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We present two (classes of) results on estimating the stationary

density of linear time series:

1. Convergence rates of ordinary kernel density estimators for (pos-

sibly non-invertible) linear time series.

2. Parametric convergence rates of convolution estimators (or local

U-statistics) for invertible linear time series.

Let X1, . . . , Xn be observations of a linear process

Xj = εj +
∞∑
s=1

ϕsεj−s.

Assume that the innovations εj have mean zero, finite variance, and

density f , and that the coefficients ϕs are summable.



1. Kernel density estimator. An estimator for the density h of Xj
at x is the kernel estimator

ĥ(x) =
1

n

n∑
j=1

kb(x−Xj) with kb(x) = k(x/b)/b.

To obtain pointwise rates, Wu and Mielniczuk (2002) write Xj =

εj + Zj and add and subtract E(kb(x−Xj)|Zj) = kb ∗ f(Zj):

ĥ(x)− h(x) =
1

n

n∑
j=1

(
kb(x−Xj)− kb ∗ f(x− Zj)

)

+
1

n

n∑
j=1

(
kb ∗ f(x− Zj)− kb ∗ h(x)

)
+ kb ∗ h(x)− h(x).

The first term is a martingale. The second term is a centered and

smoothed kernel estimator. The third term is the ordinary bias

term. — S/W (2006) refine the approach of Wu and Mielniczuk

(2002), weaken their assumptions, and give conditions in terms of

the innovation density only. S/W (2008) give L1-rates.



We refine the approach of Wu and Mielniczuk (2002) as follows.

The more coefficients ϕs are nonzero, the smoother is h. We exploit

this by decomposing

Xj = Yj + Zj with Yj = εj +
m−1∑
s=1

ϕsεj−s, Zj =
∞∑
s=m

ϕsεj−s.

With fm denoting the density of Yj, we have

ĥ(x)− h(x) =
1

n

n∑
j=1

(
kb(x−Xj)− kb ∗ fm(x− Zj)

)

+
1

n

n∑
j=1

(
kb ∗ fm(x− Zj)− kb ∗ h(x)

)
+ kb ∗ h(x)− h(x).

For m = 1 this is the approach of Wu and Mielniczuk (2002).

If only finitely many ϕs are nonzero, the middle term vanishes for m

large.



We show: If (the shift of) f is L1-Lipschitz (e.g. if f has bounded

variation), then fm has an a.e. derivative of order m − 1 which is

L1-Lipschitz (if ϕ1, . . . , ϕm−1 are nonzero.)

Result: Assume that at least N coefficients ϕs are nonzero. Let f

have finite variation. Choose a kernel of order N + 1. Then

‖ĥ− h‖1 = OP (n−1/2b−1/2) +O(bN+1).

To construct ĥ:

Test for number of nonzero coefficients.

Then choose optimal bandwidth and order of kernel.

If many ϕs are nonzero, the rate of ĥ is close to n−1/2.

(Not so good if the first few coefficients ϕs are zero.)



2. Convolution estimator. Suppose at least one ϕs is nonzero.

Then Xj = εj + Zj, so h has the convolution representation f ∗ g,

where h, f , g are the densities of Xj, εj, Zj.

A better estimator for h than the ordinary kernel estimator would be

given by a convolution of density estimators for f and g.

(The reason is that such a convolution is approximately the sum of

two smoothed empirical estimators, as we will see. They converge

at the
√
n rate.)

But εj and Zj are not observed and must be estimated. This is why

we now need that the linear process is invertible.



To estimate εj, we assume that the linear process is invertible. This

means that the innovations have a moving average representation in

terms of the realizations of the process,

εj = Xj −
∞∑
s=1

%sXj−s.

Let %̂j be an estimator of %j. Let p→∞. Estimate εj and Zj by

ε̂j = Xj −
p∑

s=1

%̂sXj−s and Ẑj = Xj − ε̂j.

Estimate the densities f of εj and g of Zj by kernel estimators

f̂(x) =
1

n− p

n∑
j=p+1

kb(x− ε̂j), ĝ(x) =
1

n− p

n∑
j=p+1

kb(x− Ẑj).

Then estimate h = f ∗ g by the convolution estimator ĥ = f̂ ∗ ĝ.



Result: For appropriate choice of kernel and bandwidth, under

(mild) conditions on the decay of ϕs and %s, if f has a moment > 3

and (essentially) finite variation, then ĥ = f̂ ∗ ĝ has the stochastic

expansion ∥∥∥∥ĥ− h− F−G +
p∑

s=1

(%̂s − %s)ν′s
∥∥∥∥

1
= oP (n−1/2)

with

F(x) =
1

n− p

n∑
j=p+1

(
f(x− Zj)− h(x)

)
,

G(x) =
1

n− p

n∑
j=p+1

(
g(x− εj)− h(x)

)
,

and νs(x) = E[X0f(x− Zs)].

If %̂s are asymptotically linear (e.g. least squares estimators), then

n1/2(ĥ− h) converges weakly in L1 to a centered Gausian process.



The estimator ĥ = f̂ ∗ ĝ is approximated by a sum of two smoothed

empirical estimators:

f̂ ∗ ĝ − f ∗ g = f ∗ (ĝ − g) + g ∗ (f̂ − f) + (f̂ − f) ∗ (ĝ − g).

This explains the rate n−1/2 if the bandwidth is e.g. (n logn)−1/4.

The estimator f̂ ∗ ĝ(x) is equivalent to a local U-statistic:

1

n2

n∑
i=1

n∑
j=1

Kb(x− ε̂i − Ẑj).

The estimator f̂ ∗ ĝ can be improved in several ways:

— Use efficient estimators for %s.

— Use empirical likelihood weights on f̂ and ĝ to exploit E[εj] = 0,

— Use the convolution representation of Zj = Xj−εj =
∑∞
s=1ϕsεj−s

to estimate h by an increasing number q →∞ of convolutions,

ĥ(x) =
∫
· · ·

∫
f̂

(
x− ϕ̂1z1 − · · · − ϕ̂qzq

)
f̂(z1) · · · f̂(zq) dz1 · · · dzq.


