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Let F be a number field and A = AF the ring of adeles. Let T be the subgroup of GL2

consisting of diagonal matrices with Z ⊆ T the center. Let N ⊆ GL2 be the subgroup of
upper triangle unipotent matrices so that P = TN the standard Borel.

Given automorphic representations π1, π2, π3 of GL2 over F such that the product of the
central characters is trivial, one can consider the so-called triple product L-function L(s,Π)
attached to Π = π1⊗π2⊗π3, or the completed L-function Λ(s,Π). This L-function is closely
related to periods of the form

I(ϕ) =

∫
[GL2]

ϕ1(g)ϕ2(g)ϕ(g)dg

where ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 with ϕi ∈ πi, and [GL2] = A×GL2(F )\GL2(A).
One example of this relationship arises in the case that π1 and π2 are cupsidal and π3 is

an Eisenstein series. Then L(s,Π) is the Rankin-Selberg L-function L(s, π1 × π2), and for
appropriately chosen ϕ3, the period I gives an integral representation. Another example
occurs when all three representations are cuspidal. In this case, formulas for L(s,Π) have
been given by Garrett[4], Gross-Kudla[7], Harris-Kudla[8], Watson[15] and Ichino[9].

Let us write πi = ×vπi,v as a (restricted) tensor product over the places v of F , with each
πi,v an admissible representation of GL2(Fv). Let 〈·, ·〉v be a (Hermitian) form on πi. Then,
assuming that ϕi = ⊗ϕi,v is factorizable1, for each v we can consider the matrix coefficient

I ′(ϕv) =

∫
PGL2(Fv)

〈πv(gv)ϕ1,v, ϕ1,v〉v〈πv(gv)ϕ2,v, ϕ2,v〉v〈πv(gv)ϕ3,v, ϕ3,v〉vdgv,

and the normalized matrix coefficient

(1) Iv(ϕv) = ζFv(2)−2Lv(1,Πv,Ad)

Lv(1/2,Πv)
I ′v(ϕv).

When each of the representations πi is cuspidal, Ichino proved in [9] that there is a constant
C (depending only on the choice of measures) such that

(2)
|I(ϕ)|2∏3

j=1

∫
[GL2]
|ϕj(g)|2 dg

=
C

23
· ζF (2)2 · Λ(1/2,Π)

Λ(1,Π,Ad)

∏
v

Iv(ϕv)

〈ϕv, ϕv〉v
whenever the denominators are nonzero. We remark that, due to the choice of normalizations,
the product on the right hand side of (2) is in fact a finite product over some number of
“bad” places.

While Ichino’s formula is extremely general, for number theoretic applications it is often
important to understand well the bad factors. For example, subconvexity for the triple
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1As a restricted tensor product, we have chosen vectors ϕ0

i,v ∈ πv for almost all places v. We require that
the local inner forms must satisfy 〈ϕ0

i,v, ϕ
0
i,v〉v = 1 for almost all such v.
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product L-function as proved by Bernstein-Reznikov in [1] and Venkatesh [14] used, in the
former case, Watson’s formula from [15] or, in the latter, the present author’s paper [16].

In this appendix we calculate Iv in the case that v | ∞ is a real place, π1,v = πkdis is the
discrete series representation of (even) weight k, and πv,2 = πit2 and π3,v = πit3 are principal

series representations where πit = IndGP (|·|it ⊗ |·|−it) is obtained as the normalized induction
of the character

|·|it ⊗ |·|−it : T (R)→ C.
Recall that if f ∈ πit then

f(( u 0
0 u )

(
y 0
0 1

)
g) = |y|

1
2
+it f(g)

for all g ∈ GL2(R).

Remark. If πit corresponds to the archimedean component of the automorphic representation
associated to a Maass form f of eigenvalue λ under the Laplacian, then λ = 1

4
+ t2.

Let

K = O(2) ⊇ SO(2) =

{
κθ =

(
cos θ sin θ
− sin θ cos θ

)∣∣∣∣ θ ∈ R
}
.

Recall that a function fi ∈ πi is said to have weight m if fi(gκθ) = fi(g)eimθ for all g ∈
GL2(R). As is well known, for each m ∈ Z the subspace of πi consisting of functions of
weight m is at most 1-dimensional.

Theorem 1. Let f1 ∈ πkdis be the vector of weight k, let f2 ∈ πit2 be the vector of weight zero,
and let f3 ∈ πit3 be the vector of weight −k (each normalized2 so that fi(( 1 0

0 1 )) = 1.) Then

(3) I ′v(f1 ⊗ f2 ⊗ f3) =
4π

(k − 1)!(1
2

+ it3) k
2
(1

2
− it3) k

2

×
Γ(k

2
+ it2 + it3)Γ(k

2
+ it2 − it3)Γ(k

2
− it2 − it3)Γ(k

2
− it2 + it3)

Γ(1
2

+ it2)Γ(1
2
− it2)Γ(1

2
+ it3)Γ(1

2
− it3)

and

(4) Iv(f1 ⊗ f2 ⊗ f3) =
2k−1πk

(1
2

+ it3) k
2
(1

2
− it3) k

2

.

where (z)m = z(z − 1) · · · (z −m+ 1).

1. Real local factors

For the remainder of this note, we work locally over a real place. Since the place v
is assumed fixed, we remove subscripts from the associated L-functions. We trust that no
confusion will arise between these and the global L-function considered above. (For example,
L(s,Π), to be defined below, represents the local L-factor Lv(s,Π) appearing in equation (1).)

We will assume, however, that the discrete series πit is unitary. (This is automatically
true if πit is the local component of an automorphic representation.) This implies that t is
real or that t purely imaginary of absolute value less than 1/2. This requirement will be
used implicitly to guarantee that certain integrals converge and that certain functions are
real valued. We will use this facts without further mention.

2This normalization ensures that 〈fi, fi〉 = 1.
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We record the relevant local factors for representations of GL2(R). Let

ΓR(s) = π−s/2Γ(s/2), and ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s)

where Γ(s) =
∫∞

0
yse−yd×y when Re(s) > 0 and is extended by analytic continuation else-

where. Note that

(5) ΓR(1) = 1, ΓR(2) =
1

π
, and ΓC(m) =

(m− 1)!

2m−1πm
.

We recall basic facts about the local Langlands correspondence for GL2(R) as found in
Knapp [11]. The Weil group WR = C× ∪ jC2 where j2 = −1 and jzj−1 = z̄ for z ∈ C×.
The irreducible representations of WR are all either 1-dimensional or 2-dimensional. The
1-dimensional representations are parametrized by δ ∈ {0, 1} and t ∈ C:

ρ1(δ, t) :
z 7→ |z|t

j 7→ (−1)δ.

The irreducible 2-dimensional representations are parametrized by positive integers m and
t ∈ C:

ρ2(m, t) :

reiθ 7→
(
r2teimθ 0

0 r2te−imθ

)

j 7→
(

0 (−1)m

1 0

)
Defining ρ2(0, t) = ρ1(0, t)⊕ ρ1(1, t) and ρ2(m, t) = ρ2(|m| , t), the following is an elemen-

tary exercise.

Lemma 2. Every (semisimple) finite dimensional representation of WR is a direct sum of
irreducibles each of dimension one or two. Under the operations of direct sum and tensor
product, the following is a complete set of relations.

ρ2(m, t) ' ρ2(−m, t)
ρ2(0, t) ' ρ1(0, t)⊕ ρ1(1, t)

ρ1(δ1, t1)⊗ ρ1(δ2, t2) ' ρ1(δ, t1 + t2)

ρ1(δ, t1)⊗ ρ2(m, t2) ' ρ2(m, t1 + t2)

ρ2(m1, t1)⊗ ρ2(m2, t2) ' ρ2(m1 +m2, t1 + t2)⊕ ρ2(m1 −m2, t1 + t2)

In the third line, δ = δ1 + δ2 (mod 2). Moreover, if ρ̃ denotes the contragradient of ρ then

ρ̃1(δ, t) ' ρ1(δ,−t), and ˜ρ2(m, t) ' ρ1(m,−t).

Attached to each irreducible representation ρ of WR is an L-factor

L(s, ρ1(δ, t)) = ΓR(s+ t+ δ), and L(s, ρ2(m, t)) = ΓC(s+ t+
m

2
).

Writing a general representation ρ as a direct sum of irreducibles ρ1 ⊕ · · · ⊕ ρr, we define

L(s, ρ) =
r∏
i=1

L(s, ρi).
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In particular, given ρ, the adjoint representation is

Ad(ρ) ' ρ⊗ ρ̃	 ρ1(0, 0)

since ρ1(0, 0) is the trivial representation.
Under the Langlands correspondence, admissible representations π of GL2(R) correspond

to 2-dimensional representations ρ = ρ(π) of WR. For example, ρ(πit) = ρ1(0, it)⊕ρ1(0,−it)
and ρ(πkdis) = ρ2(0, k − 1). Thus the local factors for the discrete series and principal series
representations are

L(s, πkdis) = ΓC(s+ (k − 1)/2), and L(s, πit) = ΓR(s+ it)ΓR(s− it).
We define

L(s,Π) = L(s, ρ(πkdis)⊗ ρ(πit2)⊗ ρ(πit3))

and
L(s,Π,Ad) = L(s,Ad ρ(πkdis)⊕ Ad ρ(πit2)⊕ Ad ρ(πit3)).

Lemma 3. Let Π = πkdis ⊗ πit2 ⊗ πit3. The normalizing factor relating Iv and I ′v in (1) at a
real place v is

L(1,Πv,Ad)

ΓR(2)2L(1/2,Πv)
=

2k−3πk−1(k − 1)!
Γ(1

2
+ it2)Γ(1

2
− it2)Γ(1

2
+ it3)Γ(1

2
− it3)

Γ(k
2

+ it2 + it3)Γ(k
2
− it2 + it3)Γ(k

2
+ it2 − it3)Γ(k

2
− it2 − it3)

.

Proof. Using Lemma 2, one can easily show that

L(1/2,Π) =
∏

ε,ε′∈{±1}

ΓC

(
εit2 + ε′it3 +

k

2

)
= 24(2π)−2k

∏
ε,ε′∈{±1}

Γ

(
k

2
+ εit2 + ε′it3

)
and, applying (5), L(1,Π,Ad) is equal to

(ΓC(k)ΓR(2)) · (ΓR(1 + 2it2)ΓR(1− 2it2)ΓR(1)) · (ΓR(1 + 2it3)ΓR(1− 2it3)ΓR(1))

=
(k − 1)!

2k−1πk+3
Γ

(
1

2
+ it2

)
Γ

(
1

2
− it2

)
Γ

(
1

2
+ it3

)
Γ

(
1

2
− it3

)
.

Combining these, we arrive at the desired formula. �

2. Whittaker models

As a matter of notation, set

a(y) =

(
y 0
0 1

)
, z(u) =

(
u 0
0 u

)
, n(x) =

(
1 x
0 1

)
.

Let π be an infinite dimensional representation of G with central character ω and ψ :
R→ C× a nontrivial additive character. Then there is a unique space of functions W(π, ψ)
isomorphic to π such that

(6) W (z(u)n(x)g) = ω(u)ψ(x)W (g)

for all g ∈ G. Recall that the inner product on W(π, ψ) is given by

〈W,W ′〉 =

∫
R×
W (a(y))W ′(a(y))d×y.
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We fix ψ : R→ C× once and for all to be the character ψ(x) = e2πix.
If the central character of π is trivial, and W ∈ W(π, ψ) has weight k, (6) becomes

(7) W (z(u)n(x)a(y)κθ) = e2πixW (a(y))eimθ.

This, by the Iwasawa decomposition, determines W completely provided we can describe
w(y) = W (a(y)). This can be accomplished for the weight k vector W k

k ∈ W(πkdis, ψ)
by utilizing the fact that W k

k is annihilated by the lowering operator X− ∈ Lie(GL2(R)).
ApplyingX− to (7), one finds that w(y) satisfies a certain differential equation whose solution
is easily obtained. The unique solution with moderate growth is, up to a constant,

(8) W k
k (a(y)) =

{
yk/2e−2πy if y ≥ 0

0 if y < 0.

We calculate directly that

(9)

∫ ∞
0

W k
k (a(y))W k′

k′ (a(y))ys−1d×s =

∫ ∞
0

y(k+k′)/2e−4πyd×y =
Γ(s− 1 + (k + k′)/2)

(4π)s−1+(k+k′)/2

By letting s = 1 and k = k′, this implies that

(10) 〈W k
k ,W

k
k 〉 =

(k − 1)!

(4π)k
.

Analogously, if W λ
m ∈ W(πit, ψ) is a weight m-vector which is an eigenvector for the

action of the Laplace operator ∆ of eigenvalue λ, one can apply ∆ to (6) to see that w(y) =
W λ
m(a(y)) satisfies the confluent geometric differential equation

(11) w′′ +

[
−1

4
+
m

2y
+
λ

y2

]
w = 0.

Therefore, W λ
m(a(y)) = Wm

2
,it(|y|) is the unique solution of (11) with exponential decay as

|y| → ∞ and λ = 1
2

+ t2. (See ...) The weight zero vector W λ
0 can be expressed in terms of

the incomplete Bessel function:

(12) W λ
0 (a(y)) = W0,it(y) = 2π−1/2 |y|1/2Kit(2π |y|).

By formula (6.8.48) of [2], it follows that

(13)

∫ ∞
0

W0,it1(a(y))W0,it2(a(y))ys−1d×y =
4

π

∫ ∞
0

Kit1(2πy)Kit2(2πy)ysd×y

=
1

2πs+1

Γ( s+it1+it2
2

)Γ( s−it1+it2
2

)Γ( s+it1−it2
2

)Γ( s−it1−it2
2

)

Γ(s)
.

Evaluating this at s = 1 in the case that t1 = t2 = t, we have that

(14) 〈W λ
0 ,W

λ
0 〉 =

Γ(1
2

+ it)Γ(1
2
− it)

π
.

Note that we have used that W λ
0 (a(y)) is an even function and Γ(1/2) =

√
π.

Remark. An explicit intertwining map π →W(π, ψ) is given, when the integral is convergent,
by

(15) f 7→ Wf Wf (g) = π−1/2

∫
R
f(wn(x)g)ψ(x)dx
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where w = ( 0 1
−1 0 ), and this can be extended by analytic continuation elsewhere.

As an alternative to the strategy above, one can deduce equations (9) and (13) by work-
ing directly from (15). (See [3].) The normalization in (12) coincides with this choice of
intertwiner.

3. Proof of Theorem 1

We are now in a position to prove Theorem 1. Having laid the groundwork above, it is a
simple consequence of the following result due to Michel-Venkatesh [12].

Lemma 4 (Michel-Venkatesh). Let π1, π2, π3 be tempered representations of GL2(R) with
π3 a principal series. Fixing an isometry πi → W(πi, ψ) for i = 1, 2 we may associate for
fi ∈ πi vectors Wi in the Whittaker model. Then the form `RS : π1 ⊗ π2 ⊗ π3 → C given by

(16) `RS(f1 ⊗ f2 ⊗ f3) =

∫
K

∫
R×
W1(a(y)κ)W2(a(y)κ)f3(a(y)κ) |y|−1 d×ydκ

satisfies |`RS|2 = I ′(f1 ⊗ f2 ⊗ f3)

For i = 1, 2 we have λi = 1
4

+ t2i . Recall our choice of test functions: W1 = W k
k , W2 = W λ2

0 ,
and f3 ∈ πit3 of weight −k. Since the sum of the weights of these is zero, the integral over
K in (16) is trivial, and

`RS(W1 ⊗W2 ⊗ f3) =

∫ ∞
0

W1(a(y))W2(a(y))f3(a(y)) |y|−1 d×y

=

∫ ∞
0

e−2πyyk/22π−1/2y1/2Kit2(2πy)y1/2+it3y−1d×y

=2π−1/2

∫ ∞
0

e−2πyKit2(2πy)yk/2+it3d×y

=
2

(4π)k/2+it3

Γ(k
2

+ it2 + it3)Γ(k
2
− it2 + it3)

Γ(1
2

+ k
2

+ it3)

In the final line we have used equation (6.8.28) from [2]. This simplifies further by using the
identity Γ(z +m) = Γ(z)(z)m.

Recall that we have chosen fi such that 〈fi, fi〉 = 1 for each i. Therefore, in order to apply
Lemma 4, we must normalize `RS:

I ′(f1 ⊗ f2 ⊗ f3) =
|`RS(W1 ⊗W2 ⊗ f3)|2

〈W1,W2〉〈W2,W2〉
=

4π

(k − 1)!(1
2
− it3) k

2
(1

2
+ it3) k

2

×

×
Γ(k

2
+ it2 + it3)Γ(k

2
+ it2 − it3)Γ(k

2
− it2 − it3)Γ(k

2
− it2 + it3)

Γ(1
2

+ it2)Γ(1
2
− it2)Γ(1

2
+ it3)Γ(1

2
− it3)

To complete the proof, we multiply by the normalizing factor of Lemma 3.

Remark. If one or more of the representations πitj is a complementary series (i.e. if λj <
1
4
)

then the result of Theorem 1 still holds, but the explicit calculation is somewhat different.
In this case, it is no longer true that for r ∈ R

|Γ(r + itj)|2 = Γ(r + itj)Γ(r − itj),
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nor is it true that 〈fj, fj〉 = 1. Taking into account these differences, however, the final
answer ends up agreeing with what has been calculated above.
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