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Empirical estimator. Let 7% be the d-dimensional square lattice,
E an arbitrary state space, X a stationary random field on EZd.
Observe X on the window W = [—n,n]?.

Let fy on EZ’ be local, i.e., dependent only on a finite set V c Z¢.
A natural estimator fo the expectation Efy (Xy ) is the empirical
estimator
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Under appropriate integrability conditions, the empirical estimator
IS asymptotically normal.

If LAN holds and no structural assumptions on the field are made,
the empirical estimator is efficient.

Greenwood and W (1999), Janzura (2014).
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The distribution of the random field X on EZd is determined by its
local characteristic at 0: the conditional distribution at O given the
other sites.

Denote the Manhattan metric on Z2 by
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The nearest neighbors of O are the sites ¢ with |i| = 1.
These are the 2d points in the unit sphere (rhombus) around O.
The random field has nearest neighbor interactions if the local char-

acteristic at O depends only on the 2d nearest neighbors.

A clique is a set of sites that are neighbors to each other. For
nearest neighbor interactions, these are 0 and the d pairs (0,er)
with unit vectors e, and their shifts.



Gibbs representation. From now on the state space is £ = [0, 1],
and the random field on [0, 1]Zd has Lebesgue density and nearest
neighbor interactions. The shift of z by —i € Z% is 9;(z); = ;4.
Then for each finite V C Zd, the conditional density on V given the
complement of V has the form
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with Zy the norming constant and uo functions depending on one

of the d 4+ 1 cliques O and (0,e;), r=1,...,d.

In principle, the Gibbs representation can be used to construct effi-

cient estimators. For parametric random fields, in particular finite

state space, one can use a maximum likelihood estimator. The

norming constant Zy, is a problem.

The empirical estimator for the expectation Efy(Xy ) of a local

function fy is efficient if and only if fy is sum of functions each

depending on a single clique. Greenwood and W (1999).




Factoring the distribution. For arbitrary random field and config-
urations A, B, (', we say that A splits B and C if B and C are
conditonally independent given A.

W say that B factors given A if the sites in B are conditionally
independent given A.

Consider a random field on Z%. Call a site i even if Zﬁlzl’ir IS even;
otherwise odd.

Assume nearest neighbor interactions. Then the odd sites factor
given the even sites, and conversely. Besag (1974).



Let B,, and S,, be the ball and the sphere of radius m around O.
Then S,, consists of even sites if m is even, and conversely.

Hence §,,_1 splits B,,_» and B _;.

Hence the conditional distribution of B,fn_l given B,,_1 equals the
conditional distribution of By _, given S,,_1.

Also, by Besag’'s observation, Sy, factors given S,,_1.



T he distribution on the ball B, around O is now factored starting at
O and going outward through the spheres 5q,...,SL.

Take distribution Py at 0. Now §; factors given Sg = {0} into 2d
one-dimensional conditional distributions given O.

Given s € S;, write (s) for the neighbors of sin S,,,_1.

Write Q(aj(s),dazs) for the corresponding conditional distribution.

The distribution on the ball B factors as
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Note: Configuration (s) is the smaller the more “exposed” s is:
If s is in the interior of a side of S, of dimension r =2,...,d — 1,
then s has r neighbors in S,,,_1.
Also, the “corners” of S, have single neighbor in S,,,_1.



Plug-in estimator. Let X be a stationary nearest-neighbor random
. Zd

field on [0, 1]~ .

For simplicity, let the finite-dimensional densities of X be quasi-
uniform, i.e., bounded and bounded away from O.

Write [s] for the union of s and (s).
Factor the density of X[S] into density of X(S) and conditional density

of Xs given X(S)I
Pls])(Z[s]) = P(s) (2 (5)) 5] (5) (T (5)5 Ts)-

Then the density on B factors as
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Plug in density estimators pq, ﬁ(s), 15[3] for po, P(s)r P[s] based on
observations in the window W = [—n, n]? if the densities are smooth
enough to allow for density estimators that have uniform rate o(n—1/4)
in probability, and a plug-in property:

/fv(fﬂv)ﬁv(l’v) dzy = Py fy + op(n~1/2),

where Py fy, is again the empirical estimator
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The plug-in estimator for an expectation Efp (Xpg, ) is

Py fv =
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It has smaller asymptotic variance than the empirical estimator
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Explicitly: The plug-in estimator is asymptotically linear,

Pfp, =PoE(fB,|X0)

k
+ > > (P[S]E(ka|X[s])—P(S)E(ka|X(s))> + op(n~1/2),

m=1 s&S,,
and the influence function is a projection of the influence function
of the empirical estimator.



Degenerate case: Dimension d = 1.

Then the nearest neighbor random field is a first-order Markov chain.
The local characteristic at O is the conditional distribution at O given
sites —1 and 1. The cliques are 0, (0,1), and their shifts.

For notational convenience, consider the time interval {O,...,k} in
place of the ball B, = {—k,...,k} around O.

Assume state space [0,1] and Lebesgue density.

We have a representation of the density on O,...,k in terms of
(conditional) densities on cliques, as in a Gibbs representation:

Pr+1(0, - -, z) = p(x0)q(z0, 1) - - ¢(Tsp—1, Tm)
_ p(zo,z1) - p(@m—1,Tm)
po(x1) - po(@pm—1)
Here p and po are the 1- and 2-dimensional densities of the Markov
chain, and ¢ is the transition density.
Under conditions, the plug-in estimator is always efficient.
Kwon (2000). Different construction: Schick and W (2002).
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