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We consider an ergodic, real-valued, first-order Markov chain in dis-

crete time, with transition distribution Q(x, dy) and one-dimensional

stationary distribution π(dx).

Q and π are determined by expectations

Ef(Xi−1, Xi) = π ⊗Qf =
∫∫

f(x, y)π(dx)Q(x, dy)

for sufficiently many f , e.g. by the two-dimensional distribution func-

tion.

From consecutive observations X0, . . . , Xn such expectations can be

estimated by empirical estimators

E2f =
1

n

n∑
i=1

f(Xi−1, Xi).

They are efficient in the nonparametric model.
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Suppose we do not have consecutive observations.

We can still estimate one-dimensional expectations Ef(Xi) by the

empirical estimator based on the observations.

(Unless the gaps depend on the preceding states).

We do not need to know the time indices (the clock of the chain).

For two-dimensional expectations Ef(Xi−1, Xi) we have two prob-

lems: We must see some pairs of adjacent realizations, and we must

know this (i.e. we must know the clock of the chain).

For example, observe X0, Xk, X2k, . . . . We can estimate the k-step

transition distribution Qk, but this does not determine Q.
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In this talk we assume that we know the clock, and we consider

patterns of observations with some adjacent pairs of observations.

We answer the following questions:

How can we use the information in nonadjacent pairs?

If the gaps depend on the preceding states, how can we identify Q?
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1. Periodic observations

We observe at (known) times 0, j1, j1+j2, . . . , j1+· · ·+jm and repeat

that pattern n times.

Assume at least one of the steps jµ is 1.

Block the observations:

Y1 = (Y1, . . . , Ym) = (Xj1, . . . , Xj1+···+jm), . . .

This is an m-dimensional Markov chain with transition distribution

S(y, dz) = Qj1 ⊗ · · · ⊗Qjm(y, dz)

which depends only on the last entry ym of block y.

The stationary distribution is π ⊗Qj2 · · · ⊗Qjm(y, dz).
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Simplest case: Pattern 0,1,3;4,6,7;. . . with step sizes 1 and 2.

Observed blocks Y1 = (Y1, Y2) = (X1, X3).

Two-dimensional chain with transition distribution S = Q⊗Q2.

A simple empirical estimator for Ef(X0, X1) is based on observed

pairs of adjacent realizations of the chain,

E2f =
1

n

n∑
i=1

g(X3(i−1), X3i−2).

Non-adjacent pairs also contain information about Q.

Write block as (X1, X2, X3) = (X,Y, Z), with Y unobserved.

Replace f(X,Y ) and f(Y, Z) by backward and forward conditional

expectations

fleft(X,Z) = E(f(X,Y )|X,Z), fright(X,Z) = E(f(Y, Z)|X,Z).
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Express fleft(X,Z) = E(f(X,Y )|X,Z) using one- and two-dimensional

densities p and p2:

fleft(x, z) =

∫
p2(x, y)p2(y, z)

p(y)
f(x, y) dy∫

p2(x, y)p2(y, z)

p(y)
dy

.

Plug in kernel density estimators based on the observed pairs.

We obtain a new “empirical estimator” for Ef(X,Y ) based on non-

adjacent pairs,

E(2)
2 f̂left =

1

n

n∑
i=1

f̂left(X3i−2, X3i).

Similarly for fright.

The “plug-in principle” leads from o(n−1/4) rates for the kernel

estimators to a n−1/2 rate for these “empirical estimators”.

Combine estimators E2f with E(2)
2 f̂left and E(2)

2 f̂right.
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2. Observations “missing completely at random”

Jump j1, . . . , jm steps with probabilities w1, . . . , wm.

Assume at least one of the steps jµ is 1.

(Compare MCAR in regression.)

This is a one-dimensional Markov chain with transition distribution

a mixture of jµ-step transition distributions

S(y, dz) =
m∑
µ=1

wµQ
jµ(y, dz).

The stationary distribution is again π. We observe X0, . . . , Xn and

the step sizes Ji−1 from Xi−1 to Xi.

For µ = 1 . . . ,m and pairs Xi−1, Xi with Ji−1 = jµ, construct esti-

mators as before (for periodic patterns).
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2. Observations “missing at random”

At any time point and in state x, jump j1, . . . , jm steps with proba-

bilities w1(x), . . . , wm(x). possibly depending on the state x.

Assume at least one of the steps jµ is 1.

(Compare MAR in regression.)

This is a one-dimensional Markov chain wit transition distribution a

conditional mixture of jµ-step transition distributions

S(y, dz) =
m∑
µ=1

wµ(y)Qjµ(y, dz).

It is still ergodic, but the stationary distribution is not π, but %, say.

Now we can not estimate π ⊗Qf directly.

We can however estimate Q as follows.

8



The stationary distribution of (Xi−1, Xi) given Ji−1 = jµ is

%
(jµ)
2 (dx, dy) = %(dx)

wµ(x)

%wµ
Qjµ(x, dy).

If we have densities, this can be written

r
(jµ)
2 (x, y) = r(x)

wµ(x)

%wµ
q⊗jµ(x, y).

For step jµ = 1,

r2(x, y) = r(x)
wµ(x)

%wµ
q(x, y),

hence

q(x, y) =
%w1

w1(x)

r2(x, y)

r(x)

if w1(x) > 0. For such x, we can estimate q(x, y) from the observed

pairs. Otherwise not, because we never see the next realization of

the chain.
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For pairs of adjacent observations (X,Y ), a kernel estimator for the

joint density r2(s, t) with w1(s) > 0 uses

Kb(s−X)Kb(t− Y ).

Here Kb(x) = K(x/b)/b with kernel K and bandwidth b.

The information in pairs of non-adjacent observations can be used

as follows. If Y is not observed, but, say, the next observation Z,

and w2(s) > 0, use instead of Kb(s − X)Kb(t − Y ) the conditional

expectation

mleft(s, t)(X,Z) = E
(
Kb(s−X)Kb(t− Y )|X,Z

)
.

It can be expressed in terms of r, r2 and w1, which can be estimated

from the observations. Similarly for

mright(s, t)(X,Z) = E
(
Kb(s− Y )Kb(t− Z)|X,Z

)
.
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Estimate q(s, t) by

q̂(s, t) =
E(2)

2 m̂left(s, t)

r̂(2)(s)
=

∑
Ji−1=2

m̂left(Xi−1, Xi)∑
Ji−1=2

Kb(s−Xi−1)
.

To estimate mleft(X,Z) = E(Kb(s−X)Kb(t−Y )|X,Z), write in terms

of r, r2 and w1, and replace these terms by (kernel) estimators:

mleft(s, t)(X = x, Z = z)= E
(
Kb(s−X)Kb(t− Y )|X = x, Z = z

)

=

∫
q(x, y)(q(y, z)Kb(s− x)Kb(t− y) dy

q(2)(x, z)

=

∫
r2(x, y)r2(y, z)

w1(y)r(y)
Kb(s− x)Kb(t− y) dy∫

r2(x, y)r2(y, z)

w1(y)r(y)
dy

.
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