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Abstract. Suppose we observe a time series that alternates between different au-
toregressive processes. We give conditions under which it has a stationary version,
derive a characterization of efficient estimators for differentiable functionals of the
model, and use it to construct efficient estimators for the autoregression parameters
and the innovation distributions. We also study the cases of equal autoregression
parameters and of equal innovation densities.
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1 Introduction

By an alternating AR(1) process of period m we mean a time series Xt,
t = 0, 1, . . . , that alternates periodically between m possibly different AR(1)
processes,

Xjm+k = ϑkXjm+k−1 + εjm+k, j = 0, 1, . . . , k = 1, . . . ,m, (1)

where the innovations εt, t ∈ N, are independent with mean zero and finite
variances, and εjm+k has a positive density fk. Then the m-dimensional
process Xj = (X(j−1)m+1, . . . , Xjm)>, j ∈ N, is a homogeneous Markov
chain. Its transition density from Xj−1 to Xj = x = (x1, . . . , xm)> depends
only on the last component of Xj−1, say x0, and is given by

(x0,x) 7→
m∏

k=1

fk(xk − ϑkxk−1).

Note that an alternating AR(1) process is not a multivariate autoregressive
process, which would require a representation Xj = ΘXj−1 +εj for a matrix
Θ and i.i.d. vectors εj .
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If we replace Xjm+k−1 in (1) by its autoregressive representation and
iterate this m− 1 times, we arrive at the representation

Xjm+k = τ(ϑ)X(j−1)m+k + ηjm+k, j ∈ N, (2)

where

ϑ = (ϑ1, . . . , ϑm)>, τ(ϑ) =
m∏

k=1

ϑk, ηjm+k =
m−1∑
t=0

τkt(ϑ)εjm+k−t,

and, setting ϑs = ϑt if s = t mod m,

τkt(ϑ) =
t−1∏
s=0

ϑk−s.

In particular, τk0(ϑ) = 1 and τk,jm(ϑ) = τ j(ϑ). The innovations ηjm+k,
j ∈ N, in (2) are independent with positive density. Hence for each k =
1, . . . ,m the subseries Xjm+k, j = 0, 1, . . . , is AR(1) and an irreducible
and aperiodic Markov chain, and positive Harris recurrent if and only if
|τ(ϑ)| < 1. In particular, we do not need |ϑk| < 1 for all k. We obtain that
the m-dimensional Markov chain Xj , j ∈ N, is irreducible and aperiodic, and
positive Harris recurrent if and only if |τ(ϑ)| < 1. In this case we also have
infinite-order moving average representations

Xjm+k =
∞∑

t=0

τkt(ϑ)εjm+k−t, j = 0, 1, . . . , k = 1, . . . ,m. (3)

In the following sections we derive efficient estimators for submodels of
alternating AR(1) processes. We treat dependencies between the autoregres-
sion parameters and also consider the cases of equal autoregression parame-
ters and of equal innovation densities. In Section 2 we give conditions under
which the alternating AR(1) model is locally asymptotically normal, and
characterize efficient estimators of vector-valued functionals. In Section 3 we
construct efficient estimators for the autoregression parameters and the in-
novation distributions. Section 4 considers submodels with equal innovation
densities.

2 Characterization of efficient estimators

In order to describe possible dependencies between the autoregression param-
eters ϑ1, . . . , ϑm, we reparametrize them as follows. Let p ≤ m and A ⊂ Rp

open, let ϑ : A → Rm, and set ϑk = ϑk(%) for % ∈ A. Set f = (f1, . . . , fm)>.
Our model is semiparametric; its distribution is determined by (%, f).

Fix % ∈ A with |τ(ϑ(%))| < 1. Assume that ϑ : A → Rm has contin-
uous partial derivatives at %, and write ϑ̇ for the m × p matrix of partial
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derivatives and ϑ̇k for its k-th row. Assume that ϑ̇ is of full rank. Fix in-
novation densities f1, . . . , fm. Assume that the fk are absolutely continuous
with a.e. derivative f ′k and finite Fisher information Jk = E[`2k(εk)], where
`k = −f ′k/fk. Introduce perturbations %nt = % + n−1/2t with t ∈ Rp, and
fknuk

(x) = f(x)(1 + n−1/2uk(x)) with uk in the space Uk of bounded mea-
surable functions such that E[uk(εk)] = 0 and E[εkuk(εk)] = 0. These two
conditions guarantee that fknuk

is a mean zero probability density for n suf-
ficiently large. The transition density from Xjm+k−1 = xk−1 to Xjm+k = xk

is fk(xk − ϑkxk−1). The perturbed transition density

(xk−1, xk) 7→ fknuk
(xk − ϑk(%nt)xk−1)

is Hellinger differentiable with derivative

(xk−1, xk) 7→ ϑ̇ktxk−1`k(xk − ϑkxk−1) + uk(xk − ϑkxk−1).

Here and in the following we write ϑ for ϑ(%). Set U = U1 × · · · × Um,
u = (u1, . . . , um)> and fnu = (f1nu1 , . . . , fmnum

)>. Suppose we observe
X0,X1, . . . ,Xn. Let Pn and Pntu denote their joint laws under (%, f) and
(%nt, fnu), respectively. Following [Koul and Schick, 1997], who treat non-
alternating autoregression, we obtain local asymptotic normality

log
dPntu

dPn
= n−1/2

n∑
j=1

m∑
k=1

(
ϑ̇ktXjm+k−1`k(εjm+k) + uk(εjm+k)

)
−1

2
t>ϑ̇

>
Dϑ̇t− 1

2

m∑
k=1

E[u2
k(εk)] + op(1), (4)

where D is the diagonal matrix with entries E[X2
1 ]J1, . . . , E[X2

m]Jm. Here
we have used that X0`1(ε1), . . . , Xm−1`m(εm), u1(ε1), . . . , um(εm) are uncor-
related.

We can now characterize efficient estimators as follows, using results orig-
inally due to Hájek and LeCam, for which we refer to Section 3.3 of the
monograph [Bickel et al., 1998]. Let Ūk denote the closure of Uk in L2(fk)
and set Ū = Ū1 × · · · × Ūm. The squared norm of (t,u) on the right-hand
side of (4) determines how difficult it is, asymptotically, to distinguish be-
tween (%, f) and (%nt, fnu). It defines an inner product on Rp × Ū. A real-
valued functional ϕ of (%, f) is called differentiable at (%, f) with gradient
(tϕ,uϕ) ∈ Rp × Ū if

n1/2(ϕ(%nt, fnu)− ϕ(%, f)) → t>ϕ ϑ̇
>

Dϑ̇t +
m∑

k=1

E[uϕk(εk)uk(εk)] (5)

for all (t,u) ∈ Rp ×U. An estimator ϕ̂ of ϕ is called regular at (%, f) with
limit L if

n1/2(ϕ̂− ϕ(%nt, fnu)) ⇒ L under Pntu, (t,u) ∈ Rp ×U. (6)
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The convolution theorem of Hájek and LeCam says that L is distributed as
the convolution of some random variable with a normal random variable N
that has mean 0 and variance

t>ϕ ϑ̇
>

Dϑ̇tϕ +
m∑

k=1

E[u2
ϕk(εk)].

This justifies calling ϕ̂ efficient if L is distributed as N .
An estimator ϕ̂ of ϕ is called asymptotically linear at (%, f) with influence

function g if g ∈ L2(P1) with E(g(X0,X1)|X0) = 0 and

n1/2(ϕ̂− ϕ(%, f)) = n−1/2
n∑

j=1

g(X(j−1)m,Xj) + op(1).

It follows from the convolution theorem that an estimator ϕ̂ is regular and
efficient if and only if it is asymptotically linear with efficient influence func-
tion

g(x0,x) =
m∑

k=1

(
ϑ̇ktϕxk−1`k(xk − ϑkxk−1) + uϕk(xk − ϑkxk−1)

)
.

The inner product in (5) decomposes into m + 1 inner products on Rp

and Ū1, . . . , Ūm. This implies that the gradient of a functional ϕ of % only is
the same for each submodel in which some or all of the fk are known. Hence
asymptotically we cannot estimate ϕ better in these submodels. In this sense,
functionals ϕ(%) are adaptive with respect to f . Similarly, functionals of fk

are adaptive with respect to the other parameters.
For a q-dimensional functional ϕ = (ϕ1, . . . , ϕq)> of (%, f), differentia-

bility is understood componentwise. For an estimator ϕ̂ of ϕ, asymptotic
linearity is also understood componentwise, and regularity is defined as in
(6), now with L a q-dimensional random vector. It is then convenient to
write the gradient of ϕ as a matrix (Tϕ, Uϕ) whose s-th row is the gradient
of ϕs; so differentiability (5) reads

n1/2(ϕ(%nt, fnu)−ϕ(%, f)) → Tϕϑ̇
>

Dϑ̇t +
m∑

k=1

E[Uϕ,·k(εk)uk(εk)] (7)

for all (t,u) ∈ Rp × U. The convolution theorem then says that L is dis-
tributed as the convolution of some random vector with a normal random
vector N that has mean vector 0 and covariance matrix

Tϕϑ̇
>

Dϑ̇T>
ϕ +

m∑
k=1

E[Uϕ,·k(εk)Uϕ,·k(εk)].

Finally, ϕ̂ is regular and efficient if and only if it is asymptotically linear with
(q-dimensional) efficient influence function

g(x0,x) =
m∑

k=1

(
Tϕϑ̇

>
k xk−1`k(xk − ϑkxk−1) + Uϕ,·k(xk − ϑkxk−1)

)
.
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3 Construction of efficient estimators

Autoregression parameters. Suppose we want to estimate %. By adap-
tivity, the gradient of the functional ϕ(%) = % is obtained from (7) as (Tϕ, 0)
with Tϕ solving

n1/2(%nt − %) = t = Tϕϑ̇
>

Dϑ̇t t ∈ R;

so Tϕ = (ϑ̇
>

Dϑ̇)−1, and the efficient influence function is

g(x0,x) = (ϑ̇
>

Dϑ̇)−1
m∑

k=1

ϑ̇
>
k xk−1`k(xk − ϑkxk−1). (8)

Hence the asymptotic variance of an efficient estimator is (ϑ̇
>

Dϑ̇)−1.
Following [Koul and Schick, 1997], we can construct an efficient estimator

of %, with this influence function, by the Newton–Raphson procedure. This
is a one-step improvement of a root-n consistent initial estimator. As initial
estimator of % we can take e.g. the least squares estimator %̃, the minimum
in % of

n∑
j=1

m∑
k=1

(
Xjm+k − ϑk(%)Xjm+k−1

)2
,

i.e. a solution of the martingale estimating equation

n∑
j=1

m∑
k=1

ϑ̇
>
k (%)Xjm+k−1

(
Xjm+k − ϑk(%)Xjm+k−1

)
= 0.

An efficient estimator is then

%̂ = %̃ + (ϑ̇(%̃)>D̃ϑ̇(%̃))−1 1
n

n∑
j=1

m∑
k=1

ϑ̇
>
k (%̃)Xjm+k−1

˜̀
k(ε̃jm+k).

Here we have estimated `k by ˜̀
k = −f̃ ′k/f̃k with f̃k an appropriate kernel

estimator of fk based on residuals ε̃jm+k = Xjm+k − ϑk(%̃)Xjm+k−1 for
j = 1, . . . , n, and we have estimated D by plugging in empirical estimators
for γk = E[X2

k ] and Jk,

γ̃k =
1
n

n∑
j=1

X2
jm+k, J̃k =

1
n

n∑
j=1

˜̀2
k(ε̃jm+k).

A special case is the alternating AR(1) model (1) with equal autoregression
parameters ϑ1 = · · · = ϑm = ϑ. This is described by the reparametrization
ϑ(ϑ) = (ϑ, . . . , ϑ)>, with ϑ playing the role of %. Then ϑ̇ = (1, . . . , 1)> and
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ϑ̇
>

Dϑ̇ = D0 = E[X2
1 ]J1+ · · ·+E[X2

m]Jm, and the efficient influence function
(8) reduces to

g(x0,x) = D−1
0

m∑
k=1

xk−1`k(xk − ϑxk−1).

Hence the asymptotic variance of an efficient estimator is D−1
0 .

An initial estimator for ϑ is the least squares estimator

ϑ̃ =
nm∑
t=1

Xt−1Xt

/ nm∑
t=1

X2
t−1,

and an efficient estimator is the one-step improvement

ϑ̂ = ϑ̃ + D̃−1
0

1
n

n∑
j=1

m∑
k=1

Xjm+k−1
˜̀
k(ε̃jm+k)

with ε̃t = Xt − ϑ̃Xt−1 and D̃0 = γ̃1J̃1 + · · ·+ γ̃mJ̃m.

Innovation distributions. Suppose we want to estimate a linear func-
tional ϕ(fk) = E[h(εk)] =

∫
h(x)fk(x) dx of the innovation distribution,

where h ∈ L2(fk). By adaptivity, the gradient of ϕ is obtained from (5) as
(0,uϕ) with uϕi = 0 for i 6= k and uϕk solving

n1/2(ϕ(fknuk
)− ϕ(fk)) = E[h(εk)uk(εk)] = E[uϕk(εk)uk(εk)], uk ∈ Uk;

so uϕk is the projection of h onto Ūk,

uϕk(x) = h(x)− E[h(εk)]− E[εkh(εk)]
E[ε2

k]
x.

Hence the efficient influence function is

g(x0,x) = h(xk − ϑkxk−1)− E[h(εk)]− E[εkh(εk)]
E[ε2

k]
(xk − ϑkxk−1),

and the asymptotic variance of an efficient estimator is

E[u2
ϕk(εk)] = Varh(εk)− (E[εkh(εk)])2

E[ε2
k]

.

An efficient estimator, with influence function g, is

ϕ̂ =
1
n

n∑
j=1

h(ε̃jm+k)−
∑n

j=1 ε̃jm+kh(ε̃jm+k)∑n
j=1 ε̃2

jm+k

1
n

n∑
j=1

ε̃jm+k.

This requires that h or fk is sufficiently smooth. For appropriate assump-
tions we refer to [Schick and Wefelmeyer, 2002]. An alternative to the above
additive correction of an empirical estimator are weighted empirical estima-
tors 1

n

∑n
j=1 wjh(ε̃jm+k), where the random weights wj are chosen such that∑n

j=1 wj ε̃jm+k = 0; see [Owen, 2001] and [Müller et al., 2005].
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4 Equal innovation densities

Suppose that the innovation distributions are known to be equal, f1 = · · · =
fm = f , say. As in Section 2, assume that f is absolutely continous with finite
Fisher information J = E[`2(ε)], where ` = −f ′/f . Introduce perturbations
fnu(x) = f(x)(1 + n−1/2u(x)) with u in the space U of bounded measurable
functions such that E[u(ε)] = 0 and E[εu(ε)] = 0. Then local asymptotic
normality (4) reduces to

log
dPntu

dPn
= n−1/2

n∑
j=1

m∑
k=1

ϑ̇ktXjm+k−1`(εjm+k) + n−1/2
nm∑
t=1

u(εt)

− 1
2
t>ϑ̇

>
D1ϑ̇t− m

2
E[u2(ε)] + op(1),

where D1 is the diagonal matrix with entries E[X2
1 ]J, . . . , E[X2

m]J .
Let Ū denote the closure of U in L2(f). A real-valued functional ϕ of

(%, f) is differentiable at (%, f) with gradient (tϕ, uϕ) ∈ Rp × Ū if

n1/2(ϕ(%nt, fnu)− ϕ(%, f)) → t>ϕ ϑ̇
>

D1ϑ̇t + mE[uϕ(ε)u(ε)]

for all (t, u) ∈ Rp × U . The factor m is there because we count the ob-
servations in blocks of length m. The inner product on the right-hand side
decomposes into two inner products on Rp and on Ū . Hence functionals of %
or f are adaptive with respect to the other parameter.

Autoregression parameters. The efficient influence function (8) of %
reduces to

g(x0,x) = (ϑ̇
>

D1ϑ̇)−1
m∑

k=1

ϑ̇
>

xk−1`(xk − ϑkxk−1).

An efficient estimator %̂ of % is again obtained as one-step improvement of a
root-n consistent initial estimator %̃,

%̂ = %̃ + (ϑ̇(%̃)>D̃1ϑ̇(%̃))−1
m∑

k=1

ϑ̇
>
k (%̃)Xjm+k−1

˜̀(ε̃jm+k).

Here we can estimate ` by ˜̀= −f̃ ′/f̃ with f̃ a kernel estimator based on all
residuals ε̃jm+k = Xjm+k−ϑk(%̃)Xjm+k−1 for j = 1, . . . , n and k = 1, . . . ,m,
and we can estimate J by

J̃ =
1

nm

nm∑
t=1

˜̀2(ε̃t).
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Innovation distribution. Suppose we want to estimate a linear functional
ϕ(f) = E[h(ε)] for h ∈ L2(f). By adaptivity, the gradient of ϕ is (0, uϕ) with
uϕ ∈ Ū solving

n1/2(ϕ(fnu)− ϕ(f)) = E[h(ε)u(ε)] = mE[uϕ(ε)u(ε)], u ∈ U ;

so muϕ is the projection of h onto Ū ,

muϕ(x) = h(x)− E[h(ε)]− E[εh(ε)]
E[ε2]

x.

Hence the efficient influence function is

g(x0,x) =
1
m

m∑
k=1

(
h(xk − ϑkxk−1)− E[h(ε)]− E[εh(ε)]

E[ε2]
(xk − ϑkxk−1)

)
,

and the asymptotic variance of an efficient estimator is

E[g2(X0,X1)] =
1
m

(
Varh(ε)− (E[εh(ε)])2

E[ε2]

)
.

An efficient estimator is obtained, similarly as in Section 3, as

ϕ̂ =
1

nm

nm∑
t=1

h(ε̃t)−
∑nm

t=1 ε̃th(ε̃t)∑nm
t=1 ε̃2

t

1
nm

nm∑
t=1

ε̃t.

Of course, if both the autoregression parameters and the innovation den-
sities are equal, ϑ1 = · · · = ϑm = ϑ and f1 = · · · = fm = f , then the
alternating AR(1) model reduces to the usual AR(1) model Xt = ϑXt−1 +εt,
where the εt are independent with density f , and the sample size is nm.
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