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We present two (classes of) results on estimating the stationary
density of linear time series:

1. Convergence rates of ordinary kernel density estimators for (pos-
sibly non-invertible) linear time series.

2. Parametric convergence rates of convolution estimators (or local
U-statistics) for invertible linear time series.

Let X4,...,X, be observations of a linear process

oo
Xj=ej+ 2, ¢scjs:

s=1
Assume that the innovations € have mean zero, finite variance, and
density f, and that the coefficients s are summable.



1. Kernel density estimator. An estimator for the density h of X
at x is the kernel estimator

Z kp(z — X;)  with  ky(x) = k(z/b)/b.
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To obtain pointwise rates, Wu and Mielniczuk (2002) write X, =
e; + Z; and add and subtract E(ky(xz — X;)|Z;) = ky * f(Z;):
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() = h(z) ==Y (ky(z — X;) — ky + f(z — Z)))

n j=1

%Z (ko * f(z — Z;) — Ky x h(@)) + ky = h(z) — h(z).
=1

The first term is a martingale. The second term is a centered and
smoothed kernel estimator. The third term is the ordinary bias
term. — S/W (2006) refine the approach of Wu and Mielniczuk
(2002), weaken their assumptions, and give conditions in terms of
the innovation density only. S/W (2008) give Li-rates.



We refine the approach of Wu and Mielniczuk (2002) as follows.
The more coefficients s are nonzero, the smoother is h. We exploit
this by decomposing

m—1 00
X, =Y;+Z; with Y,=¢;4+ > ¢sgj_s, Zj= ) ¢scj_s.
s=1 —m

With fm denoting the density of Y;, we have

n

h(z) — h(z) = Z (ky(z — X;) = ky * fn(z — Z;))
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Z (kb * fm(x — Zj) — ky, % h(a:)) + kp x h(x) — h(x).

For m = 1 this is the approach of Wu and Mielniczuk (2002).
If only finitely many s are nonzero, the middle term vanishes for m
large.



We show: If (the shift of) f is Li-Lipschitz (e.g. if f has bounded
variation), then f;, has an a.e. derivative of order m — 1 which is
Lq-Lipschitz (if ¢q1,...,9,,,—1 are nonzero.)

Result: Assume that at least N coefficients ps are nonzero. Let f
have finite variation. Choose a kernel of order N + 1. Then

IR — hll1 = Op(n~ Y267 1/2) + OV TL).

To construct h:

Test for number of nonzero coefficients.

Then choose optimal bandwidth and order of kernel.
If many ¢s are nonzero, the rate of h is close to n=1/2.
(Not so good if the first few coefficients pg are zero.)



2. Convolution estimator. Suppose at least one ¢s is nonzero.
Then X; = ¢; + Z;, so h has the convolution representation f x g,

where h, f, g are the densities of X, Ejr L

A better estimator for h than the ordinary kernel estimator would be
given by a convolution of density estimators for f and g.

(The reason is that such a convolution is approximately the sum of
two smoothed empirical estimators, as we will see. They converge
at the /n rate.)

But ¢; and Z; are not observed and must be estimated. This is why
we now need that the linear process is invertible.



To estimate €4, We assume that the linear process is invertible. This
means that the innovations have a moving average representation in
terms of the realizations of the process,

©.
s=1
Let o; be an estimator of ;. Let p — oco. Estimate ¢; and Z; by
p ~
6j:Xj— Z QSXj—s and Zj:Xj_gj-

Estimate the densities f of ¢; and g of Z; by kernel estimators

fa)=—" S h@—g), i@ =—— 3 kz-2).
—P+1 n—pr '=p—|—1

Then estimate h = f % g by the convolution estimator h = f * g



Result: For appropriate choice of kernel and bandwidth, under
(mild) conditions on the decay of ps and ps, if f has a moment > 3
and (essentially) finite variation, then h = f x g has the stochastic
expansion

p
Hﬁ—h—F—GJr S (3 — 0s)V,

s=1

= op(n7/?)

with

Fz) =

(f(z = 2;) — h(x)),

G)=——

(9(z — &) — h(=)),
and vs(z) = E[Xof(x — Zs)].

If os are asymptotically linear (e.g. least squares estimators), then
nl/z(ﬁ — h) converges weakly in L1 to a centered Gausian process.



The estimator h = f % g is approximated by a sum of two smoothed
empirical estimators:

frxg—frxg=f+xG-g)+gx(F-HNF+T-*G-9)
This explains the rate n=1/2 if the bandwidth is e.g. (nlogn)—1/4.

The estimator f = g(x) is equivalent to a local U-statistic:
n n

1 5
p Z Kb(x_gi_zj)-
1

1=1 9=

The estimator fxg§ can be improved in several ways:

— Use efficient estimators for ps.

— Use empirical likelihood weights on f and g to exploit E[sj] = 0,
— Use the convolution representation of Z;, = X; —¢; = 302 1 ws€j_s
to estimate A by an increasing number ¢ — oo of convolutions,

i@) = [+ [ F(z=@rzn = = Goza) F1) -+ Fleg) o -+ d



