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A nonlinear and heteroscedastic autoregressive model (of order 1,

for simplicity) is a first-order Markov chain with parametric models

for the conditional mean and variance,

E(Xi|Xi−1) = rϑ(Xi−1),

E((Xi − rϑ(Xi−1))
2|Xi−1) = s2ϑ(Xi−1).

The model is also called quasi-likelihood model. We want to estimate

ϑ efficiently. (For simplicity, ϑ is one-dimensional.) The least squares

estimator minimizes
n∑

i=1

(Xi − rϑ(Xi−1))
2,

i.e. it solves the martingale estimating equation

n∑
i=1

ṙϑ(Xi−1)(Xi − rϑ(Xi−1)) = 0.

(The dot means derivative w.r.t. ϑ.)



The least squares estimator is improved by weighing the terms in

the estimating equation with inverse conditional variances,

n∑
i=1

s−2
ϑ (Xi−1)ṙϑ(Xi−1)(Xi − rϑ(Xi−1)) = 0.

This quasi-likelihood estimator is still inefficient; it ignores the infor-

mation in the model for the conditional variance. Better estimators

are obtained from estimating equations of the form

n∑
i=1

v(Xi−1)(Xi−rϑ(Xi−1))+w(Xi−1)
(
(Xi−rϑ(Xi−1))

2−s2ϑ(Xi−1)
)
= 0.

The best weights (not given explicitly here) minimize the asymptotic

variance; they involve third and fourth conditional moments

E((Xi − rϑ(Xi−1))
k|Xi−1), k = 3,4,

which must be estimated nonparametrically (by Nadaraya–Watson).

The resulting estimator for ϑ is efficient, W. 1996, Müller/W. 2002.

The improvement over the quasi-likelihood estimator can be large.



In this talk we are interested in models with additional information

on the transition density. Then the above approach breaks down.

We also use a different description of the model. Let t(x, y) denote

a standardized conditional innovation density (mean 0, variance 1).

Introduce conditional location and scale parameters,

q(x, y) =
1

sϑ(x)
t

(
y − rϑ(x)

sϑ(x)

)
.

This describes the quasi-likelihood model.

We can now put constraints on t:

1. t(x, y) = f(y): heteroscedastic and nonlinear regression

with independent innovations.

2. no constraint.

3. t(x, y) = t(x,2x − y): symmetric innovations.

4. t(x, y) = t(Ax, y) for a known A: partial invariance.

(Models 1. and 2. are known but treated differently here.)



For simplicity, in the following we treat only the homoscedastic

model: We have a Markov chain with transition density

q(x, y) = t(x, y − rϑ(x))

where t has conditional mean zero,
∫

yt(x, y) dy = 0.

Equivalently, we have a Markov chain with conditional mean

E(Xi|Xi−1) = rϑ(Xi−1).

With no further information on t, an efficient estimator of ϑ is the

weighted least squares estimator

n∑
i=1

σ̃−2(Xi−1)ṙϑ(Xi−1)(Xi − rϑ(Xi−1)) = 0,

where σ̃2(x) is a Nadaraya–Watson estimator for σ2(x).



We characterize efficient estimators using the Hájek–Le Cam ap-

proach via local asymptotic normality. Perturb the parameters ϑ

and t as ϑ + n−1/2u and t(x, y)(1 + n−1/2v(x, y)) with u ∈ R and

v in a space V that depends on what we know about t. Write

εi = Xi − rϑ(Xi−1). We get for the log-likelihood

log
dPnuv

dPn
= n−1/2

n∑
i=1

suv(Xi−1, εi)−
1

2
Es2uv(X, ε) + oPn(1)

with suv(X, ε) = uṙ(X)`(X, ε) + v(X, ε) and ` = −t′/t.

An efficient estimator ϑ̂ for ϑ is characterized by

n1/2(ϑ̂ − ϑ) = n−1/2
n∑

i=1

g(Xi−1, εi) + oPn(1)

with g = su∗v∗(X, ε) determined by

n1/2((ϑ + n−1/2u)− ϑ) = u = Esu∗v∗(X, ε)suv(X, ε), u ∈ R, v ∈ V.

I.e. we express the perturbation of ϑ in terms of the inner product

induced by the LAN variance.



1. t(x, y) = f(y): heteroscedastic and nonlinear regression

with independent innovations.

We obtain the efficient influence function

g(X, ε) = Λ−1
(
(ṙ(X)− µ)`(ε) + σ−2µε

)
with ` = −f ′/f , µ = Eṙ(X) , σ2 = Eε2 and Λ = J(R − µ2) + σ−2µ2

with J = E`2(ε) and R = Eṙ2(X). Different route in Koul and

Schick 1997. An efficient estimator ϑ̂ of ϑ can be obtained as one-

step improvement of an initial estimator ϑ̃ (e.g. least squares),

ϑ̂ = ϑ̃ +
1

n

n∑
i=1

g̃(Xi−1, ε̃i)

with g̃(X, ε) = Λ̃−1
(
(ṙϑ̃(X) − µ̃)˜̀(ε) + σ̃−2µ̃ε

)
, residual estimators

ε̃i = Xi − rϑ̃(Xi−1), empirical estimators µ̃ = 1
n

∑n
i=1 ṙϑ̃(Xi−1) and

σ̃2 = 1
n

∑n
i=1 ε̃2i , and ˜̀ = −f̃ ′/f̃ for a kernel estimator f̃ , and with

Λ̃ = J̃(R̃ − µ̃2) + σ̃−2µ̃2 and J̃ = 1
n

∑n
i=1

˜̀2(ε̃i) , R̃ = 1
n

∑n
i=1 ṙ2

ϑ̃
(Xi−1).



2. no constraint on t(x, y).

We obtain the efficient influence function

g(X, ε) = M−1ṙ(X)σ−2(X)ε

with σ2(x) =
∫

y2t(x, y) dy and M = Eσ−2(X)ṙ2(X). We have al-

ready obtained an efficient estimator as an appropriately weighted

least squares estimator
∑n

i=1 σ̃−2(Xi−1)ṙϑ(Xi−1)(Xi−rϑ(Xi−1)) = 0.

Here we obtain another efficient estimator as one-step improvement

of an initial estimator ϑ̃ (e.g. least squares),

ϑ̂ = ϑ̃ +
1

n

n∑
i=1

g̃(Xi−1, ε̃i)

with

g̃(X, ε) = M̃−1ṙϑ̃(X)σ̃−2(X)ε, M̃ =
1

n

n∑
i=1

σ̃−2(Xi−1)ṙ
2
ϑ̃
(Xi−1)

and σ̃2(x) the Nadaraya–Watson estimator for σ2(x).



3. t(x, y) = t(x,2x − y): symmetric innovations.

We obtain the efficient influence function

g(X, ε) = T−1ṙ(X)`(X, ε)

with T = Eṙ2(X)`2(X, ε).

We obtain an efficient estimator ϑ̂ of ϑ as one-step improvement of

an initial estimator ϑ̃ (e.g. least squares),

ϑ̂ = ϑ̃ +
1

n

n∑
i=1

g̃(Xi−1, ε̃i)

with

g̃(X, ε) = T̃−1ṙϑ̃(X)˜̀(X, ε),

T̃ =
1

n

n∑
i=1

ṙ2
ϑ̃
(Xi−1)˜̀

2(Xi−1, ε̃i)

and ˜̀= −t̃′/t̃ with t̃ a Nadaraya–Watson estimator for t.


