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A nonlinear and heteroscedastic autoregressive model (of order 1,
for simplicity) is a first-order Markov chain with parametric models
for the conditional mean and variance,

E(X;]|X;—1) = ry(X;—1),
E((X; —rg(X;—1))?|1Xi-1) = s5(X;_1).

The model is also called quasi-likelihood model. \WWe want to estimate
9 efficiently. (For simplicity, ¥ is one-dimensional.) The least squares
estimator minimizes

S (X —re(X-1))2,
i=1

I.e. it solves the martingale estimating equation

n

> re(Xi—1)(X; —ry(X;-1)) = 0.
i=1

(The dot means derivative w.r.t. 4.)



The least squares estimator is improved by weighing the terms in
the estimating equation with inverse conditional variances,

3 sy A (Xio1) (X 1) (X — m9(Xi-1)) = 0.
i=1

This quasi-likelihood estimator is still inefficient; it ignores the infor-
mation in the model for the conditional variance. Better estimators
are obtained from estimating equations of the form

n

> o(Xi1) (Xi—rg(Xima)Fw(Xi1) ((Xi—rg(Xi—1))?—s5(X;_1)) = 0.
1=1

The best weights (not given explicitly here) minimize the asymptotic
variance; they involve third and fourth conditional moments

E((X; —rg(Xi—1)¥|Xi—1), k=3,4,

which must be estimated nonparametrically (by Nadaraya—Watson).
The resulting estimator for ¢ is efficient, W. 1996, Miiller/W. 2002.
The improvement over the quasi-likelihood estimator can be large.



In this talk we are interested in models with additional information
on the transition density. Then the above approach breaks down.
We also use a different description of the model. Let t(x,y) denote
a standardized conditional innovation density (mean 0, variance 1).
Introduce conditional location and scale parameters,
1 t(y — 7”19(1‘))

sg(x) \ sy(z) /

T his describes the quasi-likelihood model.

q(z,y) =

We can now put constraints on ¢:

1. t(x,y) = f(y): heteroscedastic and nonlinear regression
with independent innovations.

2. no constraint.

3. t(x,y) = t(x,2x — y): symmetric innovations.

4. t(x,y) = t(Ax,y) for a known A: partial invariance.

(Models 1. and 2. are known but treated differently here.)



For simplicity, in the following we treat only the homoscedastic
model: We have a Markov chain with transition density

Q(CE7 y) — t(CB, y— 7“19(:13))

where t has conditional mean zero, [yt(x,y)dy = O.

Equivalently, we have a Markov chain with conditional mean

E(XG|X-1) = ry(Xi—1).

With no further information on ¢, an efficient estimator of ¢ is the
weighted least squares estimator

S T Xi 1) (Xim1) (X — r9(X4-1)) =0,
i=1

where 52(z) is a Nadaraya—Watson estimator for o2(z).



We characterize efficient estimators using the Hajek—Le Cam ap-
proach via local asymptotic normality. Perturb the parameters ¢
and t as 9 + n~ 12y and t(z,v)(1 + n~1/20(z,y)) with « € R and
v InN a space V that depends on what we know about t. Write
g, = X; —ry(X;-1). We get for the log-likelihood

log

dP, n 1
MY = Y2 N su(Xi_1,85) — =Es2,(X,€) 4+ op, (1)
dPp, =1 2

with syp(X,e) = ur(X)4(X,e) + v(X,e) and £ = —t'/t.
An efficient estimator ¢ for ¢ is characterized by

nt2(0 —9) =n"2 3 g(X;_1,¢) + op, (1)
1=1

with g = su,0,.(X,e) determined by

711/2((13l + n_l/Qu) —9) = u = Esy,(X,e)suv(X,e), ueR velV.

I[.e. we express the perturbation of ¥ in terms of the inner product
induced by the LAN variance.



1. t(x,y) = f(y): heteroscedastic and nonlinear regression
with independent innovations.

We obtain the efficient influence function

9(X, &) = AH((H(X) — m)t(e) + o 2pe)

with ¢ = —f'/f, u = Er(X), 02 = Ee? and A = J(R — p?) 4+ 0 2u°
with J = E¢?(¢) and R = Er2(X). Different route in Koul and
Schick 1997. An efficient estimator ¢ of ¢ can be obtained as one-
step improvement of an initial estimator 9 (e.g. least squares),

~ ~ 1 X ~
d=0+=> §(X;-1,&)
=1
with g(X,e) = /'"\—1((7'019(X) — )l(e) + 5—2ﬁa) residual estimators

g; = X — r5(X;-1), empirical estimators i = —Z?]_ r5(X;—1) and
52 Z?_ EZQ, and E = —f'/f for a kernel estimator f, and with
A= J‘(R‘ f2)+&2p% and J=21yn  72(5), R=+Y0 7 ~(XZ_1).



2. no constraint on t(xz,y).

We obtain the efficient influence function

g(X,e) = M Y% (X)o7?(X)e

with o2(z) = [y2t(z,y)dy and M = Eoc~2(X)72(X). We have al-
ready obtained an efficient estimator as an appropriately weighted
least squares estimator %1 572(X;_1)r9(X;_1)(X; —ry(X;_1)) = 0.
Here we obtain another efficient estimator as one-step improvement
of an initial estimator ¢ (e.g. least squares),

. 1 n
v = — Z g(X;-1,&;)
n :
with
- ~ 1
§(X,e) = M~ 1ig(X)5 2(X)e, M =3 5 2(X;1)r§(Xi-1)

and 52(x) the Nadaraya—Watson estimator for o2(z).



3. t(x,y) = t(x,2x — y): symmetric innovations.

We obtain the efficient influence function
9(X,e) = T (X)e(X,€)
with T = Er2(X)?(X,e).

We obtain an efficient estimator 9 of ¥ as one-step improvement of
an initial estimator J (e.g. least squares),

. ~ 1 X -
79:19"'_29()(2—175@)
ni=1
with
§(X,e) =T *ig(X)(X,¢)

~ 1

T:;Z %(Xz 1)ZQ(X'L 1,€5)
=1

and ¢ = —1'/t with ¥ a Nadaraya—Watson estimator for ¢.



