean zero and finite variance. Then we can improve f̂(x) by a randomly weighted version,

with weights chosen such that the weighted empirical distribution also has mean zero,

f̂w(x) =
1

n

n∑
j=1

wjkbn(x−Xj) with
1

n

n∑
j=1

wjXj = 0.

Weighted kernel estimators are studied by Chen (1997), Zhang (1998), Hall and Presnell

(1999) and Müller, Schick and Wefelmeyer (2005, Section 2).

We mention in passing that weighting a kernel estimator f̂ is asymptotically equivalent

to correcting it additively as

f̂a(x) = f̂(x)− σ̂−2xf̂(x)
1

n

n∑
j=1

Xj,

with σ̂2 = (1/n)
∑n

j=1 X2
j an estimator of σ2 = E[X2]. Such additive corrections are easier

to calculate than the weights wj, but the disadvantage is that f̂a is only approximately a

probability density. Similar corrections for empirical estimators have been introduced by

Levit (1975) and Haberman (1984). The heuristic motivation for the additive correction

of density estimators is the same as for empirical estimators: The constraint E[X] = 0

implies that efficient influence functions must be orthogonal to X, so we project the influence

function kbn(x −X) of f̂(x) onto the space of random variables orthogonal to X to obtain

the improved influence function

kbn(x−X)− σ−2E[Xkbn(x−X)]X.

The correction term is approximately σ−2xf(x)X. Finally we replace unknown quantities

by estimators.

In Section 2 we apply the empirical likelihood approach to obtain residual-based weighted

kernel estimators f̂w and ĝw for the densities f and g of εt and Yt, respectively. The kernel

estimator f̂(x) = (1/(n − pn))
∑n

j=pn+1 kb(x − ε̂j) is based on asymptotically independent

residuals ε̂j = Xj −
∑pn

i=1 %̂iXj−i with appropriate estimators %̂i for %i, and the weighted

version is f̂w(x) = (1/(n − pn))
∑n

j=pn+1 wjkb(x − ε̂j) with weights wj fulfilling the one-

dimensional constraint
∑n

j=pn+1 wj ε̂j = 0. On the other hand, the kernel estimator ĝ(x) =

(1/(n− pn))
∑n

j=pn+1 kb(x− Ŷj) is based on dependent Ŷj = Xj − ε̂j, and we use a weighted

version
1

n− pn − ln

n∑
j=pn+ln+1

w∗
jkb(x− Ŷj)
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with weights fulfilling an increasing number ln ∼ log n of constraints, i.e. “infinitely many”

constraints
1

n− pn − ln

n∑
j=pn+ln+1

w∗
j ε̂j−t = 0, t = 1, . . . , ln.

Our main result gives a stochastic expansion of the convolution estimator f̂w ∗ ĝw for the

stationary density. It holds both in C0 and in weighted versions of L1 and implies a functional

central limit theorem for f̂w ∗ ĝw in these two spaces. The result follows from Schick and

Wefelmeyer (2007b) and (2008a), together with stochastic expansions of f̂w and ĝw around

f̂ and ĝ, respectively, which are consequences of the lemmas in Section 3.

2 RESULTS

We consider observations X1, . . . , Xn of a stationary linear process Xt, t ∈ Z, with infinite-

order moving average representation (1.1). We assume that the coefficients ϕs are summable

and the innovations εt are i.i.d. with density f , mean zero and finite variance. Then X0 has

a density, say h. In order to construct a n1/2-consistent estimator of h, we write Xt = εt +Yt

with

Yt = Xt − εt =
∞∑

s=1

ϕsεt−s.

For Yt to have a density g, we must exclude the degenerate case that the observations are

i.i.d.:

(C) At least one of the moving average coefficients ϕs is nonzero.

Then we can express the density h of X0 as the convolution h = f ∗ g of f and g and obtain

an estimator of h as f̂ ∗ ĝ, where f̂ and ĝ are estimators of f and g. We base these estimators

on estimators of the innovations. For this we require invertibility of the process.

(I) The function φ(z) = 1 +
∑∞

s=1 ϕsz
s is bounded and bounded away from zero on the

complex unit disk {z ∈ C : |z| ≤ 1}.

Then ρ(z) = 1/φ(z) = 1 −
∑∞

s=1 %sz
s is also bounded and bounded away from zero on the

complex unit disk. Hence the innovations have the infinite-order autoregressive representa-

tion

εt = Xt −
∞∑

s=1

%sXt−s. (2.1)

Let pn be positive integers with pn/n → 0. For j = pn +1, . . . , n we mimic the innovation

εj by the residual

ε̂j = Xj −
pn∑
i=1

%̂iXj−i,
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where %̂i is an estimator of %i for i = 1, . . . , pn. We then estimate the innovation density by

a kernel estimator based on the residuals,

f̂(x) =
1

n− pn

n∑
j=pn+1

kbn(x− ε̂j), x ∈ R,

and we estimate the density g by a kernel estimator based on the differences Ŷj = Xj − ε̂j,

ĝ(x) =
1

n− pn

n∑
j=pn+1

kbn(x− Ŷj), x ∈ R.

In addition to (C) and (I) we use the following assumptions.

(Q) The autoregression coefficients fulfill
∑

s>pn
|%s| = O(n−1/2−ζ) for some ζ > 0.

(R) The estimators %̂i of the autoregression coefficients %i fulfill

pn∑
i=1

(%̂i − %i)
2 = Op(qnn

−1)

for some qn with 1 ≤ qn ≤ pn.

The usual estimators of the autoregression coefficients are the least squares estimators

%̂1, . . . , %̂pn which minimize
∑n

j=pn+1(Xj −
∑pn

i=1 %iXj−i)
2. By Lemma 1 in Schick and We-

felmeyer (2007b), they meet condition (R) with qn = pn if in addition

npn

∑
s>pn

%2
s → 0 (2.2)

holds.

1. Results for the sup-norm. We obtain stochastic expansions for estimators of h both

in C0 and in weighted L1-spaces. The following assumptions are used for results in C0.

(S) The moving average coefficients satisfy
∑∞

s=1 s|ϕs| < ∞.

(F) The density f has mean zero, a finite fourth moment, is absolutely continuous with a

bounded and integrable (almost everywhere) derivative f ′, and the function x 7→ xf ′(x) is

bounded and integrable.

We denote the number of non-zero coefficients among {ϕs : s ≥ 1} by

N =
∑
s≥1

1[ϕs 6= 0].
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Then we can express (C) as N ≥ 1. Smoothness of g and h can be linked to the number

N . Our main results will thus be formulated in terms of N . The following conditions on the

kernel and the bandwidth are kept general to allow for various smoothness assumptions in

terms of a natural number m that will play the role of a (known) minimal size for N . Under

(C), we know that N ≥ 1 so that we can always take m = 1.

(B) The sequences bn, pn and qn and the exponent ζ fulfill pnqnb
−1
n n−1/2 → 0, nb2m+2

n = O(1),

n1/4sn → 0, n1/2bnsn = O(1), where

sn = b−1/2
n n−1/2 + pnqnb

−5/2
n n−1 + b−3/2

n n−ζ−1/2.

(K) The kernel k has bounded, continuous and integrable derivatives up to order two and is

of type (m + 1, 2) as defined below.

Here a kernel k is said to be of type (m, c) if
∫

tik(t) dt = 0 for i = 1, . . . ,m and if∫
|t|mc|k(t)| dt is finite.

A possible choice of bandwidth is bn ∼ n−1/(2m+2). Then (B) is met if 4(m + 1)ζ > 1 and

pnqnn
−(2m−1)/(4(m+1)) → 0 hold. In particular, pn = qn ∼ nβ requires 8(m + 1)β < 2m− 1.

Let Gn, Fn and Hn denote the processes defined by

Fn(x) =
1

n− pn

n∑
j=pn+1

(
f(x− Yj)− E[f(x− Yj)]

)
,

Gn(x) =
1

n− pn

n∑
j=pn+1

(
g(x− εj)− E[g(x− εj)]

)
,

Hn(x) =

pn∑
i=1

(%̂i − %i)E[X0kbn(x− Yi)]

for x ∈ R.

Let N ≥ m and suppose that (I), (Q), (R), (S), (F), (K) and (B) hold. For the sup-norm

‖ · ‖∞, Schick and Wefelmeyer (2007b) show that

‖f̂ ∗ ĝ − h− Fn −Gn + f ′ ∗Hn‖∞ = op(n
−1/2) (2.3)

and that n1/2Gn and n1/2Fn are tight in C0.

If the least squares estimators are used and (2.2) holds, then n1/2f ′ ∗Hn is also tight in

C0. Moreover, the random vector ∆̂ = (%̂1 − %1, . . . , %̂pn − %pn)> fulfills

∆̂ = W−1
n

1

n− pn

n∑
j=pn+1

Xj−1εj + op(n
−1/2) (2.4)
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with Xj−1 = (Xj−1, . . . , Xj−pn)> and Wn = E[X0X
>
0 ]. Then (2.3) can be written

‖n1/2(f̂ ∗ ĝ − h)− Zn‖∞ = op(1) (2.5)

with

Zn(x) = n−1/2

n∑
j=1

(
g(x− εj) + f(x− Yj)− 2h(x) + εjX

>
j−1W

−1
n E[X0f

′(x− Y1)]
)
.

It follows that the process n1/2(f̂ ∗ ĝ − h) converges weakly in C0 to a centered Gaussian

process with covariance

Γ(s, t) = lim
n→∞

Cov(Zn(s), Zn(t)), s, t ∈ R.

Since f and g are known to have mean zero, we can replace f̂ and ĝ by estimators that

are constructed using this information. An estimator of f that uses this information is the

weighted density estimator

f̂w(x) =
1

n− pn

n∑
j=pn+1

kb(x− ε̂j)

1 + λε̂j

, x ∈ R,

where λ is chosen such that
1

n− pn

n∑
j=pn+1

ε̂j

1 + λε̂j

= 0

and 1 + λε̂j > 0 for j = 1, . . . , n.

A weighted version of g could be obtained by mimicking the above with Ŷj replacing ε̂j.

Since the random variables Yj are not independent, we choose an alternative method which

incorporates the dependence structure. One possibility is the blockwise empirical likelihood

of Kitamura (1997) for weakly dependent stationary processes. In view of the linear structure

for our model, we instead work with a different approach that uses an increasing number of

constraints which are correlated with the observations. Let ln denote an integer that tends

to infinity slowly, say ln ∼ log n, and set Ẑj = (ε̂j−1, . . . , ε̂j−ln)>. We now work with the

weighted kernel estimator

ĝw(x) =
1

n− pn − ln

n∑
j=pn+ln+1

kb(x− Ŷj)

1 + µ>Ẑj

, x ∈ R,

where µ is chosen such that

1

n− pn − ln

n∑
j=pn+ln+1

Ẑj

1 + µ>Ẑj

= 0
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and 1 + µ>Ẑj > 0 for j = pn + ln + 1, . . . , n.

We shall show that for our weighted density estimators, the expansion (2.3) holds with

Fn and Gn replaced by

F∗n(x) =
1

n− pn

n∑
j=pn+1

(
f(x− Yj)− E[f(x− Yj)]− γ(x)σ−2εj

)
,

G∗
n(x) =

1

n− pn

n∑
j=pn+1

(
g(x− εj)− E[g(x− εj)]− φ ∗ g(x)σ−2εj

)
,

where σ2 = E[ε2
0], φ(x) = xf(x) and

γ(x) =
∞∑

s=1

E[ε0f(x− Ys)], x ∈ R.

It is easy to check that

γ(x) = lim
n→∞

(n− pn)E[Fn(x)ε̄n] (2.6)

is the asymptotic covariance of Fn(x) and the average

ε̄n =
1

n− pn

n∑
j=pn+1

εj, (2.7)

while

g ∗ φ(x) = E[ε0g(x− ε0)] = (n− pn)E[Gn(x)ε̄n] (2.8)

is the asymptotic covariance of Gn(x) and ε̄n.

Theorem 2.1. Let N ≥ m and suppose that (I), (Q), (R), (S), (F), (K) (B) and ln ∼ log n

hold. Then

‖f̂w ∗ ĝw − h− F∗n −G∗
n + f ′ ∗Hn‖∞ = op(n

−1/2).

Proof. The proof is based on the lemmas given in Section 3. In view of (2.3) it suffices to

prove

‖f̂w ∗ ĝw − f̂ ∗ ĝ + (φ ∗ g + γ)σ−2ε̄n‖∞ = op(n
−1/2). (2.9)

By (F), the function φ∗g is bounded. Thus, in view of Lemma 3.1 and part (a) of Lemma 3.6,

it suffices to verify

‖f̂w ∗ ĝw − f̂ ∗ ĝ + λφ ∗ g + f ∗ (µ>Γ̂ )‖∞ = op(n
−1/2), (2.10)

with Γ̂ defined in (3.16). Set rf = f̂w− f̂ +λφ and rg = ĝw− ĝ +µ>Γ̂ . Then we can express

f̂w ∗ ĝw − f̂ ∗ ĝ + λφ ∗ g + f ∗ (µ>Γ̂ )

= (f̂ − λφ + rf ) ∗ (ĝ − µ>Γ̂ + rg)− f̂ ∗ ĝ + λφ ∗ g + f ∗ (µ>Γ̂ )

= −(f̂ − f) ∗ (µ>Γ̂ ) + f̂ ∗ rg − λφ ∗ (ĝ − g) + λφ ∗ (µ>Γ̂ )− λφ ∗ rg + rf ∗ ĝw.

8



From Schick and Wefelmeyer (2007b) we obtain ‖f̂ − f‖2 = op(n
−1/4) and ‖ĝ − g‖2 =

op(n
−1/4). Since b−1

n = O(n1/4) by condition (B), we derive from Lemmas 3.1, 3.2 and 3.3

that ‖rf‖2 = op(n
−1/2) and from Lemma 3.5 that ‖rg‖2 = op(n

−1/2). By Lemma 3.1 we have

λ = Op(n
−1/2). Furthermore, φ is in L2 and ‖µ>Γ̂‖2 = Op(lnn

−1/2b−1/2). Using

‖u ∗ v‖∞ ≤ ‖u‖2‖v‖2

we see that (2.10) holds.

Under (F) the functions φ and g belong to L2 implying that their convolution φ∗g belongs

to C0. Under (F) one also has γ in C0; for details see the proof of Lemma 3.6 below. If least

squares estimators are used, then (2.9) implies

‖n1/2(f̂w ∗ ĝw − h)− Zw
n‖∞ = op(1) (2.11)

with

Zw
n (x) = Zn(x)− (φ ∗ g(x) + γ(x))σ−2n−1/2

n∑
j=1

εj.

It follows that the process n1/2(f̂w ∗ ĝw − h) converges in C0 to a centered Gaussian process

with covariance function

Γw(s, t) = lim
n→∞

Cov(Zw
n (s), Zw

n (t)), s, t ∈ R.

Using the results (2.6) and (2.8) and the fact that εi and Xj−1εj are uncorrelated for all i

and j, we see that the covariance of Zw
n (x) and Zn(x)− Zw

n (x) converges to zero. Thus the

decrease in the asymptotic variance at a point x is

Γ(x, x)− Γw(x, x) = Var(Zn(x)− Zw
n (x)) = (φ ∗ g(x) + γ(x))2σ−2.

We should note that

φ ∗ g(x) + γ(x) =
∞∑

s=0

∫
yhs(x− ϕsy)f(y) dy

where hs denotes the density of Xs −ϕsε0 for s = 0, 1, 2, . . . with ϕ0 = 1. Note that h0 = g.

Example 1. Let Xt = ϑXt−1 + εt be an AR(1) process with ϑ 6= 0 and |ϑ| < 1. Then

E[X2
0 ] = σ2/(1− ϑ2). Furthermore, Yt = Xt − εt = ϑXt−1 and therefore

ν ′(x) = E[X0f
′(x− Y1)] = E[X0f

′(x− ϑX0)]
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and

c(x) = φ ∗ g(x) + γ(x) = E[ε0g(x− ε0)] +
∞∑

s=0

E[ε0f(x− ϑXs)].

Here we can take pn = 1. The least squares estimator for ϑ is

ϑ̂ =

∑n
j=2 Xj−1Xj∑

j=2 X2
j−1

.

We have

ϑ̂ = σ−2(1− ϑ2)
1

n

n∑
j=1

Xj−1εj + op(n
−1/2).

Hence the stochastic expansion (2.5) of f̂ ∗ ĝ holds with

Zn(x) = n−1/2

n∑
j=1

(
g(x− εj) + f(x− ϑXj−1)− 2h(x) + σ−2(1− ϑ2)ν ′(x)Xj−1εj

)
.

For the weighted version f̂w ∗ ĝw we obtain from Theorem 2.1 that

‖n1/2(f̂w ∗ ĝw − h)− Zw
n‖∞ = op(1)

with

Zw
n (x) = Zn(x)− c(x)σ−2n−1/2

n∑
j=1

εj.

A formula for the asymptotic variance of Zn(x) is given by

Γ(x, x) = g2 ∗ f(x)− h2(x) + (1− ϑ2)(ν ′(x))2 + f 2 ∗ g(x)− h2(x)

+ 2
∞∑

r=1

( ∫
g(x− y)hr(x− ϑry)f(y) dy − h2(x)

)
+ 2(1− ϑ2)σ−2ν ′(x)

∞∑
r=1

∫∫
yzf̄r−1(x− ϑry − ϑr+1z)f(y)h(z) dy dz

+ 2
∞∑

r=1

( ∫
f(x− ϑz)fr(x− ϑr+1z)h(z) dz − h2(x)

)
where fr is the density of

∑r
i=0 ϑiεi and hr is the density of Xr − ϕrε0.

Now assume that f is the standard normal density. Then the asymptotic variance can be

calculated explicitly and c(x) equals (1+ϑ)xh(x). In this case the relative variance reduction
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Jϑ(x) = c2(x)/Γ(x, x) is an even function of x. Graphs of this function over the interval [0, 10]

are given in the next figure for four choices of the parameter, namely ϑ = .3, .5, .7, .9.

0 1 2 3 4 5 6 7 8 9 10

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

ϑ = .9

ϑ = .7

ϑ = .5

ϑ = .3

From the figure we see that variance reductions of over 90 percent are possible.

Example 2. Let Xt = εt + ϑεt−1 be an MA(1) process with ϑ 6= 0 and |ϑ| < 1. Then Yt =

Xt−εt = ϑεt−1 has density given by g(x) = fϑ(x) = f(x/ϑ)/|ϑ|, and γ(x) = E[ε0f(x−ϑε0)].

Let ϑ̂ be a n1/2-consistent estimator for ϑ. As in Example 2 of Schick and Wefelmeyer (2007b)

we obtain the stochastic expansion

‖n1/2(f̂ ∗ ĝ − h)− Zn‖∞ = op(1)

with

Zn(x) = n−1/2

n∑
j=1

(
fϑ(x− εj) + f(x− ϑεj)− 2h(x)

)
− n1/2(ϑ̂− ϑ)E[ε0f

′(x− ϑε0)].

We have φ ∗ g(x) = E[ε0fϑ(x − ε0)]. For the weighted version f̂w ∗ ĝw we obtain from

Theorem 2.1 that

‖n1/2(f̂w ∗ ĝw − h)− Zw
n‖∞ = op(1)

with

Zw
n (x) = Zn(x)− a(x)n−1/2

n∑
j=1

εj,

where a(x) = (E[ε0fϑ(x− ε0)] + E[ε0f(x− ϑε0)])σ
−2. The weighted estimator f̂w ∗ ĝw(x) is

asymptotically equivalent to the additively corrected estimator

f̂ ∗ ĝ(x)− â(x)
1

n− pn

n∑
j=pn+1

ε̂j
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of Schick and Wefelmeyer (2004a), with â(x) a consistent estimator for a(x). Both estimators

are efficient for h(x) if an efficient estimator for ϑ is used. The asymptotic variance reduction

of f̂w ∗ ĝw(x) over f̂ ∗ ĝ(x) is a2(x)σ2 = (E[ε0fϑ(x− ε0)] + E[ε0f(x− ϑε0)])
2σ−2.

2. Results for weighted L1-spaces. Results analogous to those in C0 can be obtained in

weighted L1-spaces. We denote by LV the space of functions a with finite V -norm ‖a‖V =∫
V (x)|a(x)| dx. In the following we consider the choice Vr(x) = (1 + |x|)r for some non-

negative r. The case r = 0 or V = 1 corresponds to the natural distance between densities.

The choice Vr is useful if we want to estimate expectations E[a(X0)] =
∫

a(x)h(x) dx for

functions a bounded by a multiple of Vr. We need modified versions of Assumptions (S),

(F), (K) and (B).

(SV) The moving average coefficients satisfy
∑∞

s=1 sβ|ϕs| < ∞ for some β > 1.

We say that a function a has finite V -variation if there are measures µ1 and µ2 of equal

mass with
∫

V d(µ1 + µ2) finite such that a(x) = µ1((−∞, x]) − µ2((−∞, x]) for Lebesgue

almost all x. In this case, we call
∫

V d(µ1 + µ2) the V -variation of a. Aside from moment

conditions, we require only that f has finite Vr+1-variation. In particular, f need not be

continuous.

(FV) The density f has mean zero, a finite moment of order ξ > 2r + 3 and finite Vr+1-

variation.

We formulate our assumptions on the kernel and the bandwidth in terms of the moment

order ξ and a natural number m that plays again the role of a known minimal size for N .

(KV) The kernel k is twice continuously differentiable with bounded derivatives and k,

k′ and k′′ have finite V2r+2-norms. Furthermore, k has finite Vr+m+1-norm and satisfies∫
tik(t) dt = 0 for i = 1, . . . ,m.

(BV) The bandwidth bn satisfies

nb2m+2
n → 0, n−1/4−ζb−1

n → 0, n−1/4b−1/2
n → 0,

and the sequences bn, qn and pn satisfy

n−3/4pnqnb
−2
n → 0, n−1/2pnqnb

−1
n → 0 and pnqnn

−1+2/ξ = O(1).

Define

νi(x) = E[X0f(x− Yi)], x ∈ R.

12



Let N ≥ m and suppose that (I), (Q), (R), (SV), (FV), (KV) and (BV) hold. Schick and

Wefelmeyer (2008a) show that∥∥∥f̂ ∗ ĝ − h− Fn −Gn +

pn∑
i=1

(%̂i − %i)ν
′
i

∥∥∥
Vr

= op(n
−1/2). (2.12)

We have the following result for the weighted estimator f̂w ∗ ĝw.

Theorem 2.2. Let N ≥ m and suppose that (I), (Q), (R), (SV), (FV), (KV) (BV) and

ln ∼ log n hold. Then∥∥∥f̂w ∗ ĝw − h− F∗n −G∗
n +

pn∑
i=1

(%̂i − %i)ν
′
i

∥∥∥
Vr

= op(n
−1/2).

Proof. In view of (2.12) it suffices to prove∥∥∥f̂w ∗ ĝw − f̂ ∗ ĝ + (φ ∗ g + γ)σ−2 1

n− pn

n∑
j=pn+1

εj

∥∥∥
Vr

= op(n
−1/2).

The proof of this is parallel to that of Theorem 2.1, now using

‖u ∗ v‖Vr ≤ ‖u‖Vr‖v‖Vr .

3 LEMMAS

In this section we always assume that the following condition is met.

(A) The density f has mean zero and a finite moment of order β > 2. The conditions (I),

(Q) and (R) hold. The rates pnqnn
−1+2/β = O(1) and ln ∼ log n hold.

Note that the assumptions on f are met under (F) and (FV). The boundedness of

pnqnn
−1+2/β is implied by (B) and (F) for the choice β = 4, and by (BV) and (FV) for

the choice β = ξ.

Lemma 7 in Schick and Wefelmeyer (2007b) implies the following properties of the resid-

uals:
1

n− pn

n∑
j=pn+1

(ε̂j − εj)
2 = Op(pnqnn

−1) = Op(n
−2/β), (3.1)

max
pn<j≤n

|ε̂j − εj| = Op(n
−ζ) + op(p

1/2
n q1/2

n n−1/2+1/β) = op(1), (3.2)

13



1

n− pn

n∑
j=pn+1

(ε̂j − εj) = Op(n
−1/2−ζ) + Op(p

1/2
n q1/2

n n−1) = Op(n
−1/2−τ ) (3.3)

with τ = min{ζ, 1/β} > 0. The second property implies that

1

n− pn

n∑
j=pn+1

ε̂2
j = σ2 + op(1) (3.4)

and

max
pn<j≤n

|ε̂j| ≤ max
pn<j≤n

|εj|+ max
pn<j≤n

|ε̂j − εj| = op(n
1/β). (3.5)

Here maxpn<j≤n |εj| = op(n
1/β) follows from the fact that the innovations have a finite mo-

ment of order β.

Using (3.3), (3.4) and (3.5), we derive as in Owen (2001, pages 219–221) the following

result.

Lemma 3.1. Suppose (A) holds. Then

λ = σ−2ε̄n + op(n
−1/2).

Let V be a continuous function on R satisfying V (0) = 1 and

V (x + y) ≤ V (x)V (y), x, y ∈ R;

V (sx) ≤ V (x), |s| ≤ 1, x ∈ R.

Using the properties of V and δn = maxpn<j≤n |ε̂j − εj|) = op(1), we obtain that

1

n− pn

n∑
j=pn+1

V (ε̂j) ≤ V (δn)
1

n− pn

n∑
j=pn+1

V (εj) = Op(1) (3.6)

if E[V (ε0)] = ‖f‖V is finite, and

1

n− pn

n∑
j=pn+1

V (Ŷj) ≤ V (δn)
1

n− pn

n∑
j=pn+1

V (Yj) = Op(1) (3.7)

if E[V (Y1)] = ‖g‖V is finite. We set

V∗(x) = (1 + |x|)V (x), V∗∗(x) = (1 + |x|)2V (x), x ∈ R,

and note that V∗ and V∗∗ have the same properties as V . Finally, we let

φ̂(x) = xf̂(x), x ∈ R.

14



Lemma 3.2. Suppose (A) holds and the bandwidth satisfies bn → 0 and nb2
n → ∞. (a) If

β = 4 and
∫

(1 + u2)k2(u) du is finite, then

‖f̂w − f̂ + λφ̂‖2 = op(n
−1/2).

(b) If f and k have finite V∗-norms, then

‖f̂w − f̂ + λφ̂‖V = op(n
−1/2).

Proof. It follows from (3.5) and Lemma 3.1 that

max
pn<j≤n

|λε̂j| = op(1). (3.8)

Writing
1

1 + λε̂j

= 1− λε̂j +
λ2ε̂2

j

1 + λε̂j

,

we see that

f̂w(x)− f̂(x) + λxf̂(x) = λA(x) + λ2B(x)

with

A(x) =
1

n− pn

n∑
j=pn+1

(x− ε̂j)kbn(x− ε̂j),

B(x) =
1

n− pn

n∑
j=pn+1

ε̂2
j

1 + λε̂j

kbn(x− ε̂j).

An application of the Cauchy–Schwarz inequality and the substitution x = ε̂j + bnu show

that

‖A‖2
2 ≤

1

n− pn

n∑
j=pn+1

∫
(x− ε̂j)

2k2
bn

(x− ε̂j) dx = bn

∫
u2k2(u) du.

Another application of the Cauchy–Schwarz inequality and the same substitution show that

bn‖B‖2
2 ≤

1

n− pn

n∑
j=pn+1

ε̂4
j

(1 + λε̂j)2

∫
bnk

2
bn

(x− ε̂j) dx

≤ max
pn<j≤n

1

(1 + λε̂j)2

1

n− pn

n∑
j=pn+1

(1 + |ε̂j|)4

∫
k2(u) du.

Thus, if f has a finite fourth moment and
∫

(1 + u2)k2(u) du is finite, then we have

n‖f̂w − f̂ + λφ̂‖2
2 ≤ 2nλ2‖A‖2

2 + 2nλ4‖B‖2
2 = op(1)

in view of nλ2 = Op(1), (3.8), (3.6) with V (x) = (1 + |x|)4, and the properties of k and bn.

15



For large n such that bn < 1 we have the bounds

‖A‖V =

∫
V (x)

∣∣∣ 1

n− pn

n∑
j=pn+1

(x− ε̂j)kbn(x− ε̂j)
∣∣∣ dx

≤ 1

n− pn

n∑
j=pn+1

∫
V (ε̂j + bnu)|uk(u)|bn du

≤ 1

n− pn

n∑
j=pn+1

V (ε̂j)

∫
V (u)|uk(u)|bn du

≤ 1

n− pn

n∑
j=pn+1

V∗(ε̂j)bn‖k‖V∗

and

‖λB‖V =

∫
V (x)

∣∣∣ 1

n− pn

n∑
j=pn+1

λε̂2
j

1 + λε̂j

kbn(x− ε̂j)
∣∣∣ dx

≤ 1

n− pn

n∑
j=pn+1

λε̂2
j

1 + λε̂j

∫
V (ε̂j + bnu)|k(u)| du

≤ 1

n− pn

n∑
j=pn+1

λε̂2
j

1 + λε̂j

V (ε̂j)

∫
V (u)|k(u)| du.

≤ max
pn<j≤n

|λε̂j|
|1 + λε̂j|

1

n− pn

n∑
j=pn+1

V∗(ε̂j)‖k‖V∗ .

Thus, if f and k have finite V∗-norms, then we have

‖f̂w − f̂ + λφ‖V ≤ |λ|(‖A‖V + ‖λB‖V ) = op(n
−1/2)

in view of λ = Op(n
−1/2), (3.6) applied with V∗ in place of V , and (3.8).

Lemma 3.3. Suppose (A) holds and the bandwidth satisfies bn → 0 and nb2
n →∞. (a) If f

and |k| are bounded and have finite fourth moments, then

‖φ̂− φ‖2
2 = Op(b

−1/2
n )‖f̂ − f‖2.

(b) If f and k have finite V∗∗-norms, then

‖φ̂− φ‖2
V = Op(1)‖f̂ − f‖V .
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Proof. Without loss of generality we may assume that bn < 1. An application of the Cauchy–

Schwarz inequality yields

‖φ̂− φ‖4
2 =

( ∫
x2(f̂(x)− f(x))2 dx

)2

≤
∫

(1 + |x|)4(f̂(x)− f(x))2 dx

∫
(f̂(x)− f(x))2 dx

≤ ‖f̂ − f‖∞(‖f̂‖V4 + ‖f‖V4)‖f̂ − f‖2
2.

By the properties of f and k we have ‖f̂ − f‖∞ ≤ ‖kbn‖∞ + ‖f‖∞ = O(b−1
n ) and

‖f̂‖V4 ≤
1

n− pn

n∑
j=pn+1

V4(ε̂j)‖k‖V4 .

Thus part (a) is now immediate in view of (3.6).

In view of the properties of f and k, part (b) follows from the inequalities

‖φ̂− φ‖2
V ≤ ‖f̂ − f‖2

V∗ ≤ ‖f̂ − f‖V∗∗‖‖f̂ − f‖V

and

‖f̂‖V∗∗ ≤
1

n− pn

n∑
j=pn+1

V∗∗(ε̂j)‖k‖V∗∗

and (3.6).

Now let

Zj = (εj−1, . . . , εj−ln)>

and

1ln = (1, . . . , 1)> ∈ Rln .

We write |v| for the euclidean norm of a vector v. We write |A|∗ for the operator norm of a

matrix A defined by

|A|∗ = sup
|v|=1

|Av|.

For a symmetric A one has |A|∗ = sup|v|=1 |v>Av|.

Lemma 3.4. Suppose (A) holds. Then

µ = σ−2ε̄n1ln + op(n
−1/2).
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Proof. For notational convenience we abbreviate the average operator

1

n− pn − ln

n∑
j=pn+ln+1

by
∑

j
.

Now we set

M̂n = max
pn+ln<j≤n

|Ẑj|, Mn = max
pn+ln<j≤n

|Zj|,

Ân =
∑

j
Ẑj, An =

∑
j
Zj, Ŝn =

∑
j
ẐjẐ

>
j and Sn =

∑
j
ZjZ

>
j .

We derive from (3.1) to (3.3)∑
j
|Ẑj − Zj|2 = Op(lnn

−2/β), (3.9)

max
pn+ln<j≤n

|Ẑj − Zj| = op(l
1/2
n ), (3.10)

M̂n ≤ Mn + max
pn+ln<j≤n

|Ẑj − Zj| = op(l
1/2
n n1/β) + op(l

1/2
n ), (3.11)

Ân = An + Op(l
1/2
n n−1/2−τ ) = Op(l

1/2
n n−1/2). (3.12)

Let us now show that

|Ŝn − σ2Iln|∗ = Op(l
1/2
n n−1/β + l3nn

−δ), (3.13)

where Iln is the ln × ln identity matrix and δ = min{1/2, 1 − 2/β}. Since the matrices Ŝn,

Sn and Iln are symmetric, this follows if we show

|Ŝn − Sn|∗ = sup
|v|=1

∣∣∣∑
j

[
(v>Ẑj)

2 − (v>Zj)
2
]∣∣∣ = Op(l

1/2
n n−1/β) (3.14)

and

|Sn − σ2Iln|∗ = sup
|v|=1

∣∣∣∑
j
(v>Zj)

2 − σ2
∣∣∣ = Op(l

3
nn

−δ). (3.15)

Since (v>Ẑj)
2 = (v>Zj)

2 +2v>Zjv
>(Ẑj−Zj)+(v>(Ẑj−Zj), (3.14) follows from (3.15), (3.9)

and an application of the Cauchy–Schwarz inequality. Now set

cn(i) =
∑

j
εjεj−i, i = 0, 1, 2, . . .

For 1 ≤ i1, i2 ≤ ln, we have∣∣∣∑
j
εj−i1εj−i2 − cn(|i1 − i2|)

∣∣∣ ≤ max
pn<j≤n

|εj|2
ln

n− pn − ln

18



and (
E

[ ln∑
i=1

|cn(i)|
])2

≤ ln

ln∑
i=1

E[c2
n(i)] =

l2nσ
4

n− pn − ln
= O(l2nn

−1).

Thus for a unit vector v we have∑
j
(v>Zj)

2 − σ2 = cn(0)− σ2 + Rn

where

|Rn| ≤ max
pn<j≤n

|εj|2
l3n

n− pn − ln
+ l2n

ln∑
a=1

|cn(i)|

and hence

Rn = Op(l
3
nn

2/β−1 + l3nn
−1/2) = Op(l

3
nn

−δ).

For β ≥ 4, we have cn(0) − σ2 = Op(n
−1/2) = Op(n

−δ). For β < 4, we have cn(0) − σ2 =

Op(n
−1+2/β) = Op(n

−δ). To see this write cn(0)− σ2 = T1 + T2, where

T1 =
∑

j

(
ε2

jI[|εj| ≤ n1/β]− E[ε2
jI[|εj| ≤ n1/β]]

)
,

T2 =
∑

j

(
ε2

jI[|εj| > n1/β]− E[ε2
jI[|εj| > n1/β]]

)
,

and verify that

(n− pn − ln)E[T 2
1 ] = E[ε4I[ε ≤ n1/β]] ≤ n(4−β)/βE[|ε|β]

and

E[|T2|] ≤ 2E[ε2I[|ε| > n1/β]] ≤ 2n−(β−2)/βE[|ε|β].

Using the statements (3.11)–(3.13) one can first show that the probability of the event

that the origin is an interior point of the convex hull of the random vectors Ẑpn+ln+1, . . . , Ẑn

tends to one (we omit the elaborate argument) and then use this and arguments of Owen

(2001, pages 220–221) to conclude

|µ− Ŝ−1
n Ân| = Op(M̂n|Ân|2).

Thus in view of (3.11) to (3.13) one obtains

µ = σ−2An + op(n
−1/2) = σ−2ε̄n1ln + op(n

−1/2),

which is the desired result.

Now set

Γ̂ (x) =
1

n− pn − ln

n∑
j=pn+ln+1

Ẑjkbn(x− Ŷj), x ∈ R. (3.16)
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Lemma 3.5. Suppose (A) holds and the bandwidth satisfies bn → 0 and nb2
n → ∞. (a) If

β = 4 and
∫

k2(u) du is finite, then

‖ĝw − ĝ + µ>Γ̂‖2 = op(n
−1/2).

(b) If g has finite V 2-norm and k has finite V -norm, then

‖ĝw − ĝ + µ>Γ̂‖V = op(n
−1/2).

Proof. It follows from Lemma 3.4 and (3.2) that

max
pn+ln<j≤n

|µ>Ẑj| = op(lnn
−1/2+1/β)

and thus

∆n = max
pn+ln<j≤n

|µ||µ>Ẑj|
|1 + µ>Ẑj|

= op(l
3/2
n n−1+1/β).

Writing
1

1 + µ>Ẑj

= 1− µ>Ẑj +
(µ>Ẑj)

2

1 + µ>Ẑj

,

we see that

ĝw(x) = g̃(x)− µ>Γ̂ (x) + D(x)

with

g̃(x) =
∑

j
kbn(x− Ŷj),

D(x) =
∑

j

(µ>Ẑj)
2

1 + µ>Ẑj

kbn(x− Ŷj).

Note that

ĝ(x)− g̃(x) =
(
1− n− pn

n− pn − ln

)
ĝ(x) +

1

n− pn − ln

pn+ln∑
j=pn+1

kbn(x− Ŷj).

From this one derives that

‖ĝ − g̃‖2 ≤
2ln

n− pn − ln
‖kbn‖2 =

2ln

(n− pn − ln)b
1/2
n

‖k‖2 = op(n
−1/2)

if k has finite L2-norm, and, in view of (3.7),

‖ĝ − g̃‖V ≤ ln‖kbn‖V

n− pn − ln

( 1

n− pn

n∑
j=pn+1

V (Ŷj) +
1

ln

pn+ln∑
j=pn+1

V (Ŷj)
)

= op(n
−1/2)

20



if k and g have finite V -norms.

As in the proof of Lemma 3.2 we derive the bounds

bn‖D‖2
2 ≤ ∆2

n

∑
j
|Ẑj|2

∫
k2(u) du,

‖D‖V ≤ ∆n

∑
j
|Ẑj|V (Ŷj)‖k‖V .

It follows from (3.9) that∑
j
|Ẑj|2 ≤ 2

∑
j
|Zj|2 + 2

∑
j
|Ẑj − Zj|2 = Op(ln).

If g has a finite V 2-norm, we obtain from (3.7) applied with V 2 instead of V that∑
j
V 2(Ŷj) = Op(1).

It is now easy to see that ‖ĝ − g̃‖2 + ‖D‖2 = op(n
−1/2) if β = 4 and k is square-integrable,

and that ‖ĝ − g̃‖V + ‖D‖V = op(n
−1/2) if g has a finite V 2-norm and k has a finite V -norm.

This completes the proof.

Lemma 3.6. Suppose (A) holds and the bandwidth satisfies bn → 0 and nb2
n → ∞. (a)

Suppose (S) and (F) hold and ‖k‖2 < ∞. Then

‖f ∗ (µ>Γ̂ )− σ−2γε̄n‖∞ = op(n
−1/2). (3.17)

(b) Suppose (S) and (FV) hold and k has finite Vr-norm. Then

‖f ∗ (µ>Γ̂ )− σ−2γε̄n‖Vr = op(n
−1/2). (3.18)

Proof. For x ∈ R, we set

Ûn(x) =
∑

j
Ẑjf(x− Ŷj) and Un(x) =

∑
j
Zjf(x− Yj).

Then we can write f ∗ (µ>Γ̂ ) = (µ>Ûn) ∗ kbn . Note also that

Ūn(x) = E[Un(x)] = E[Z1f(x− Y1)] = (γ1(x), . . . , γln(x))>,

where, for a positive integer j,

γj(x) = E[ε0f(x− Yj)], x ∈ R.
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Let us first prove (a). It follows from (F) that f is bounded, Lipschitz with Lipschitz

constant ‖f ′‖∞, and L1-Lipschitz with Lipschitz constant ‖f ′‖1. Since ε0 and Yj − ϕjε0 are

independent and ε0 has mean zero, we see that

γj(x) = E[ε0(f(x− Yj)− f(x− Yj + ϕjε0))], x ∈ R,

and obtain

‖γj‖∞ ≤ ‖f ′‖∞|ϕj|σ2 and ‖γj‖1 ≤ ‖f ′‖1|ϕj|σ2.

Thus we have the bounds

‖γ‖∞ ≤
∞∑

j=1

‖γj‖∞ ≤ σ2‖f ′‖∞
∞∑

j=1

|ϕj| < ∞,

‖γ‖1 ≤
∞∑

j=1

‖γj‖1 ≤ σ2‖f ′‖1

∞∑
j=1

|ϕj| < ∞,

and see that 1>lnŪn = γ1 + · · ·+ γln converges to γ uniformly and in L1.

Of course the function γj is absolutely continuous with bounded almost everywhere

derivative

γ′j(x) = E[ε0(f
′(x− Yj)− f ′(x− Yj + ϕjε0))], x ∈ R.

Let i∗ = inf{i : ϕi 6= 0} and ϕ = ϕi∗ . Then we can write Yj = ϕεj−i∗ + Y ∗
j with Y ∗

j =∑
s>i∗

ϕsεj−s. For j > i∗, we have

γ′j(x) = E[ε0(w(x− Y ∗
j )− w(x− Y ∗

j + ϕjε0))]

with w = f ′ ∗fϕ = f ′ϕ ∗f and fϕ(x) = f(x/ϕ)/|ϕ| the density of ϕε0. Thus w has a bounded

and integrable derivative w′ = f ′ ∗ f ′ϕ. Consequently, for j > i∗, we derive

‖γ′j‖∞ ≤ |ϕj|σ2‖w′‖∞ and ‖γ′j‖1 ≤ |ϕj|σ2‖w′‖1.

This shows that γ has a bounded and integrable derivative γ′ =
∑∞

j=1 γ′j. The above imply

that γ belongs to C0.

In view of the inequalities ‖v ∗ kbn‖∞ ≤ ‖v‖∞‖k‖1 and ‖v ∗ kbn‖∞ ≤ ‖v‖2‖kbn‖2 =

‖v‖2‖k‖2b
1/2
n , the desired statement (3.17) follows if we show that

‖µ>(Ûn − Un)‖∞ = op(n
−1/2), (3.19)

‖µ>(Un − Ūn)‖2 = Op(n
−3/4), (3.20)

‖µ>Ūn − σ−2γε̄n‖∞ = op(n
−1/2), (3.21)
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‖γ ∗ kbn − γ‖∞ → 0. (3.22)

Since γ belongs to C0, we obtain (3.22). Since |Ūn| ≤ |γ1|+ · · ·+ |γln|, we obtain ‖|Ūn|‖∞ =

O(1). This and Lemma 3.5 yield ‖(µ− σ−2ε̄n1ln)>Ūn‖∞ = op(n
−1/2). As 1>lnŪn converges to

γ uniformly and ε̄n = Op(n
−1/2), one obtains (3.21). It is easy to check that

‖µ>(Ûn − Un)‖∞ ≤ |µ|
(∑

j
|Ẑj − Zj|‖f‖∞ + ‖f ′‖∞

∑
j
|Zj|

∑
j
|Ŷj − Yj|

)
.

In view of µ = op(l
1/2
n n−1/2), (3.1), (3.9), and the identity Ŷj−Yj = ε̂j−εj, we obtain (3.19).

Note that the i-th coordinates of Un(x) and Ūn(x) are

Uni(x) =
∑

j
εj−if(x− Yj) and Ūni(x) = γi(x).

For i < i∗, we find that

(n− pn − ln)

∫
Var(Un,i(x)) dx ≤

∫
σ2E[f 2(x− Y1)] dx = σ2‖f‖2

2.

For i ≥ i∗, it follows from Lemma 25 in Schick and Wefelmeyer (2008a), applied with

p = q = 0, h = f and ds = ϕi∗+s, that

(n− pn − ln)

∫
Var(Uni(x)) dx ≤ C

(
1 + i− i∗ +

∞∑
s=0

(1 + s)ϕi∗+s

)
,

where

C = 8 max{2, ‖f ′‖1}‖f‖∞44(1 + (2c∗)
3E[|ε0|3])4

and

c∗ = 1 +
∞∑

j=1

|ϕj|.

This shows that

E[‖|Un − Ūn|‖2
2] =

∫ ln∑
i=1

Var(Uni(x)) dx = Op(l
2
nn

−1)

from which we conclude that

‖µ>(Un − Ūn)‖2 ≤ |µ|‖|Un − Ūn|‖2 = Op(l
3/2
n n−1) = op(n

−3/4).

Let us now prove part (b). It follows from Lemma 14 in Schick and Wefelmeyer (2008a)

that

E[|Zj|2Vs(Yj)] ≤ ln21+s(1 + c2+s
∗ E[|ε0|2+s]) (3.23)

23



for s ≥ 0 for which E[|ε0|2+s] is finite. It follows from Lemmas 4 and 7 in Schick and

Wefelmeyer (2008a) that (FV) implies that Vr+1f is bounded and that f is Vs-Lipschitz for

every 0 ≤ s ≤ r + 1: There is a Λs such that∫
Vs(x)|f(x− t)− f(x)| dx ≤ ΛsVs(t)|t|, t ∈ R.

Now abbreviate Vr by V . For this V , one also has V (xy) ≤ V (x)V (y). Using this, the

properties of V and the substitution u = x− Yj + ϕjε0, we find

‖γj‖V ≤
∫

V (x)E[|ε0||f(x− Yj)− f(x− Yj + ϕjε0)|] dx

≤ E
[
|ε0|V (Yj − ϕjε0)

∫
V (u)|f(u− ϕjε0)− f(u)| du

]
≤ Λr|ϕj|E[V (Yj − ϕjε0)]E[ε2

0V (ϕjε0)]

≤ Λr|ϕj|V 2(ϕj)E[V (Yj)]E[V (ε0)]E[Vr+2(ε0)].

This shows that ‖γ‖V < ∞ and that 1>lnŪn = γ1 + · · · + γln converges to γ in the V -norm.

In view of the inequality ‖u ∗ v‖V ≤ ‖u‖V ‖v‖V , the desired (3.18) follows if we show

‖µ>Ûn − σ−2γε̄n‖V = op(n
−1/2) (3.24)

and ‖γ ∗ kbn − γ‖V → 0. The latter follows as γ and k have finite V -norm; see Lemma 2 in

Schick and Wefelmeyer (2008a). Thus we are left to verify (3.24).

We bound ‖µ>(Ûn − Un)‖V by |µ|(‖f‖V T1 + LT2), where

T1 =
∑

j
|Ẑj − Zj|V (Ŷj) and T2 =

∑
j
|Zj|V (Yj)V (ε̂j − εj)|ε̂j − εj|.

Since δn = maxpn<j≤n |ε̂j − εj| = op(1), we have

T 2
1 ≤ V 2(δn)

∑
j
|Ẑj − Zj|2

∑
j
V 2(Yj) = Op(lnn

−2/β)

in view of (3.9) and E[V 2(Y1)] < ∞, and

T 2
2 ≤ V 2(δn)

∑
j
|Zj|2V 2(Yj)

∑
j
|ε̂j − εj|2 = Op(lnn

−2/β)

in view of (3.1) and E[|Z1|2V 2(Y1)] = O(ln). This shows that

‖µ>(Ûn − Un)‖V = op(n
−1/2). (3.25)

Now set W = V2r+α for some α ∈ (1, 2] such that 2r + 2 + α ≤ ξ. It follows from the

Cauchy–Schwarz inequality that

‖a‖2
V ≤

∫
(1 + |x|)−α dx

∫
W (x)a2(x) dx. (3.26)
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For i < i∗, we have

(n− pn − ln)

∫
W (x) Var(Uni(x)) dx ≤ σ2

∫
W (x)E[f 2(x− Y1)] dx

= σ2E[W (Y1)]‖f 2‖W .

For i ≥ i∗, it follows from Lemma 25 in Schick and Wefelmeyer (2008a), applied with

p = r + α− 1 ≤ q = r + 1, h = f and ds = ϕi∗+s, that

(n− pn − ln)

∫
W (x) Var(Uni(x)) dx ≤ C

(
1 + i− i∗ +

∞∑
s=0

(1 + s)ϕi∗+s

)
,

where

C = 8 max{Λr+1, 2‖f‖Vr+1}‖Vr+1f‖∞44(1 + (2c∗)
2r+2+αE[ε0|2r+2+α])4.

This shows that ∫
W (x)E[|Un(x)− Ūn(x)|2] dx = Op(l

2
nn

−1).

Using this, (3.26) and |µ| = Op(l
1/2
n n−1/2) we derive

‖µ>(Un − Ūn)‖V = op(n
−1/2). (3.27)

Since |Ūn| ≤
∑ln

j=1 |γj| and
∑∞

j=1 ‖γj‖V < ∞, we see that

‖(µ− σ−2ε̄n1ln)>Ū‖V = op(n
−1/2) (3.28)

in view of Lemma 3.5. Finally, since 1>lnŪn converges to γ in the V -norm, we obtain

‖σ−2ε̄n(1>lnŪ − γ)‖V = op(n
−1/2). (3.29)

Combining the above yields the desired (3.24).
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