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Abstract. Densities of functions of two or more independent random variables
can be estimated by local U-statistics. Frees (1994) gives conditions under which
they converge pointwise at the parametric root-n rate. Uniform convergence at
this rate was established by Schick and Wefelmeyer (2004) for sums of random
variables. Giné and Mason (2007) give conditions under which this rate also holds
in Lp-norms. We present several natural applications in which the parametric rate
fails to hold in Lp or even pointwise.

1. The density estimator of a sum of squares of independent observations typ-
ically slows down by a logarithmic factor. For exponents greater than two, the
estimator behaves like a classical density estimator.

2. The density estimator of a product of two independent observations typi-
cally has the root-n rate pointwise, but not in Lp-norms. An application is given
to semi-Markov processes and estimation of an inter-arrival density that depends
multiplicatively on the jump size.

3. The stationary density of a nonlinear or nonparametric autoregressive time
series driven by independent innovations can be estimated by a local U-statistic
(now based on dependent observations and involving additional parameters), but
the root-n rate can fail if the derivative of the autoregression function vanishes at
some point.
Keywords: Density estimator, Local U-statistic, Local von Mises statistic, Con-
vergence rate, Autoregressive time series, Semi-Markov process.

1 Introduction

It is often of interest to estimate densities of known or unknown functions
of independent observations. Consider for example a regression model Y =
r(X) + ε with independent error ε and covariate X. If we have independent
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observations (Xi, Yi), i = 1, . . . , n, then the density of the response Y could
be estimated by a kernel estimator based on Y1, . . . , Yn. However, a much
better estimator is obtained if we exploit the independence of ε and X and
write Y as a sum r(X)+ε of independent random variables. Then the density
p of Y can be estimated by a local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

Kb(z − r̂(Xi)− ε̂j).

Here Kb(z) = K(z/b)/b with kernel K and bandwidth b, r̂ is some estimator
of the regression function r, and ε̂j = Yj − r̂j(Xj) are the corresponding
residuals. Under appropriate conditions, the estimator p̂(z) converges at
the parametric rate n1/2; see Støve and Tjøstheim, 2012 [22], Escanciano
and Jacho-Chávez, 2012 [1], and, for nonlinear regression and with responses
missing at random, Müller, 2012 [5]. It is the purpose of this review to
indicate why such rates are possible, and to illustrate when they fail.

The most straightforward version of the problem is the following. Let
X1, . . . , Xn be independent real-valued observations with density f . We want
to estimate the density p of some transformation T (X1, . . . , Xm) of m of these
observations, with m at least 2. Frees, 1994 [2] proposed as an estimator of
p(z) the local U-statistic

p̂(z) =
1(
n
m

) ∑
1≤i1<···<im≤n

Kb(z − T (Xi1 , . . . , Xim)).

He showed that this estimator can be pointwise n1/2-consistent under some
assumptions on f and T . Saavedra and Cao, 2000 [9] consider the function
T (X1, X2) = X1 +ϕX2. It is even possible to obtain n1/2-consistency in vari-
ous norms, together with functional central limit theorems in the correspond-
ing spaces. Schick and Wefelmeyer, 2004 [11], 2007 [13] prove such results for
transformations of the form T (X1, . . . , Xm) = T1(X1) + · · · + Tm(Xm) and
T (X1, X2) = X1 + X2 in the sup-norm and in L1-norms. Giné and Mason,
2007 [3] consider general transformations T (X1, . . . , Xm) and obtain such re-
sults in the Lp-norms. Their results hold locally uniformly in the bandwidth.
More general results applicable here are in Nickl, 2007 [6] and Nickl, 2009 [7].

These results are less generally valid than appears at first sight. In Section
2 we restrict attention to m = 2 and to transformations of the special form
T (X1, X2) = T1(X1) + T2(X2) and explain under which conditions the local
U-statistic p̂(z) is asymptotically linear, n1/2-consistent, and asymptotically
normal. The rate is typically slower when, say, T1(y) = T1(x) + c(y − x)ν +
o(|y − x|ν) for y to the left or right of some point x, with ν ≥ 2. Then
the density of T1(X) has a strong peak. Specifically, we consider T1(x) =
T2(x) = xν and describe the rates of the local U-statistic. Then we discuss
the two-sample case and applications to regression, to time series driven by
independent innovations, and to renewal processes with multiplicative waiting
times.
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2 Results and Applications

Let X1, . . . , Xn be independent copies of a random variable X with density f .
An estimator for the density p of a transformation of the form T (X1, X2) =
T1(X1) + T2(X2) is the local U-statistic

p̂(z) =
2

n(n− 1)

∑
1≤i<j≤n

Kb(z − T1(Xi)− T2(Xj)),

where Kb(z) = K(z/b)/b for a kernel K and a bandwidth b. Suppose that
T1(X) and T2(X) have densities g1 and g2. The estimator p̂(z) has the
Hoeffding decomposition

p̂(z) = p ∗Kb(z) +
1
n

n∑
i=1

(
g1 ∗Kb(z − T2(Xi))− p ∗Kb(z)

+ g2 ∗Kb(z − T1(Xi))− p ∗Kb(z)
)

+ U(z),

where

U(z) =
2

n(n− 1)

∑
1≤i<j≤n

(
Kb(z − T1(Xi)− T2(Xi))− g1 ∗Kb(z − T2(Xi))

− g2 ∗Kb(z − T1(Xi)) + p ∗Kb(z)
)

is a degenerate local U-statistic. We have

n(n− 1)E[U2(z)] ≤ 2E[K2
b (z − T1(X1)− T2(X2))] = 2p ∗K2

b (z)

and

p ∗K2
b (z) =

1
b

∫
p(z − bu)K2(u) du ≤ ‖p‖∞

b

∫
K2(u) du.

If p is bounded and
∫
K2(u) du is finite, we obtain U(z) = OP (1/(nb1/2)),

which is of order oP (n−1/2) if nb → ∞. The Hoeffding decomposition then
says that the centered local U-statistic p̂(z) − p ∗Kb(z) is approximated by
a sum of two centered and smoothed empirical “estimators” of p(z) (that
involve the unknown densities g1 and g2). Under mild assumptions one can
remove the smoothing; see e.g. Schick and Wefelmeyer, 2004 [11]. If p is
Hölder with exponent α, then the bias p ∗Kb(z) − p(z) is of order o(n−1/2)
if nb2α → 0. This implies that p̂(z) is asymptotically linear,

p̂(z) = p(z)+
1
n

n∑
i=1

(
g1(z−T2(Xi))+g2(z−T1(Xi))−2p(z)

)
+oP (n−1/2). (1)

If E[g2
1(z − T2(X2))] and E[g2

2(z − T1(X1))] are finite, then p̂(z) is n1/2-
consistent and asymptotically normal.
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Remark 1. (Convolution of density estimators.) The density p has the con-
volution representation

p(z) =
∫
g2(z − y)g1(y) dy.

Therefore, it can also be estimated by a convolution of density estimators

p̂conv(z) =
∫
ĝ2(z − y)ĝ1(y) dy

with kernel estimator for g1(y) based on T1(X1), . . . , T1(Xn),

ĝ1(y) =
1
n

n∑
i=1

Kb(y − T1(Xi)),

and, correspondingly,

ĝ2(y) =
1
n

n∑
i=1

Kb(y − T2(Xi)).

The estimator p̂conv is asymptotically equivalent to p̂. �

Remark 2. (Transform density estimator or transform observations.) Sup-
pose that T1, say, is strictly increasing and differentiable. Then the density
of T1(X) at y is

g1(y) =
f(T−1

1 (y))
T ′1(T−1

1 (y))
.

We obtain an alternative estimator g̃1(y) of g1(y) by plugging in a kernel
estimator for f ,

f̂(x) =
1
n

n∑
i=1

Kb(x−Xi).

We expect that it depends on T1 whether ĝ1(y) is better than

g̃1(y) =
f̂(T−1

1 (y))
T ′1(T−1

1 (y))
.

In the convolution representation p(z) =
∫
g2(z− y)g1(y) dy we can use ĝ1 or

g̃1. If T2 is also strictly increasing and differentiable, we can combine ĝ1 or
g̃1 with ĝ2 or g̃2. �

We now discuss cases in which p̂(z) is not n1/2-consistent.

Remark 3. (Piecewise constant transformations.) The distribution of T1(X)
does not always have a density. Suppose that T1 is piecewise constant,

T1(X) =
t∑

s=1

cs1[X ∈ Is],
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with cs ∈ R, and Is, s = 1, . . . , t, a partition of R. If T2(X) has a density g2,
then T1(X1) + T2(X2) has a density p that is a finite mixture of shifts of g2,

p(z) =
m∑
s=1

asg2(z − cs)

with weights as = P (X ∈ Is). If each interval Is contains at least one
observation, the constants cs can be observed, and p(z) can be estimated by

p̂(z) =
t∑

s=1

âsĝ2(z − cs),

where âs = (1/n)
∑n
i=1 1[Xi = cs]. The rate of p̂(z) equals the pointwise rate

of ĝ2. �

Even if T1 and T2 are not constant on any interval, p̂(z) can fail to be
n1/2-consistent. In the following we describe a situation in which T1(X)
and T2(X) have densities, but g1(z − T2(X)) does not necessarily have finite
variance. For notational simplicity, assume that f is supported on (0,∞),
and set T1(x) = T2(x) = xν for some ν > 0. Then g1 = g2 = g with

g(y) =
1
ν
y1/ν−1f(y1/ν),

and the stochastic expansion (1) of p̂(z) specializes to

p̂(z) = p(z) +
2
n

n∑
i=1

g(z −Xν
i ) + oP (n−1/2). (2)

Here and in the following, z denotes a fixed positive number. In the theorems
below, we take the kernel K to be continuously differentiable with support
[−1, 1]. We also assume that f is bounded. First let ν < 2. Then g is
square-integrable, and g(z −Xν) has finite variance. Our first theorem is a
consequence of Theorem 2 in Schick and Wefelmeyer, 2009 [17].

Theorem 1. Let ν < 2. Suppose the density f is of bounded variation and
f(0+) is positive. Let b ∼ (log n)1/2/n. Then p̂(z) has the stochastic expan-
sion (2), and

n1/2
(
p̂(z)− p(z)

)
⇒ N

(
0, 4 Var(g(z −Xν))

)
.

Schick and Wefelmeyer, 2009 [17] consider, more generally, one-sided ker-
nels, and also mention how to combine these to get results for the two-sided
kernels used here.

For ν = 2, square-integrability of g fails just barely, resulting in a rate
for p̂(z) that is only slightly worse than n−1/2. More precisely, Schick and
Wefelmeyer, 2009 [16] prove the following result.
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Theorem 2. Let ν = 2. Suppose f is of bounded variation, and f(0+) and
g(z−) are positive. Let b ∼ (log n)1/2/n. Then( n

log n

)1/2(
p̂(z)− p(z)

)
⇒ N(0, f2(0+)g(z−)).

Schick and Wefelmeyer, 2012 [21] show that the rate of Theorem 2 is
optimal, and that the estimator p̂(z) is asymptotically efficient. To establish
this, they prove a nonparametric version of local asymptotic normality at the
appropriate nonstandard rate.

For ν > 2, Schick and Wefelmeyer, 2009 [16] prove the following result.

Theorem 3. Let ν > 2. Suppose f is of bounded variation, and f(0+) and
g(z−) are positive. Let b ∼ 1/n. Then

p̂(z)− p(z) = OP (n−1/ν).

This result is similar to the usual results for kernel density estimators.
We get slightly faster rates for our local U-statistic p̂(z) than are possible for
kernel density estimators based on observations from the density p. Faster
rates are possible under additional smoothness assumptions on p at z.

Even in the case ν ≥ 2, the estimator p̂(z) can be n1/2-consistent if
g(z−) = 0 since this works against the peak of g at 0 in the representation
p(z) = g ∗ g(z). For details we refer to Schick and Wefelmeyer, 2009 [16] and
2009 [17].

We will now briefly discuss possible applications of the above results.

Remark 4. (Several samples.) The above results carry over to m-sample
cases. We restrict attention to m = 2. Suppose X1, . . . , Xn and Z1, . . . , Zn
are real-valued and independent with densities f1 and f2, respectively. An
estimator for the density p of a transformation T1(X1) + T2(Z1) is the local
von Mises statistic

p̂∗(z) =
1
n2

n∑
i,j=1

Kb(z − T1(Xi)− T2(Zj)).

Let g1 and g2 denote the densities of T1(X1) and T2(Z1). As in the one-sample
case (1) we obtain a stochastic expansion

p̂∗(z) = p(z) +
1
n

n∑
i=1

(
g1(z − T2(Zi)) + g2(z − T1(Xi))− 2p(z)

)
+ oP (n−1/2).

Appropriate versions of Theorems 1–3 continue to hold. �

Remark 5. (Regression.) Two-sample results can be applied to regression
models Y = r(X) + ε with ε independent of X. If we have independent
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observations (Xi, Yi), i = 1, . . . , n, then the density p of Y can be estimated
by the local von Mises statistic

p̆(z) =
1
n2

n∑
i,j=1

Kb(z − r̂(Xi)− ε̂j)

based on some estimator r̂ of the regression function r, and on residuals
ε̂j = Yj − r̂(Xj). Note that the “pseudo-observations” r̂(Xi) and ε̂j are
only approximately independent, so we are close to the two-sample case with
Z = ε, T1(X) = r(X), and T2(ε) = ε. As seen above, we can expect a rate
n−1/2 for p̆(z) if r has a derivative that is bounded away from 0. Under
this assumption, we have shown n1/2-consistency in the sup-norm and the
L1-norm, see Schick and Wefelmeyer, 2012 [19] and [20]. Surprisingly, p̆(z)
is no longer efficient. Schick and Wefelmeyer, 2012 [19] have constructed an
additive correction term to p̆(z) that makes the estimator efficient. Müller,
2012 [5] obtains uniform n1/2-rates for parametric regression when responses
are missing at random. She uses a weighted local U-statistic that exploits
that the errors are centered. In this way she obtains asymptotic efficiency.
She also needs that the derivative of the regression function is bounded away
from zero.

Monotonicity of the regression function is a strong requirement that is
rarely met. Suppose r is only piecewise monotone and continuously differen-
tiable, and there are points x with

r(y) = c(y − x)ν + o(|y − x|ν)

for y to the left or right of x. Then the convergence rate of p̂(z) will be
determined by the largest such ν, similarly as in Theorem 3. Since the
regression function is estimated, the rate of convergence may be even slower.
�

Remark 6. (Time series.) Results for regression carry over to time series
driven by independent innovations. Consider a first-order moving average
process Xi = εi + ϕεi−1, with independent innovations εi that have mean
0, finite variance, and density f . If ϕ 6= 0, the stationary density p can be
estimated by a local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

Kb(z − ε̂i − ϕ̂ε̂j)

with ϕ̂ an estimator of ϕ. Saavedra and Cao, 1999 [8] obtain n1/2-consistency;
see also Schick and Wefelmeyer, 2004 [10]. Functional results for higher-order
moving average processes and general linear processes are obtained in Schick
and Wefelmeyer, 2004 [12], 2007 [14], 2008 [15] and 2009 [18]. Nonlinear and
nonparametric time series can also be treated. �
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Remark 7. (Renewal processes.) Here is a two-sample case where T (X,Z)
is a product rather than a sum of functions T1(X) and T2(Z). Let (Xi, Ti),
i = 0, . . . , n be observations of a Markov renewal process with real state
space. Assume that the embedded Markov chain is stationary. We make
the structural assumption that the waiting times depend multiplicatively on
some power of the distance between the previous and the present state of the
embedded Markov chain,

Ti − Ti−1 = |Xi −Xi−1|νWi,

where ν > 0 and the Wi are independent with density g and independent
of the embedded Markov chain. Note that Wi is observable as a function of
the observations (Xi−1, Ti−1) and (Xi, Ti). We can estimate the waiting time
density p of Ti − Ti−1 by the local von Mises statistic

p̂(z) =
1
n2

n∑
i,j=1

Kb(z − |Xi −Xi−1|νWj).

Greenwood et al., 2011 [4] give conditions under which p̂(z) has rate n−1/2

and is asymptotically linear and asymptotically normal. �

Remark 8. (Generalizations.) The results discussed in the theorems for the
case m = 2 have generalizations for m > 2. Let us just look at the case m = 3.
Recall that n1/2-consistency typically failed to hold for local U-statistics of
the density of Xν

1 +Xν
2 when ν ≥ 2. The reason was that the density of Xν

is not square-integrable for ν ≥ 2. For m = 3 the local U-statistic for the
density p3 = g ∗ g ∗ g of Xν

1 +Xν
2 +Xν

3 is of the form

p̂3(z) =
(
n

3

)−1 ∑
1≤i<j<k≤n

Kb(z −Xν
i −Xν

j −Xν
k ).

The Hoeffding decomposition now yields

p̂3(z) = p3 ∗Kb(z) +
3
n

n∑
i=1

g ∗ g ∗Kb(z −Xν
i ) +Op(1/(nb1/2)).

Assume now that the density f is Lipschitz on (0,∞). Then p3 is Lipschitz
at z. Hence p3 ∗ Kb(z) = p3(z) + O(b). For n1/2-consistency we therefore
need that g ∗ g(z −Xν) has a finite variance. Using the substitution y = zs,
we obtain

g ∗ g(z) =
∫ z

0

g(z − y)g(y) dy = z2/ν−1q(z)

with

q(z) =
∫ 1

0

((1− s)s)1/ν−1f((z(1− s))1/ν)f((zs)1/ν) ds



Non-Standard Behavior of Density Estimators 9

If f(0+) is positive, then we have q(0+) = f2(0+)
∫ 1

0
((1 − s)s)1/ν−1 ds and

see that the square-integrability is typically violated if 2/ν − 1 ≥ −1/2, i.e.,
ν ≥ 4. Thus for m = 3 we expect results similar to the above theorems, but
now with critical power ν = 4 rather than ν = 2.

Note that the density of X2
1 +X2

2 +X2
3 can be estimated n1/2-consistently,

although the density of X2
1 + X2

2 can be estimated only at the slower rate
(n/ log n)1/2. The reason is that for m = 3 the leading term in the Hoeffding
decomposition is an average involving g ∗ g, while for m = 2 it involves g
which is less smooth than g ∗ g.

The critical power ν increases linearly with m. More precisely, we have
ν = 2m− 2. �

Conclusion. The paper gives an overview of several of our recent results
on non-standard rates of convergence of local U-statistics for estimating the
density of transformations of several independent random variables. We also
discuss applications and extensions of these results.
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