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Let (X0, T0), . . . , (Xn, Tn) be observations of a Markov renewal pro-

cess with real state space. A nonparametric estimator for the sta-

tionary density %(v) at v of the inter-arrival times Tj − Tj−1 is

%̂(v) =
1

n

n∑
j=1

kb(v − (Tj − Tj−1)) with kb(v) = k(v/b)/b.

Suppose that the inter-arrival times Tj−Tj−1 depend multiplica-

tively on the jump size of the embedded Markov chain:

Tj − Tj−1 = ZjWj with Zj = |Xj −Xj−1|ν,

where ν > 0 and the Wj’s are i.i.d. and independent of the Xj’s.

Then we can construct estimators for %(v) with rate n−1/2.

In the following we express rescalings by subscripts, fs(x) = f(x/s)/s.

Let g, h denote the densities of Wj, Zj. Then the density of Tj−Tj−1

is a scale mixture

%(v) =
∫

hw(v)g(w) dw =
∫

h(z)gz(v) dz.



The density h of Zj = |Xj −Xj−1|ν is calculated as follows.

Let p1(x) and q(x, y) denote the stationary density and the transition

density of the embedded chain. The conditional density at y of

|Xj −Xj−1| given Xj−1 = x is

γ(x, y) =
(
q(x, x + y) + q(x, x− y)

)
1(y > 0).

Then the conditional density at y of Zj = |Xj−Xj−1|ν given Xj−1 = x

is

ζ(x, y) =
1

ν
y

1
ν−1γ(x, y

1
ν).

Hence the stationary density at y of Zj is

h(y) =
1

ν
y

1
ν−1

∫
p1(x)γ(x, y

1
ν) dx.



A (“kernel”) estimator of the density %(v) of the inter-arrival times

Tj −Tj−1 = ZjWj at v can be based on n2 “observations” ZiWj; this

gives the local U-statistic

%̂(v) =
1

n2

n∑
i=1

n∑
j=1

kb(v − ZiWj)

with kb(v) = k(v/b)/b a kernel k scaled by a bandwidth b.

Similar local U-statistics for i.i.d. observations are studied by Frees

(1994) and Giné and Mason (2007). These results are not appli-

cable here because (a) the Zi’s are not independent, and (b) an

integrability condition fails.

Nevertheless, we show that our density estimator %̂(v) has rate n−1/2

pointwise, but that a functional central limit theorem does not hold,

in general.



We apply the Hoeffding decomposition to our local U-statistic

%̂(v) =
1

n2

n∑
i=1

n∑
j=1

kb(v − ZiWj).

The conditional mean of kb(v − ZW ) given W is (change variables)

H(W ) =
∫

hW (v − bu)k(u) du;

the conditional mean given Z is

G(Z) =
∫

gZ(v − bu)k(u) du.

Hence (by Hoeffding decomposition) %̂(v) has the linear approxima-

tion

%̂(v)− Ekb(v − ZW ) =
1

n

n∑
j=1

(
G(Zj)− EG(Z) + H(Wj)− EH(W )

)
+ oP (n−1/2).

The linear approximation is a smoothed empirical process.



Assume that bn → ∞ and b4n → 0. Then the smoothing can be

removed, the bias is negligible, and our local U-statistic is approxi-

mated by a linear process:

%̂(v)− %(v) =
1

n

n∑
j=1

(
gZj

(v)− %(v) + hWj
(v)− %(v)

)
+ oP (n−1/2)

=
1

n

n∑
j=1

(
1

Zj
g

(
v

Zj

)
− %(v) +

1

Wj
h

(
v

Wj

)
− %(v)

)
+ oP (n−1/2).

Assume that the embedded chain is exponentially ergodic. Then

our estimator %̂(v) for the inter-arrival density has rate n−1/2 and is

asymptotically normal. (We can also show that %̂(v) is asymptoti-

cally efficient).

A functional central limit theorem usually does not hold. For exam-

ple, in L2 we need finiteness of∫
E

[
1

Z2
g2

(
v

Z

)]
dv = E

[
1

Z

] ∫
g2(v) dv,

but E[1/Z] is typically infinite.



A nonparametric estimator for the conditional density κ(x, v) at v of

Tj − Tj−1 given Xj−1 = x is the Nadaraya–Watson estimator

κ̂(x, v) =

∑n
j=1 kb(x−Xj−1)kb(v − (Tj − Tj−1))∑n

j=1 kb(x−Xj−1)
.

Assume as above that

Tj − Tj−1 = ZjWj with Zj = |Xj −Xj−1|ν.

Assume, in addition, that the embedded chain is autoregressive:

Xj = ϑXj−1 + εj

with |ϑ| < 1 and εj’s i.i.d. with mean zero, finite variance, and positive

density f . Then we can construct estimators for κ(x, v) with rate

n−1/2. Write

Zj = |Xj −Xj−1|ν = |εj − (1− ϑ)Xj−1|ν.

The variables |εj − (1− ϑ)x|ν are i.i.d., follow the conditional distri-

bution of Zj given Xj−1 = x, and are independent of the Wj’s.



Note that the variables

εj − (1− ϑ)x = Xj − x− ϑ(Xj−1 − x) = εj(x), say,

are innovations of the autoregressive process shifted by x.

Estimate ϑ by the (say, least squares) estimator ϑ̂.

Estimate εj(x) by the residual

ε̂j(x) = Xj − x− ϑ̂(Xj−1 − x).

Then the conditional density of Tj − Tj−1 at v given Xj−1 = x can

be estimated by the local U-statistic

κ̂(x, v) =
1

n2

n∑
i=1

n∑
j=1

kb(v − |ε̂i(x)|νWj)

with kb(v) = k(v/b)/b a kernel k scaled by a bandwidth b.

The conditional density estimator κ̂(x, v) can be shown to have rate

n−1/2. Expand about ϑ first, then proceed similarly as for %̂(v).



Expansion of κ̂(x, v) about ϑ gives

κ̂(x, v) =
1

n2

n∑
i=1

n∑
j=1

kb(v − |εi(x)|νWj) + (ϑ̂− ϑ)K + oP (n−1/2) (1)

with

K =
1

n2

n∑
i=1

n∑
j=1

(Xi−1 − x)s(εi(x))Wj(kb)
′(v − |εi(x)|νWj)

→ xv
∫ 1

t
g′|t|ν(v)f(t + (1− ϑ)x) dt in probability,

where s(x) = sign(x)ν|x|ν−1. For the first right-hand term of (1),

Hoeffding decomposition and unsmoothing give

1

n2

n∑
i=1

n∑
j=1

kb(v − |εi(x)|νWj)

= κ(x, v) +
1

n

n∑
j=1

(
ηWj

(x, v)− κ(x, v) + g|εj(x)|ν(v)− κ(x, v)
)
,

where ηw(x, v) = η(x, v/w)/w.


