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Outline.

What do one-step-estimators for semiparametric models estimate

when the model is wrong? We look first at parametric models; they

show already most features. For comparison we also look at the

maximum likelihood estimator.

Parametric models:

- Maximum likelihood estimator.

- One-step estimator.

- One-step estimator as nonparametric estimator.

- One-step estimator when the model is only partially wrong.

- Robust one-step estimator.

Semiparametric model:

- Linear regression.



Maximum likelihood estimator when the model is correct.

Let X1, . . . , Xn be observations from a parametric model Pϑ with den-

sity fϑ and one-dimensional parameter ϑ (for notational simplicity).

The maximum likelihood estimator ϑ̂ maximizes
∑n

j=1 log fϑ(Xj). If

the model is correct and ϑ is the true parameter, the m.l.e. estimates

ϑ, which is the maximum of Pϑ log fτ in τ , and has the stochastic

expansion

ϑ̂ = ϑ + J−1
ϑ

1

n

n∑
j=1

`ϑ(Xj) + op(n
−1/2),

where `ϑ = ∂ϑ log fϑ = ḟϑ/fϑ is the score function and Jϑ = Pϑ`2ϑ is

the Fisher information for ϑ.



Maximum likelihood estimator when the model is wrong.

Suppose the parametric model Pϑ is not correct, and the true distri-

bution is Q. Then the maximum likelihood estimator estimates the

maximizer of Q log fτ in τ , which is the Kullback–Leibler information

K(Q). The score function at K(Q) is still centered, Q`K(Q) = 0,

and the m.l.e. has the stochastic expansion

ϑ̂ = K(Q) + (Q ˙̀
K(Q))

−11

n

n∑
j=1

`K(Q)(Xj) + op(n
−1/2).

This is similar to the expansion when the true Q = Pϑ is in the model

(previous slide):

ϑ̂ = ϑ + J−1
ϑ

1

n

n∑
j=1

`ϑ(Xj) + op(n
−1/2).



One-step estimator when the model is correct.

If t̂ is a n1/2-consistent initial estimator, a one-step or Newton–

Raphson estimator is

ϑ̂ = t̂ + J−1
t̂

1

n

n∑
j=1

`t̂(Xj)

Suppose the model is correct. Then the initial estimator cancels,

ϑ̂ = t̂ + J−1
ϑ

1

n

n∑
j=1

`ϑ(Xj) + J−1
ϑ

1

n

n∑
j=1

˙̀ϑ(Xj)(t̂− ϑ) + op(n
−1/2),

and

1

n

n∑
j=1

˙̀ϑ(Xj) → Pϑ ˙̀ϑ = −Pϑ`2ϑ = −Jϑ.

Hence the one-step estimator is asymptotically equivalent to the

maximum likelihood estimator.



One-step estimator when the model is wrong.

Suppose the parametric model Pϑ is not correct, and the true distri-

bution is Q. The initial estimator t̂ converges to t(Q), say. But the

score function at t(Q) will, in general, not be centered, Q`t(Q) 6= 0.

To expand the one-step estimator ϑ̂ = t̂ + J−1
t̂

1
n

∑n
j=1 `t̂(Xj), we

must add and subtract Q`t̂. This creates an additional bias term:

The one-step estimator estimates not t(Q) but

t(Q) + J−1
t(Q)Q`t(Q).

This also creates two additional variance terms from the expansions

of Jt̂ and Q`t̂ in the stochastic expansion of the one-step estimator:

ϑ̂ = t̂ + J−1
t(Q)Q`t(Q) + J−1

t(Q)

1

n

n∑
j=1

(`t(Q)(Xj)−Q`t(Q))

+
(
J−1

t(Q)Q
˙̀
t(Q) − J−2

t(Q)J̇t(Q)Q`t(Q)

)
(t̂− t(Q)) + op(n

−1/2).



One-step estimator as nonparametric estimator.

The initial estimator t̂ is a nonparametric estimator of some func-

tional t(Q). We note that the one-step estimator also is a nonpara-

metric estimator, of a different functional,

t(Q) + J−1
t(Q)Q`t(Q).

The one-step estimator is obtained by plugging in nonparametric

estimators t̂(= t(Q̂)) and empirical estimators

Q̂ =
1

n

n∑
j=1

δXj
and Ĵ =

1

n

n∑
j=1

`2t̂ (Xj).

The Hájek–Le Cam theory of efficient estimation tells us that the

one-step estimator (if it is regular and asymptotically linear) has an

influence function which equals the gradient of the above functional,

and is therefore efficient.



One-step estimator when the model is only partially wrong.

Let X1, . . . , Xn be real observations with density f(x − ϑ), where f

is a known density and symmetric about 0. Let ` = −f ′/f and

J =
∫

`2(x) dx. Let t̂ be an initial estimator (e.g. the sample mean).

The one-step estimator is

ϑ̂ = t̂ + J−11

n

n∑
j=1

`(Xj − t̂).

Suppose that the density f is not correctly specified, but the true

distribution Q is symmetric, about t(Q), say. Then the score function

remains centered, EQ`(X − t(Q)) = 0. Suppose the initial estimator

t̂ estimates t(Q). Then the one-step estimator also estimates t(Q)

and has a simple stochastic expansion

ϑ̂ = t(Q) + J−11

n

n∑
j=1

`(Xj − t(Q))

+
(
1− J−1EQ`′(X − t(Q))

)
(t̂− t(Q)) + op(n

−1/2).



Robust one-step estimator.

When the model is correct, the initial estimator cancels out of the

one-step estimator. This also happens under misspecification (at

least partially) when we choose a “robust” estimator for the variance.

Consider again observations X1, . . . , Xn with density f(x− ϑ), where

f is a known density and symmetric about 0. Let ` = −f ′/f and

J =
∫

`2(x) dx. Let t̂ be an initial estimator (e.g. the sample mean).

Replace J by Ĵ = 1
n

∑n
j=1 `′(Xj − t̂) in the one-step estimator:

ϑ̂ = t̂ + Ĵ−11

n

n∑
j=1

`(Xj − t̂).

Then

ϑ̂ = t(Q) + J−11

n

n∑
j=1

`(Xj − t(Q)) + op(n
−1/2).



Linear regression.

Let (Xj, Yj) be observations of the linear regression model Y = ϑX+ε

with X and ε independent and ε having density f with mean 0. (We

take ϑ and X one-dimensional for notational simplicity.) If the model

is correct, an efficient estimator ϑ̂ of ϑ is characterized by

ϑ̂ = ϑ + Λ−11

n

n∑
j=1

g(Xj, εj) + op(n
−1/2)

with “efficient score function” g(X, ε) = (X − µ)`(ε) + σ−2µε and

µ = EX , ` = −f ′/f , σ2 = Eε2, and with variance Λ−1, where

Λ = Eg2(X, ε) = J(M − µ2) + σ−2µ2

with J = E`2(ε) and M = EX2. The one-step estimator replaces

ϑ by an initial estimator t̂ (e.g. the least squares estimator), the

density f by a kernel estimator based on residuals ε̂j = Yj − t̂Xj, and

the expectations empirically.



One-step estimator for linear regression.

The one-step estimator replaces ϑ by an initial estimator t̂ (e.g. the

least squares estimator), the density f by a kernel estimator f̂ based

on residuals ε̂j = Yj − t̂Xj, and the expectations empirically:

ϑ̂ = t̂ + L̂−11

n

n∑
j=1

ĝ(Xj, ε̂j)

with ĝ(X, ε) = (X − µ̂)ˆ̀(ε) + σ̂−2µ̂ε and µ̂ = 1
n

∑n
j=1 Xj , ˆ̀= −f̂ ′/f̂ ,

σ̂2 = 1
n

∑n
j=1 ε̂2j , and with

L̂ = Ĵ(M̂ − µ̂2) + σ̂−2µ̂2

with Ĵ = 1
n

∑n
j=1

ˆ̀2(ε̂j) and M̂ = 1
n

∑n
j=1 X2

j .



Misspecified linear regression.

Suppose the linear model is not correctly specified. Let Q be the

true distribution of (X, Y ). Suppose the initial estimator t̂ estimates

t(Q). Independence of X and ε might be lost under Q. Write s(X, y)

for the conditional density of ε given X. The conditional density of

εQ = Y − t(Q)X is s(X, y + t(Q)X), and the unconditional density is

fQ(y) = EQs(X, y + t(Q)X). Set `Q = −f ′Q/fQ. Then

1

n

n∑
j=1

(Xj − µ̂)ˆ̀(ε̂j) → EQ(X − µQ)`Q(Y − t(Q)X) = IQ,

Ĵ =
1

n

n∑
j=1

ˆ̀2(ε̂j) → EQ`2Q(Y − t(Q)X) = JQ.

Hence the one-step estimator estimates t(Q)+L−1
Q (IQ+σ−2

Q µQEεQ)

with LQ = JQ(MQ − µ2
Q) + σ−2

Q µ2
Q, where µQ = EQX, MQ = EQX2

and σ2
Q = EQε2Q.


