Uniform convergence of convolution estimators
for the response density in nonparametric regression

Anton Schick and Wolfgang Wefelmeyer

ABSTRACT. We consider a nonparametric regression model Y = r(X) +¢ with
a random covariate X that is independent of the error €. Then the density of
the response Y is a convolution of the densities of € and 7(X). It can therefore
be estimated by a convolution of kernel estimators for these two densities, or
more generally by a local von Mises statistic. If the regression function has a
nowhere vanishing derivative, then the convolution estimator converges at a
parametric rate. We show that the convergence holds uniformly, and that the
corresponding process obeys a functional central limit theorem in the space
Co(R) of continuous functions vanishing at infinity, endowed with the sup-
norm. The estimator is not efficient. We construct an additive correction that
makes it efficient.

1. Introduction

Smooth functionals of densities can be estimated by plug-in estimators, and
densities of functions of two or more random variables can be estimated by local
von Mises statistics. Such estimators often converge at the parametric rate n'/2.
The response density of a nonparametric regression model can be written in both
ways, but it also involves an additional infinite-dimensional parameter, the regres-
sion function. As explained below, this usually leads to a slower convergence rate of
response density estimators, except when the regression function is strictly mono-
tone in the strong sense that it has a nowhere vanishing derivative. In the latter
case, we can again obtain the rate n'/2.

Specifically, consider the nonparametric regression model Y = r(X) + ¢ with a
one-dimensional random covariate X that is independent of the unobservable error
variable e. We impose the following assumptions:

(F) The error variable ¢ has mean zero, a moment of order greater than 8/3,
and a density f, and there are bounded and integrable functions f’ and
f" such that f(z) = [°__ f'(z)dx and f'(z) = [°__ f"(z)dx for z € R.

(G) The covariate X is quasi-uniform on the interval [0, 1] in the sense that
its density ¢ is bounded and bounded away from zero on the interval and
vanishes outside. Furthermore, g is of bounded variation.

Key words and phrases. Density estimator, local von Mises statistic, local U-statistic, local
polynomial smoother, monotone regression function, functional central limit theorem, efficient
influence function, efficient estimator.
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(R) The unknown regression function r is twice continuously differentiable on
[0, 1], and r’ is strictly positive on [0, 1].
Assume that (X1,Y1),...,(X,,Y,) are n independent copies of (X,Y). We are
interested in estimating the density h of the response Y. An obvious estimator is
the kernel estimator

1 n
~) Kiy-Yj), yeR

where Kj(t) = K(t/b)/b for some kernel K and some bandwidth b. Under the
above assumptions on f and g, the density A has a Lipschitz-continuous second
derivative as demonstrated in Section 2. Thus, if the kernel has compact support
and is of order three, and the bandwidth b is chosen proportional to n=!/7, then
the mean squared error of the kernel estimator is of order n~6/7. This means that
the estimator has the nonparametric rate n3/7 of convergence.

The above kernel estimator neglects the structure of the regression model. We
shall see that by exploiting this structure one can construct estimators that have the
faster (parametric) rate n'/2 of convergence. For this we observe that the density
h is the convolution of the error density f and the density ¢ of r(X). The latter

density is given by
9(r~(2))

1) =Gy
By our assumptions on r and g, the density ¢ is quasi-uniform on the interval
[r(0),7(1)], which is the image of [0,1] under r. Furthermore, ¢ is of bounded
variation. The convolution representation h=fxq suggests a plug-in estimator or
convolution estimator h = f *( based on estimators f and ¢ of f and g, for example
the kernel estimators

= %Zkb(x —¢;) and §(z) = %Zkb(m ~#X;)), z€R,

z € R.

with nonparametric residuals é; =Y; — #(X;). Setting K = k * k, the convolution
estimator hA(y) has the form of a local von Mises statistic

n

%ZZKM - &= (X)),

In Section 3 we show that the estimator A is root-n consistent in the sup-norm
and obeys a functional central limit theorem in the space Cy(R) of all continuous
function function on R that vanish at plus and minus infinity. As an auxiliary
result, Section 2 treats the case of a known regression function r. When r is
unknown, we estimate it by a local quadratic smoother. The required properties
of this smoother are proved in Section 5. The convergence rate of h follows from
a stochastic expansion which in turn is implied by equations (3.1)-(3.4). These
equations are proved in Sections 6-9.

Plug-in estimators in nonparametric settings are often efficient; see e.g. Bickel
and Ritov (1988), Laurent (1996), Chaudhuri et al. (1997) and Efromovich and
Samarov (2000). In Section 4 we first calculate the asymptotic variance bound and
the efficient influence function for estimators of h(y). Surprisingly our estimator
lAz(y) is not efficient unless the error distribution happens to be normal. We construct
an additive correction term C(y) such that h(y) — C(y) is efficient for h(y). This
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estimator again obeys a uniform stochastic expansion and a functional central limit
theorem in Cy(R). The proof of this result is given in Section 10.

The estimator b used here goes back to Frees (1994). He observed that den-
sities of some (known) transformations T'(Xj, ..., X,,) of m > 2 independent and
identically distributed random variables X7, ..., X,, can be estimated pointwise at
the parametric rate by a local U-statistic. Saavedra and Cao (2000) consider the
transformation T'(X7, Xo) = X; 4+ ¢ X5 with ¢ # 0. Schick and Wefelmeyer (2004b)
and (2007a) obtain this rate in the sup-norm and in L;-norms for transformations
of the form T(Xl, AP ,Xm) = Tl(Xl) + o+ T,,L(Xm) and T(Xl,Xg) = X1 + XQ.
Giné and Mason (2007) obtain such functional results in L,-norms for 1 < p < oo
and general transformations T'(X1, ..., X;,). The results of Nickl (2007) and (2009)
are also applicable in this context.

The same convergence rates have been obtained for convolution estimators or
local von Mises statistics of the stationary density of linear processes. Saavedra
and Cao (1999) treat pointwise convergence for a first-order moving average pro-
cess. Schick and Wefelmeyer (2004a) and (2004c) consider higher-order moving
average processes and convergence in L1, and Schick and Wefelmeyer (2007b) and
(2008a) obtain parametric rates in the sup-norm and in L; for estimators of the
stationary density of invertible linear processes. Analogous pointwise convergence
results for response density estimators in nonlinear regression (with responses miss-
ing at random) and in nonparametric regression are in Miiller (2012) and Stgve and
Tjpstheim (2011), respectively. Escanciano and Jacho-Chévez (2012) consider the
nonparametric regression model and show uniform convergence, on compact sets,
of their local U-statistic. Their results allow for a multivariate covariate X, but
require the density of r(X) to be bounded and Lipschitz.

In the above applications to regression models and time series, and also in the
present paper, the (auto-)regression function is assumed to have a nonvanishing
derivative. This assumption is essential. Suppose there is a point x at which the
regression function behaves like r(y) = r(x) + c(y — z)” + o(|ly — z|*), for y to
the left or right of x, with v > 2. Then the density ¢ of r(X) has a strong peak
at r(x). This slows down the rate of the convolution density estimator or local
von Mises statistic for h = f % ¢. For densities of transformations T'(X7, Xs) =
| X1|”+|X2|” of independent and identically distributed random variables, see Schick
and Wefelmeyer (2008b) and (2009) and the review paper by Miiller et al. (2010).
In their simulations, Escanciano and Jacho-Chévez (2012) consider the regression
function r(z) = sin(27z) and a covariate following a Beta distribution. This choice
does not fit their assumptions because the density of r(X) is neither bounded nor
Lipschitz. Indeed, for z = 1/4 and = = 3/4, the regression function behaves as
above with v = 2. In this case the convolution density estimator does not have the

rate \/n, but at best the slower rate y/n/logn.

2. Known regression function

We begin by proving an auxiliary result for the (unrealistic) case that the
regression function r is known. Then we can observe the error e =Y — r(X), and
we can apply the results for known transformations cited in Section 1. We obtain a
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root-n consistent estimator of the response density h by the local von Mises statistic
N 1 n n
h(y) = —3 YN Kily—ei—r(X;), yeR
i=1 j=1

In the following we specify conditions under which the convergence holds in Cy(R).
We shall assume that K is the convolution k % k for some continuous third-order
kernel k with compact support. Then we can write

hy) = f*q(y), yeR,

where
f(z) = %Zkb(x —¢j) and §(z) = %Zkb(x —r(X;)), zeR.
Jj=1 j=1

Setting f, = f * ky and ¢, = ¢ * ky, we have the decomposition

fxa=foxap+ fox@—a)+a*(F—fo)+(F—fo) * (@—a)

Note that f, *x g, = f *q * ky *x ky = h % Kp. Since ¢ is of bounded variation and is
quasi-uniform on [r(0),r(1)], we may and do assume that ¢ is of the form

q(x) = ¢(u)v(du), eR,

u<lzx

where v is a finite measure with v(R — [#(0),7(1)]) = 0, and ¢ is a measurable
function such that |¢| < 1. This allows us to write

mwzj}@—xmmMmz/F@—uwmwww,

where F' is the distribution function corresponding to the error density f. Indeed,

h(y) = /q(y —z)f(x)dx

_ / / L @ v de
_ / /I L @ o)

The properties of f now yield that h is three times differentiable with bounded
derivatives

(2.1) M@:/MﬁMWW@%yER
(2.2) M@b/fmwwwmw yER,
(2.3) wwz/ﬂ@ﬂwwwmmyek

As k is of order three, so is K. Thus it follows from a standard argument that

||k * Kp — h| = sug |h * Kp(y) — h(y)| < COb
ye

for some constant C.



CONVOLUTION ESTIMATORS IN REGRESSION 5

Next we note that f; x (§ — q) = Hy x K;, with

HW)= 23" (= (X)) ~h(w), veR
j=1

Similarly, g * (f — f3) = Hy % K} with
1 n
Hay(y) ==Y (aly — ;) —h(y)), yeR

n -
Jj=1

As shown in Schick and Wefelmeyer (2007b), n'/2H; converges in Cy(R) to a cen-
tered Gaussian process with covariance function

Li(s,t) = Cov (f(s —r(X)), f(t = (X)), s,teR,
and the following approximation holds,
|Hy % Ky — Hi|| = op(n~1/?).

We can write
Ha(w) = [ (Fly =)~ Fly~2))8()v(do). ye R

where F is the empirical distribution function based on the errors €4, ...,&,,

n

D 1 <t], teR.

j=1

F(t) =

Setting A = n'/2(F — F) and writing || - ||; for the L;-norm, we obtain for each
0 > 0 the inequalities

T1(6) = sup n'/2|Hyx Ky(y1) — Ho * Ky(yo)|

ly1—y2|<6

< sup //|A(y1—x—bu)—A(yg—x—bu)|\K(u)|duu(dm)
ly1—y2|<6

< [K[v(R) sup  |A(yr) — Aly2)l-

[y1—y2|<6

Similarly, we obtain the inequalities

To(M) = sup n'/?|Hy* Ky(y)|

ly|>2M

< sup / Ay — z — bu)|| K (u)] duv(dx)
ly|>2M

< |K[lhv(R) sup [A(y)]

ly|>M

for all M such that —M < r(0)—bB < r(1)+bB < M, where the constant B is such
that the interval [—B, B] contains the support of K. From these inequalities, the
characterization of compactness as given in Corollary 4 of Schick and Wefelmeyer
(2007b), and the properties of the empirical process, we obtain tightness of the
process n'/2Hy x K, in Cy(R). We also have

nl/QHH2 x Kp — Ha|| < | K1v(R) ‘ su1‘)<bB ‘A(yl) — A(yg)’.
Y1—=y21=
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It is now easy to conclude that n'/2H, % K, converges in Co(R) to a centered
Gaussian process with covariance function

Ia(s,t) = Cov (q(s —€),q(t —¢)), s,t€R.
Finally we have

1(F = fo) % (@ — @) < IIF = foll2]ld — avll2 = Op((nb) 1),

where || - |2 denotes the Lo-norm.
The above yield the following result.

THEOREM 1. Suppose (F), (G) and (R) hold, the kernel K is the convolution kx
k of some continuous third-order kernel k with compact support, and the bandwidth
b satisfies nbS — 0 and nb?> — oo. Then n1/2(/~1 — h) converges in distribution in
the space Cy(R) to a centered Gaussian process with covariance function T'y + Ts.
Moreover,

||/~1 —h—Hy — H2|| = Op(n_l/z).

3. Unknown regression function

Our main result concerns the case of an unknown regression function r. Then
we do not observe the random variables ¢; = Y; —r(X;) and r(X;). In the local von
Mises statistic h of Section 2, we therefore replace r by a nonparametric estimator
7, substitute the residual é; = Y; — #(X;) for the error ¢;, and plug in surrogates
7(X;) for (X;). The resulting estimator for h = f * ¢ is then

h(y) = % Y Kily—é —#(X;), yeR.

i=1 j=1

Our estimator 7 will be a local quadratic smoother. More precisely, for a fixed
x in [0,1], we estimate r(x) by the first coordinate 7#(x) = (1(x) of the weighted
least squares estimator

3 = e & 5572 1, re(570))
j=1

where (x) = (1,z,22)T, the weight function w is a three times continuously
differentiable symmetric density with compact support [—1,1], and the bandwidth
¢ is proportional to n~/%. This means that we undersmooth, since an optimal
bandwidth for estimating a twice differentiable regression function is proportional
to n=1/°.

We assume that K is the convolution k& for some twice continuously differen-
tiable third-order kernel k with compact support. Then we can write our estimator
for h as the convolution

h(y) = f*d(y), yeR,

of the residual-based kernel estimator of f,

flz) = %Zkb(x —£;), z€R,
j=1
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with the surrogate-based kernel estimator of g,
1 n
j(x) = — ky(x — (X, €R.
i) = 5 X bl =7 (), s

Similarly as in Section 2, we have the decomposition

fria=forap+fox(@—a)+a*(f—F)+Fo—F)*(G—a)

Let us introduce
1 n
g = E Zc"fj
j=1
and
1 n
Hs(y) =~ &(f'(y—r(X))) =M (y), weR.
j=1

We can write H3 as the convolution M * f” with

M) =5 Y1) <2 - Q). zeR

where @ denotes the distribution function of r(X). Write 02 = E[¢?] for the error
variance. Since nE[M?(z)] equals 02Q(z)(1 — Q(2)) and (1 — Q)Q is integrable, we
obtain from Corollary 4 in Schick and Wefelmeyer (2007b) and the remark after
it that n'/2Hj converges in distribution in Cy(R) to a centered Gaussian process
with covariance function ¢2T's, where

L3(s,t) = Cov (f'(s — (X)), f'(t = r(X))), s,teR.

Note that f’ and f” are bounded and integrable and therefore square-integrable.
We shall show in Sections 6-9 that

(31) v (F = ) — W)l = 0y (n™72)
(32) Iy (4= @)+ & + T = 0y (n™72),
(33) 17~ Al3=0,(=).

(3.4) ld = @l = 0p(0)-

The last two statements require also nb*/ log* n — oo. These four statements and
Theorem 1 yield our main result.

THEOREM 2. Suppose (F), (G) and (R) hold, the kernel K is the convolution
k xk of some twice continuously differentiable third-order kernel k with compact
support, and the bandwidth b satisfies nb® — 0 and nb4/log4n — 00. Let 7 be the
local quadratic estimator for a weight function w that is a three times continuously
differentiable symmetric density with compact support [—1,1], and for a bandwidth
¢ proportional to n=Y*. Then nl/g(ﬁ — h) converges in distribution in the space
Co(R) to a centered Gaussian process with covariance function ' =T'1 4+ Ty +02T5.
Moreover, we have the uniform stochastic expansion

(3.5) |h —h — Hy — Hy — H3|| = 0,(n"1/?).
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We should point out that T'(s,t) = Cov(H(s), H(t)) for s,t € R, where

H(y)=fly—r(X) +qly—e) —e(f'(y—r(X)) = h'(y), yeR

4. An efficient estimator

In this section we treat the question of efficient estimation for A. For the theory
of efficient estimation of real-valued functionals on nonparametric statistical models
we refer to Theorem 2 in Section 3.3 of the monograph by Bickel et al. (1998). It

follows from (3.5) that the estimator h(y) has influence function

L(X,Y)=q(y —¢) = h(y) + fly = (X)) = h(y) —e(f'(y — (X)) = I’ (y)).

We shall now show that this differs in general from the efficient influence function.
The latter can be calculated as the projection of I,(X,Y’) onto the tangent space
of the nonparametric regression model considered here. The tangent space consists
of all functions of the form

a(X) + f(e) +v(X)€(e),

where the function « satisfies [a(z)g(z)dx = 0 and [a?(x)g(x)dr < oo, the
function 8 satisfies [ B(z)f(z)dz = 0 = [28(2)f(z)dy and [ 3*(2)f(z)dz < oo,
and the function v satisfies [ 7?(z)g(z)dz < oo; see Schick (1993) for details. The
projection of the influence function onto the tangent space is

L,(X,Y) = [f(y = r(X)) = ()] + [q(y — &) — h(y) — d(y){(e)]
+dty) = 5 (7t — ()~ W) | ).

Here ¢ = —f’/f denotes the score function for location, J = [ ¢*(y)f(y) dy is the
Fisher information, which needs to be finite for efficiency considerations, and d(y)
is the expectation E[q(y — €)e]. For later use we set

Ay)=——v, yeR

To see that I;(X,Y) is indeed the projection of the influence function onto the
tangent space, we note that I (X,Y) belongs to the tangent space and that the
difference

I,(X,Y) = L(X,Y) = (f'(y — (X)) = K (y)) A(e)
is orthogonal to the tangent space. For this one uses the well-known identities
E[f(e)] =0 and E[el(e)] = 1.

We have 1,(X,Y) = [;(X,Y) if and only if A = 0, which in turn holds if and
only if f is a mean zero normal density. Consequently, our estimator is efficient for
normal errors, but not for other errors.

In order to see why our estimator for h(y) is not efficient in general, consider
for simplicity the case of known f and g. The efficient influence function is then
—f'(y — r(X))()/J. Thus an estimator h(y) of h(y) is efficient if it satisfies the
stochastic expansion

() = (o) — = D0 == T+ opn 1)
j=1
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A candidate would be obtained by replacing, in the relevant terms on the right-hand
side, the unknown r by an estimator 7, resulting in the estimator

/ fy x)dz — Z 1y — #CG)EY; — (X)),

This shows that a correction term to the plug-in estimator [ f(y — #(z))g(x) dx is
required for efficiency.

In the general situation, with f, ¢ and r unknown, we must construct a sto-
chastic term C(y) such that

n

@) G = 23 (= () — H)AE) + oyl 2)

Then the estimator h(y) — C(y) has influence function L(X,Y),

(4.2) h(y) ZI* i Y5) +0p(”_1/2),

and hence is efficient. We shall construct C(y) such that (4.1), and hence (4.2),
hold uniformly in y. This implies a functional central limit theorem in Cy(R) also

for the improved estimator i — C. We mention that tightness of n'/2C, with
1 n
gz ) y=r(X) =M (y), yeR,

is verified by the same argument as used for n'/2Hj.

To construct the correction term, we use sample splitting. Let m denote the
integer part of n/2. Let 71 and 75 denote the local quadratic smoothers constructed
from the observations (X1,Y1),...,(Xm,Ym) or (Xim+1, Yim+1), .-, (Xn, Yn), both
with the same bandwidth ¢ as before. Define residuals €; ; = Y; —7;(X;) fori =1,2

and j =1,...,n, and kernel density estimators
1 & 1 "
:Ezna(z—éu), f2(2) = — Z Ka(2 = €2,5),
j=1 j=m+1
and

L1 : .
Zma —£é25) E Z ka(z —£€1,5),
j=m+1
where k. (x) = k(z/a)/a for some bandwidth a and a density  fulfilling Condition
K of Schick (1993), such as the logistic kernel. Then we can estimate £(z) by
£ £
gl(Z) — fl(AZ) and 62(2’) — fQ(AZ) ,
a+ f1(2) a+ fa(2)
the Fisher information J by

and A\(z) by
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Finally, we take C(y) = Cy(y) + Ca(y) with

Crw) =3 3 (Fily = 7200) = 3 fily = 72(60) ) haler)

oumnN

G =1 Y (A-An) - —— 3 A A hG).

j=m+1 t=m+1
We have the following result, which is proved in Section 10.

THEOREM 3. Suppose (F), (G) and (R) hold, f has finite Fisher information
J, and the bandwidth a satisfies a — 0 and a®n — oo. Then we have the stochastic
expansion ||C — C|| = o,(n"1/?).

Theorems 2 and 3 imply that the improved estimator h — C has the uniform
stochastic expansion

sup [h(y) - C(y) —fZI* X;)| = op(n™11)

yeR

and is efficient. As mentioned above, if the errors happen to be normally distributed,
then A = 0. Therefore C' = 0 so that C' collapses in the sense that ||C|| = o,(n~1/2).

5. Properties of the local quadratic smoother

The weighted least squares estimator B(:E) satisfies the normal equation

W )ia) = V(@)
W)= o Sow(H ) (F )T (B ),

- 1 X;—x X;—z
o~ 3B (),
@) ne 32:31 T i c
Subtracting from both sides of the normal equation the term W (z)3(z) with

Blx) = (r(@),er' (), r"(2)/2) ",

we arrive at the equality

with

where

a01= L3 (B T)e (527

B(z) = ;§w<X]cx>R(X]7x)w(ch x)’
and
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Since " is uniformly continuous on [0, 1], we see that

sup |B(x)| = 0,(c?) = 0,(n~"/?).
0<z<1

It follows from the proof of Lemma 1 in Miiller et al. (2009) that

sup [A(@)]? = 0, ("2

0<z<1 nc

and

sup [1(2) ~ W(a)? = 0, (*21)

0<z<1 nc
with
W (z) = E[W(z)] = /g(x +ew)p(u)y " (w)w(u) du.

Since g is quasi-uniform on [0, 1], there is an 7 with 0 < n < 1 for which

1
(5.1) n < Ii?fl v W (x)v < sup v W(z)v < p
vj= jvl=1

holds for all z in [0,1] and all ¢ < 1/2. From this we obtain the expansion

= _ logn
W @) -wx))? =0
s (774 a) = W @) =0, (55,

where M~ denotes a generalized inverse of a matrix M if its inverse does not exist.
Combining the above we obtain that

52 s i)~ o) - D)A) + Bw)| = 0,(ED)

where D(z) is the first row of W~1(x). For later use, we note that |D(x)|?> < 3/n?
for all  in [0,1] and ¢ < 1/2. We also have

o S 17() = r(2) = 8(a)| = oy,

where

Thus we obtain

(5.4) LS () — (X)) = 0, (),

(5.5) / (#(2) - r(2)) ' g(a) do = op(l‘)ﬂ).
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Let x be a square-integrable function. Then the function ~ defined by
2 2
10 = [ (o= = x@)do= [ (o +1) - x(2)*do, teR

is bounded by 4||x||3 and satisfies v(t) — 0 as ¢ — 0. Using this and the fact that
w has support [—1, 1], we derive

E[(/ (x(X £ cu) — x(X))u'w(u) du)z} < E[/ (x(X £ cu) — X(X))zw(u) du}

< gl [ (cuyuw(u) du— o
Applying this with x = g, we can conclude
B[[W(X) - ¢(X)¥[*] — 0,

where U = [4(u)y " (u)w(u) du. From this and (5.1) we derive that

Bllg(X)W=H(X) = ¢! "] — 0.
In particular, with e = (1,0,0) T,

Ellg(X)D(X) —e ¥ '] — 0.
Let us set

t(X)= [ 9(X — cu)D(X — cu)p(u)w(u) du

/
= [ (6x = c)D(X — ) = g(X) DY) u(u) d
+ (9(X)D(X) — e T Te + 1.
Then we have
E[(t(X) - 1) < 6E[ [ |g(X ~ cw)Da — ew) - () DY) o) du
+2E[|g(X)D(X) — T U] [We|? — 0,

since |gD)| is square-integrable. This can be used to show that
1 n
; de = = (X)) =& —1/2),
/g(m)g(m) x n;z—:] (Xj) =&+ o0p(n""77)
In view of (5.3) this yields
(5.6) [ (¢0) = r@)g(a) dz =2+ (0.

6. Proof of (3.1)

Since ¢ is of bounded variation, we can write g, * (f — f) = H, * K}, where
. 1 .
H == Fly —2) —F(y — R
2(y) n ;/ ( (y—=2) (y z))¢(z)u(z), Yy €K,

with F denoting the empirical distribution function based on the residuals €1, ..., €,,
n
1[5—% < t], t e R.

F(t):%
j=1

J
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It was shown in Miiller et al. (2009) that
IF —F — &f|| = 0p(n™"/?).
From this and the representation (2.1) of A’ we immediately derive the expansion

|Hz — &[] = 0, (n™'/2).

This lets us conclude that
gy * (f = f) = &l = 0p(n~"/?).

7. Proof of (3.2)
Since f’ and f” are bounded, a Taylor expansion and the bounds (5.3) and

(5.4) yield the uniform expansion

n

LS (= 7))~ Fly = (X)) + £y~ r(X)a(X;))| = 0p(n 7).

sup |—
n
yeR j=1

Now set

Sa(y) = n(n—1)
i#
1
5= ;az(m;@m(xz X;) - / D()v (X, — a)g(x) do)
with

ve(2) = w(z/e)Y(z/c)/c.
Then we have
1

H51 -2 - 1S3H < ||f'||% Zn: D (X;)vc(0)] = Op(%)'
j=1

In view of b/ = f” * Q we have the identity
S1(0) ~ Sa(9) - K@)S = [ /(0 - 2)dz

=y 2 a((A() € 21— Q) DX el — X))
i#]
- / (1[r(z) < 2] — Q(2)) D(x)ve(X; — x)g() dm).

The terms in the sum have mean zero and are uncorrelated, with second moments
bounded by ¢21[r(0) < z < r(1)]E[|D(X2)v.(X1 — X2)|?]. Thus we have

n(n — 1)/E[U2(Z)] dz < 0*(r(1) = r(0)) E[[ D(X2)ve(X1 — X2)] = O(1/0),
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from which we derive
1S3 = So = WS < [If"[[2|U |2 = 0p(n~"/?).
Similarly, one has cn(n — 1)E[S?] = O(1) and obtains
IS = op(n~1/2).

Next we have Sy = N * f”, where

with

Ny(2) = 3" &5 (t) - (1)) < 2] - Q).
S ST R

It is easy to check that Ny * f” = &h' + Hj. Recall the identity Q = f” = h’. Using
these identities we see that

182 — &h’ — Hy|| < [IW[[[N] + £ ll2(IIN1l2 + | Na]l2).
We show now that the right-hand side is of order o,(n~/2). First, we calculate
nE[N?] = ?E[(t(X) — 1)?] = 0.

Second, using the abbreviation T'(u, z) = 1[r(X — cu) < z] — 1[r(X) < z], we have

n/E[Nf(z)} dz = UQ/E[(/T(u,z)g(X —cu)D(X — cu)p(u)w(u) du)j dz
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Third, we derive
n / BIN?(2)] dz = o / E[(1(X) — 12 (A[r(X) < 2] - Q())%] d=

—o?E[(100) -1 [ (1) < 21 - Q(2)°
<o?(r(1) —r(0)) E[(H(X) — 1)*] — 0.

dz}

We can now conclude that ||Sy — eh/ — Hz|| = 0,(n~1/2).
The above relations show that ||R 4 &h’ + Hj|| = 0,(n~1/2), where

3=

R(y) ==Y (fly—7(X;) = fly—r(X;))).
=1

Note that fp, * (3 — §) = R % K}. Thus the desired (3.2) follows from the bound
I fo (4 — @) + &h’ + Hs|
<|(R+&h' + Hs) K|l + ||(eh' + Hs) * Ky — h' — Hs|
< ||R+&h + Hs||||K||1 + ||(Eh + Hs) * K, — h/ — H3||
and the tightness of n'/2(zh/ 4+ H3) in Co(R).

8. Proof of (3.3)

Without loss of generality we assume that ¢ < 1/2. Then we have the inequality
X -z
c

3
(8.1) ID(z)ve(X — z)| < %w( ) 0<z<1.

Let us set ¢ = 7 — r, and, for a subset C of {1,...,n},

do(w) = 32117 ¢ C)(es + ROX;, ) Dla)uel X, — o).

Note that ag(z) = D(z)(A(z) + B(x)). For Il =1,...,n with [ # C we have

IN

|acu(@) — ac(z)] %Ia + R(Xy, 2)||D(2)[ve(X; — )]

3 e + czw(c)w(Xl - x)
n ne c ’
where
w(c) = sup{[r’(z) —r"(y)| 2,y € [0, 1], |z —y| < c}.
We abbreviate ag;y by G; and ag; ;1 by a; ;. The above inequality and (5.2) yield
the rates

(8:2) LS (@) - a,(x)* = 0, (50,
j=1
(8.3) % f:/ (a(x) — a;(x)) g(e) dx = op(il(;%i,f),
j=1

(8.4) E[(a1(X1) — a12(X1))°] = op(%).
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Let us now set

T(z) = EZTJ(Z a) and T.(z) ==Y Tj(za;)
j=1 Jj=1
where
Ty(z.0) = kol = &5 +a(X0)) = [ [ lo(e =y + alo) fy)al) dy do

for a continuous function a. It follows from the properties of k£ that

1 m 2 B 1 m
85) [ (52 (ol =)~ kula = 92))) o < bW D (o=

i=1 =1

for real numbers z1,...,z,, and y1,...,¥n. This inequality and statements (8.2)

and (8.3) yield the rate
_ _ 2 log®n 1
J @@ =T = 0y (j5) = on (1)

The last step used the fact that nc?b?/ log® n is of order n'/2b? / log® n and tends
to infinity. In addition, we have

nEB[TZ(2)] = BTt (z,a1)] + (n — 1) E[T1(2,a1)Ta(2, a2)].
Conditioning on & = (g3, Xo, ..., &, X, ), we see that
E[Tl(z, &1)T2(Z, d172)] = E[TQ(Z, &172)E(T1(Z, fll)|f)] = O

Similarly one verifies that E[T1(z,a1,2)T2(2, a2)] and E[T1(z,d1,2)T5(z, a1,2)] are
zero. An application of the Cauchy—Schwarz inequality shows that

E[Ti(z,a1)Ta(2,42)] = E[(Ti(2,a1) = T1(2,41,2)) (Ta(z, 42) — Ta(2,d1,2))]
is bounded by E[(Tl z,a1) — T (z, d172))2} which in turn is bounded by
E[(ky(z —e1 — a1(X1)) — ko2 — 1 — a12(X1))) 7]
With the help of (8.4) and (8.5) we thus obtain the bound

/ET2 2)dz < ||k||2 + (7)Hk’/||2 E[(a1(Xy) —d1,2(X1))2] = O(%)

It follows that we have the rate nb||T||3 = O,(1).
Now we set

— [[ e = v+ a@)rw dyg(@)do = [ itz +ato)g(o) do
Since f — f. equals T, we have
(36) 17~ R =0():
A Taylor expansion yields the bound
[ (740 - 82) - o) [ atwrg(a) ds)”az < 113 [ a*(@)g(a) do.

We have [[fillz = [l * Kolla < [If l2llRolls = I1F [2ll%ll2 and [[f57lla < [F"]l2lF]1-
Using these bounds, (5.5) and (5.6) we obtain the rate

(8.7 17~ 5B =0p(;)-
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The desired result (3.3) follows from (8.6) and (8.7).

9. Proof of (3.4)

We assume again that ¢ < 1/2 and set
0.2) = [ Il = (o)~ a))g(e) e, T (0) = [ Kyl = r(Dalo)g(e) do
An argument similar to the one leading to (8.6) yields
1
S a2 — L
(9.1) g - .13 =0, ().
Note that ||k} ||3 = O(b3) and ||k/||3 = O(b~"). A Taylor expansion and (5.5) yield
logn 1
. -4 _
[ @@-a)-1'e0) d < 1K1 [ a@o) s = 0, (555) = o5
In view of (5.3) we find
[ @0 -7 0) @ < KIS [ (i) - o)

Finally we write

g(x)de = op(%).

:\»—‘
M:

T'(z,0) £; /k’g z —r(z))D(z)v.(X; — x)g(x) dz
%Zsj/ ky(z —r(x)) — ky(z — r(X;))) D(x)ve(X; — 2)g(z) dx
+% . eiky(z = r(X;)t(X;).

1

J
In view of (8.1) we have the bound
3
[ 1P@re(x = 2)lg(@y do < 2l

This inequality and an application of the Cauchy—Schwarz inequality yield the
bound

/E (7'(2,0))?) dz < 20 |77g|E[U]+||l<;,’,||§E[t2(X)]>
with

— // (ké(z —r(z)) — k(2 — r(X)))2|D(x)vC(X —xz)|g(x)dx dz

)g(x) dx.

In the last step we used (8.1) and the analog of (8.5) with k; in place of k;. Since
7 is Lipschitz on [0, 1], we obtain E[U] = O(b=°c?) = o(b~2). The above relations
show that

1
~ 2 o
(92) 1. = a1 = 0y (=55) = (0.
The desired (3.4) follows from (9.1) and (9.2).

C
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10. Proof of Theorem 3
It suffices to show that n'/2||C; — C;|| = 0,(1) for i = 1,2, with

Cily) = Z(f’(y—r( ) = H (@)AE)

Jj=1

3\'—‘

and Cy = C' — (. Since the two cases are similar, we prove only the case i = 1.
We begin by writing n'/2Cy = N % f” and n1/201 N x f” where

N(z) = N(z,\) = Ln Mey) (1[r(X;) < 2] — Q(z))
j=1
and
R) = Nz ) = == 3" RaEa) (1a(X;) < 2] - Qe 2)
with

Q) = — S 1[p(X)) < 2]

In view of E[ [ N%(z)dz] = E[A*(¢e)] [ Q(2)(1 — Q(2)) dz < oo and the bound

n'2|Cy = G| <IN = Nlla[lf5 ll + IN120L/5 = £l
it suffices to show
(10.1) IV = Nll2 = 0,(1)
and
(10.2) 1£5 = £"ll2 = 0p(1).
Let us first prove (10.2). With A; = # — 7, we have &;; = ¢; — A;(X;) for
i=1,2and j=1,...,n. Then we can write

/() = £"(2) = (m/n)D1(2) + (1 = (m/n)) Dy (2)

with
1 m
D - // B 1"
12) = 3 (e = + Aa(X,) - 17(2)),
Jj=1
1 - .
Dy(z) = p— Z (ki(z — g5 + A1 (X)) — f7(2)).

j=m-+1

Let E, denote the conditional expectation given X, 41, Yim41,.-.,Xn, Yn. Using

the square-integrability of f” and a standard argument we find that

Eg{/D%(z) dz} <m™' [ (k!(2))*dz

/// "z — Ag(z) — au) — f (z))sz(u) dug(z)dz dz
=0(m™'a™%) + 0,(1).
Thus || D12 = 0p(1). Similarly, one verifies || Dz||2 = o0,(1), and we obtain (10.2).
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To prove (10.1), we set
N(z) = N(z Vﬁzj&y Aa(X,) f () dy(1[7s(X;) < 2] — O(2, 7))

and shall verify
N =N =Nz =0,(1) and [Nz =0,(1).
We can write

NfoN:LiLiLjL(l 1

A LN r-d-m
3 F )i )
with L(z) = N(z,02), L(2) = N(z,02), L(z) = N(z,0), M(z) = N(z,id), M(z) =
N(z,id) and M(z) = N(z,id) where id denotes the identity map on R. Now let E

denote the conditional expectation given Xy,..., X, Yi41,...,Y,. Then we find
(10.3) E(|L — L - L|j2) Z X;)R1; +2JRs )
with

Riy= [ (@a06) < 2 - Qe ) d,
&Jz/umuwsd—@@%»4&@ps4+mafw

By the properties of the quadratic smoother we have
1s 1N A
104) =Y A2X;)=0,(n=%* dthus =) [Ax(X;)] = 0,(n3/8).
( ) n; 2(X;) p(n ) an us n;l 2(X;)] p(n )
Several applications of the Cauchy—Schwarz inequality yield the bound

S R (242 Z/ X)) < 2 - 1r(X;) < 21) d

+ 3/ (Q(z, r) — Q(z))2 dz.

Now we use the identity (1[u < 2] — 1[v < 2])? = 1[u < z < ], valid for u < v, and
(10.4), to conclude

(10.5) - ZRQJ < — Z |A2 D]+ Op(n —1/2) _ Op(n_S/S).
Using the above identity and the uniform consistency of 75, we obtain

(10.6) max Ry; < max 72/ < 2] =1 (X;) < 2])° dz = 0,(1).

1<j<m m

By Lemma 10.1 in Schick (1993) there is a constant ¢, so that

107 23 [ (bl Ba(x) - ) ) dy < 5> A3(X),
j=1

IN
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n
p 2 Cx <9 1
108) [ (o) - (W)’ 5wy < - 3 A0+ 0, () + onlh)
j=m
From (10.3)-(10.8) and a®n — oo we obtain |[L — L — L|ls = 0,(1). A similar
argument yields |[M — M — M|z = 0,(1). Using (10.7), (10.8) and the operator E,

we obtain
m

%Z (f2(62,5) — 5(%‘))2 = 0p(1).

j=1
It is now easy to see that J is a consistent estimator of J. This completes the proof
of [N — N — Nljz2 = 0,(1). ) )
We are left to verify ||N|l2 = 0,(1). Using the definition of Q(z,72), we can
write

- i - Q) (Bax) + 2a0xy).

where
w(X;) = / (la(y — Aa(X;)) — la(y)) f(y) dy = /fz(y)(f(y +Asx(X5)) — £(y)) dy.

A Taylor expansion yields

Fly+Ba(X))) = fy) = Aa(X)) ' (y) = A(X;) /0 (1= 9)f"(y + sBa(X;)) ds.

/If” )| dy

Since /5 is bounded by ¢, /a, we obtain

O(X;) + Ag(Xj)Ja| <

9\*

with Jo = [ la(y)0(y) f(y) dy = J + 0,(1). Now set

T(2) = 5= 30 (1a(X) < 2] = Qe ) Aol
j=1

T() = 2= 3 (1Y) < 21— Q) Aa(X))
j=1

Using the Minkowski inequality and the statements (10.4)—(10.6), we derive

IN — (1= Jy/ )2 < C*”f ||1ZR1/2A2 = 0,(a ' %) = 0,(1),

Ms

)1/2 0,(1).

Igm, 1
T o))y < = RyZIAs (X)) < n'/2 (= -
IT =il < Z |2|n(n2:j i
(0 <r(1)], valid forall0 <z <1

1
Using the 1nequahty |1[ (x) < 2]-Q(%)] <1[r(0) < z

and z € R, we obtain

Bal| T - BalIIE < 2 [ () < 2] - Q) B3(eg(a) da

< r(l) — r(O) /A%(m)g(m) dx = op(1).
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Now introduce
1) = [ (1) < 2] - Q2)ple)g(o)

Then we have Ey[Y(2)] = n='/2mI(z,A;). In view of the above and 1 — J,/.J
0,(1), the desired property |[N|jz = o0,(1) will follow if we show ||I(-,Ag)]|

21

O,(n~1/2). The latter is equivalent to showing ||I(-,7 —1)||2 = Op(n~1/2). In view

of (5.3) we have
(7 =7) = 1(,0)ll2 = (-7 =7 = 8)ll2 = 0p(n~"/?).
We can express I(z, 0) as the average
%Zsz(z,Xj)
j=1
with
(%) = [ (10r(0) 2 - Q) u(F5—) Dl (F (o) de

= / (l[r(Xj —cu) <z]— Q(z))w(u)D(Xj —cu)p(u)g(X; — cu) du.

Since |7(z, X;)| is bounded by a constant times 1[r(0) < z < r(1)], we conclude
nE[|1( )3 = /UQE[T2(Z’X)} dz = O(1).

The above shows that [|I(-,7 — 7)||2 = O,(n~'/2), and the proof is finished.
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