Homework Set Twelve
Due Thursday, July 21.

uestion 1. We say that n € N is congruent if there exists (a, b, c) € Q3 such that
Q y g b,

ab

a’ + b =2 and n:2

In other words, there exists a right triangle with rational sides whose area equals n.
Recall that Fermat’s Last Theorem states that if n > 3 then a™ 4 b"™ = ¢" has no solution
(a,b,c) € Q3 with abc # 0.

(a) Suppose there are nonzero integers z,y, z such that z% — y* = 22.
(i) Find (a,b,c) € N® in terms of 2 and y such that a® + b* = ¢* and 2 = (zyz)>.

(Hint: take u = 2% and v = y? and recall what you've learned when working
with primitive pythagorean triples.)

(ii) Find (A, B,C) € Q?* such that A% + B*> = C? and ;AB = 1. (Hint: These
should be in terms of combinations of a, b, ¢, z,y, z.) Use this to deduce that
if 1 is congruent there exists (r,s,t) € Q? such that zyz # 0 and z* — y* = 22
has a integers x,y, z such that zyz # 0.

(b) (BONUS) Suppose that z* — y* = 22 has no solutions (z,y,2) € Z? with xyz # 0.
Use this to prove that the number 1 is not congruent.

(c) (BONUS) Fermat proved that x* — y* = 2% has no nontrivial solutions thus estab-
lishing, by the above, that 1 is not congruent. Show that this also implies Fermat’s
Last Theorem in the case of n = 4.

Question 2. A cubic curve E given by the equation
y* =2° +ax® +br +c

defines an elliptic curve if and only if A(E) = —4a®c+ a*b* + 18abc — 4b* — 27¢* # 0. (We
call A(FE) the discriminant of E.)

(a) Let g(z) = 22+bx+c. Prove that if g(z) = (z—a;)(x—as) then (o) —ay)? = b*—4c.
(This is called the discriminant of g.)

(b) (BONUS) Prove that if f(z) = 2% + az® + bx + ¢ = (x — 1) (x — ag)(z — a3) then

A(E) = ((1/1 — Ozg)Q(O{l — 043)2((1/2 — Oég)Q.

(c) A theorem of Nagell-Lutz says that if (x¢,yo) € E(Q) is a point of finite order then
To,Yo € Z and either yo = 0 or y2 | A(E). Use this to find all points of finite order
for each of the following elliptic curves.

(i) y* =2’ -2
(i) y* =23 +8



(iii) y* =23 +4
(iv) (BONUS) y* = 23 — 43z + 166.

Question 3. Consider the elliptic curve E: 3y = 2® + 24 over the real numbers. Check
that P = (—2,4) and @ = (1,5) are on E and compute P + @ and P — Q.

Question 4. Suppose p is a prime and p = 2 (mod 3).

(a) Show there exists an integer m such that 3m =1 (mod p — 1).

(b) Use the previous part to show that every integer modulo p has a unique cube root.
That is, show that for every a € Z there exists b € Z such that a = b* (mod p).

(c) Consider the elliptic curve E: y?> = 2® + 1. Use the previous information to prove
that #E(F,) =p+ 1.

Question 5. We associate to any F(z,y) € C[z] the curve
Cr=C = {(r,y) € C*| F(x,y) = 0}.

Definition. The curve C'is is said to be nonsingular at Py = (xq,yo) if %—i and %—5 do not
vanish simultaneously at (xg,40). The curve is called nonsingular if it is nonsingular at
every point.
Suppose that f(z) = 2* + ax?® + bz + ¢ for some a,b, c € C.

(a) (BONUS) Recall that a cubic curve C': y*> = f(x) (defined as above for F(z,y) =

y? — f(x)) is an elliptic curve if f has no repeated roots. Prove that every such
elliptic curve is nonsingular.

(b) (BONUS) Suppose that the curve C defined by F(x,y) = y? — f(z) is nonsingular.
Prove that C'is an elliptic curve.

Question 6. Let k be a field. Let P2 = {(a,b,c) € k* | (a,b,c) # (0,0,0)}, and recall
that a line in P} is defined to be the set of solutions to an equation of the form

aX +BY +4Z =0

with «, 8,7 € k not all zero.

(a) (BONUS) Prove directly from this definition that two distinct points in P? are
contained in a unique line.

(b) (BONUS) Similarly, prove that any two distinct lines in P% intersect in a unique
point.



