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1. January 21, 2010

Let k be a field. The k rational points of projective n-space Pn(k) which consists
of

{(x0 : x1 : · · · : xn) | xi ∈ k not all zero}/ ∼
with the equivalence relation (x0 : · · · : xn) ∼ (y0 : · · · : yn) if there exists c ∈ k
such that xi = cyi for all i = 0, . . . , n.

Pn(k) is almost in bijection with kn:

Pn(k)\ −→ kn (x0 : · · · : xn) 7→
(

x1

x0
, . . . ,

xn

x0

)
is a bijection with inverse (y1, . . . , yn) 7→ (1 : y1 : · · · : yn).

By a plane curve of degree d we mean a polynomial f ∈ k[X,Y, Z] which is
homogeneous of degree d, i.e. each monomial is of degree d. e.g. f(X,Y, Z) =
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X2 + Y 2 − Z2 is a plane curve of degree 2. The vanishing locus of f is often
denoted

V (f) = {x ∈ P2(x) | f(x) = 0} ⊂ P2.

Note that

(1.0.1) f(λx0, λx1, . . . , λxn) = λdf(x0, . . . , sn)

so the vanishing set is well defined.

Exercise 1.0.1. If k is algebraically closed show that (1.0.1) holds if and only if f
is homogeneous of degree d.

How do we draw the plane curve f = X2 + Y 2 − Z2 for which we often write
V (f) = C? The easiest way is to draw the piece of V (f) that sits in affine space.
For example, look at the set of (1 : y : z) such that f(1, y, z) = 1 + y2 − z2 = 0.
If k = R this is a hyperbola (picture drawn in class.) However, it is missing the
points when X = 0, i.e. solutions to f(0, Y, Z):

V (f) ∩ {X = 0} = {(0 : Y : Z) | y2 = z2} = {(0 : 1 : 1), (0 : 1 : −1)}.
These are the points at infinity.

Alternatively, we could look at a different chart ({Z 6= 0}.) Then we get x2+y2 =
1 which is a circle. Is this the whole curve? Yes, as one can see by noting that

C(R) = C(R) ∩ {Z 6= 0} ∪ C(R) ∩ {Z = 0}.
The latter set is easily seen to be empty.

If k = Fq, C(k) is a finite set. It is natural to study #C(k). If k = R, C(k) is
a 1-dimensional space. If k = C, C(k) is a 2-dimensional real space, i.e. a surface.
(For example, for our f = X2 + Y 2 − Z2, C(C) is a sphere.)

1.1. Why define a curve to be f rather than V (f) ⊂ P2(k)? One reason: let

f = X2 + Y 2 − Z2, g = (X2 + Y 2 − Z2)2

for which V (f) = V (g). If we let these be the same we would run into problems.
For example, one could consider the family of curves (X2 + Y 2 −Z2)2 − tX2Y 2 for
varying t. We would like this to have the same degree for all t, but this wouldn’t
be the case if f and g were the same. (The curve g is called non-reduced, and is
thought of as a “double copy” of f .)

1.2. Cubic plane curves. A cubic plane curve over k is

C : F = c1X
3 + c2Y

3 + c3Z
3 + · · · + c10XY Z

up to multiplication by k×.
The key fact (that we will prove) is that C(k) can often be given the structure

of an abelian group which will satisfy the following. Let ` be a line in P2(k), i.e. a
linear polynomial aX + bY + cZ. Consider ` ∩ C which consists of P ∈ C(k) such
that `(P ) = 0. This is to say (assuming c 6= 0, which we may do without loss of
generality) that Z = −1

c (aX + bY ). Substitute this into F (X,Y,−1
c (aX + bY )) =

G(X,Y ). Then we ask how many solutions there are. For example, G(X,Y ) could
be X(X−Y )(X+Y ) which has the three solutions (0 : 1 : /

¯
c), (1 : 1 : −(a+b)/c), (1 :

−1 : (b − a)/c). In general, there will be at most three solutions corresponding to
the roots of G(X,Y ) unless G = 0. (An example of G = 0: C : X(X2 + Y 2 + Z2)
and ` : X.)
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The group law on C(k) (when C is smooth) will satisfy the property

(1.2.1) If ` is a line and C ∩ ` = {P,Q,R} then P + Q + R = 0.

What is smoothness? One characterization is that if C is smooth then given
P,Q ∈ C(k) there exists a unique R ∈ C(k) such that there exists `P2(k) with
`∩C = {P,Q,R}. Given this, the natural first try for ` would be the line in P2(k)
going through P and Q. This is well defined so long as P 6= Q, in which case `∩C is
in bijection with the roots of G(X,Y ). Since P , and Q correspond to two rational
roots, the third must be rational as well.

If P = Q we would want ` to be the tangent line to C at P (which is well defined
if C is smooth.) In this case G will have a double root corresponding to P and R
will correspond to the third root.

2. January 26, 2010

2.1. A little bit about smoothness. Recall from calculus that if C = V (f),
f ∈ k[X,Y, Z] is homogeneous of degree d then we say f is smooth at P if it’s not
the case that f, ∂f

∂X , ∂f

∂Y, ∂f
∂X

, ∂f
∂Z all vanish at P . We say C is smooth if it’s smooth

at every geometric point, i.e. for every P ∈ C(k).
An example: f = X3 + Y 3 + Z3. Then

∂f

∂X
= 3X2,

∂f

∂Y
= 3Y 2,

∂f

∂Z
= 3Z2.

So to be smooth need X = Y = Z = 0 which is not a point of P2. UNLESS
chark = 3 in which every point is singular, i.e. not smooth. (Note that in this case
f = (X + Y + Z)3, so C is a triple line.)

Now let’s assume 3 6= 0. To find the tangent line at P = (1 : 0 : −1) ∈ C we
consider the line

∂f

∂X

∣∣∣∣
P

X +
∂f

∂Y

∣∣∣∣
P

Y +
∂f

∂Z

∣∣∣∣
P

Z.

So we get LP : X +Z. The intersection LP ∩C must satisfy X = −Z which implies
that Y 3 = 0. We conclude that the third point of intersection is also P . We write
LP ∩ C = 3P . Our group law must satisfy P + P + P = 0.

A smooth point P on a curve C (of degree greater than one) where the tangent
line to P intersects P more than twice is called a flex point. If P is flex then we
must have that P + P + P = 0. (We will see that the converse is also true.)

Flex points (at least when the characteristic is bigger than three) a characterized
by those points for which the Hessian

det

(
∂2f
∂X2

∂2f
∂X∂Y

∂2f
∂X∂Y

∂2f
∂Y 2

)
vanishes. (Given that this is different than f) there should be 9 flex points.

We can also see the tangent line by studying the Taylor expansion of f in affine
coordinates which vanish at P . Examples of affine coordinates are x = X

Z + 1 =
X+Z

Z , y = Y
Z . (In general, affine coordinates are ratios of linear homogeneous

polynomials.) In this coordinate system we rewrite the curve as

x3 − 3x2 + 3x + y3 = (x − 1)3 + y3 + 1.

This has Taylor expansion 3x + h.o.t. (higher order terms) from which we see that
the tangent line is given by 3x = 0 =⇒ X + Z = 0.
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A singular example: f = Y 2Z +X3 +X2Z. Check that (0 : 0 : 1) is non-smooth:
∂f

∂X
= 3X2 + 2XZ,

∂f

∂Y
= 2Y Z,

∂f

∂
= Y 2 + Z2.

Set x = X/Z, y = Y/Z to get

f(x, y) = y2 + x2 + x3 = x2 + y2 + h.o.t. = (x − iy)(x + iy) + h.o.t.

We see that there is no tangent line (i.e. linear term) but near the origin it look like
the union of two lines. (Picture drawn in class of what this curve looks like over R
which has an isolated point at the origin.)

Exercise 2.1.1. Find all singular points of Y 2Z + X3 + X2Z. (Note that this may
be dependant upon the characteristic of k.)

Exercise 2.1.2. Give an example of a set S and two different group laws +1, +2

such that

{(P,Q,R) | P +1 Q +1 R = 0} = {(P,Q,R) | P +2 Q +2 R = 0}.

Question/Hint: What is the identity in C(k)? Suppose that O is the purported
identity. Then O + O = O = −O =⇒ O + O + O = 0, and so O is a flex point.

Theorem 2.1.3. Suppose that C/k is a smooth cubic plane curve and O ∈ C(k)
is a flex point. Then there is a unique group law on C(k) such that P + Q + R = 0
whenever {P,Q,R} = L ∩ C and O is the identity.

An example of a curve with no flex points. Can check that 3X3 + 4Y 3 + 5Z3

has no flex points i and only if one of 3/5, 4/5, 4/3 is a cube in k.

2.2. Weierstrass form. What is P + Q? Answer: if R is the third point of
intersection of the line connecting P and Q. Then P + Q is the third point of
intersection on the line connecting R and O.

Given (C,O) as above, let’s put O at the point (0 : 1 : 0) by applying a projective
linear change of coordinates. We may, moreover, make the tangent line to C at O
be the line Z = 0 because the action of PGL2(k) on Pk is double transitive. Setting
Z = 0 gives

a1X
3 + a2X

2Y + a3XY 2 + a4Y
3.

Since (0 : 1 : 0) must be a triple zero, this implies that a2 = a3 = a4 = 0. After a
further (simple) change of variables we see that C can be written in the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

or, in affine coordinates x = X/Z, y = Y/Z:

(2.2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

If chark 6= 2 then eliminate the xy and y terms by completing the square, and
if chark is zero or greater than 3 it can be further simplified to

y2 = x3 + Ax + B or y2 = x3 − 27c4x − 54c6.

Is C smooth? Let us work with F : y2 = x3 + Ax + B = f(x). Then
∂F

∂x
= −(3x2 + A) = −f ′(x),

∂F

∂y
= 2y.

So a non-smooth point must satisfy y = f(x) = f ′(x) = 0 which is equivalent to
the discriminant of f ∆ = −16(4A3 + 27B2) = 0.
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3. January 28, 2010

Equation (2.2.1) is a smooth cubic plane curve with flex point over k if a1, a2, a3, a4, a6 ∈
k and ∆ 6= 0. The existence of the group law can now be proved by formula. This
is not conceptually satisfying but it works, and it is very messy. In particular,
checking associativity is quite a computation.

As an example suppose E : y2 = 4x3 + b2x
2 + b4x + b6. Then if P = (x, y), the

x-coordinate of 2P is
x4 − b4x

2 − 2b6 − b8

4x3 + b2x2 + b4x + b6
.

Note that this doesn’t depend on y. The reason for this is that on this curve the
identity O is the point at infinity in the “straight up” direction. Thus −(x, y) =
(x,−y). So if x(P ) = x(Q) then P = ±Q, and x(2Q) = x(2P ).

Note also that the denominator of x(P ) = 0 exactly when y2 = 0 which means
y = 0. This happens if and only if 2P = O.

3.1. An algebro-geometric description of the group law in terms of divi-
sors. Let (E,O) be an elliptic curve over k. (Can view this in two different ways.
Either this means that E is a genus curve with a point O or a curve in Weierstrass
form with O = (0 : 1 : 0).) We will assume now that k is algebraically closed.

A divisor on E is a formal finite sum
∑

niPi where ni ∈ Z and Pi ∈ C(k). If
f ∈ k(C) is a rational function define divf =

∑
P∈C(k) ordP (f)P where ordP (f) is

the order of vanishing of f at P (hence negative if f has a pole at P .)
Example: C = P1. Then k(C) = k[z]. We have div

(
z−1
z+1

)
= [−1]− [1], div(z2 +

1) = [i] + [−i] − 2[∞], . . .. By the way, in this second case one can see that the
answer is as claimed by changing variables to z = 1/w. Then div(1/w2 + 1) =
div

(
w2+1

w2

)
= [i] + [−i] − 2[0]. Then going back to the original coordinates gives

the result.
The point of talking about divisors is it gives a good “geometric” way to seeing

what’s going on.
If D =

∑
niPi then degree of D is deg D =

∑
ni.

Theorem 3.1.1. If f ∈ k(C) then deg(div(f)) = 0.

We say that D is principal if D = div(f) for some f ∈ k(C). Denote Prin(C) for
the group of principal divisors, Div0(C) the group of degree 0 divisors and Div(C)
the group of divisors. The Picard group of C is Pic0(C) = Div0(C)/Prin(C).

Easy to prove fact: Pic0(P1) = 0.
Note that div(cf) = div(f) for all c ∈ k×. In fact,

1 → k× → k(C)× → Prin(C) → 0

is exact.
Given a curve C and a point O ∈ C(k) we have an Abel-Jacobi map

(3.1.1) AJ : C(k) → Pic0(C) P 7→ [P ] − [O].

Now we restrict to the case of genus one, and we’ll prove that AJ is a bijection
in this case.

Injectivity: Suppose that AJ(P ) = AJ(Q) and P 6= Q. This means that P−O =
Q−O ∈ Pic0(C), so P −Q = div(f) for some f . We can think of f : C → P1. Then
f−1(0) = P and f−1(∞) = {Q}. This implies that f has degree 1 which happens if
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and only if f is a bijection. This, however, is a contradiction because P1 has genus
0.

We say that a divisor D =
∑

npP is effective if np ≥ for all P , and write this as
D > 0. Similarly, we can define when D1 ≥ D2. Let L(D) be the space of functions
such that divf ≥ −D (which means that ordP (f) ≥ −nP . We can think of this
as “the space that has poles at worst −D.”) So, for example, L(0) is the space of
holomorphic functions. The Riemann-Roch theorem in genus 1 implies that if D is
a divisor of degree d > 0 then L(D) has dimension d.

We use R-R to prove surjectivity. Let D = P1 + · · ·Pn −Q1 − · · · −Qn. So R-R
applied to D +O gives a one dimensional space and therefore a unique up to scalar
f . We study div(f) which has k zeroes and k poles. The definition of L(D) implies
that m ≤ k ≤ m + 1. First, suppose that k = m. Then div(f) + D + O ≥ 0 which
implies that

divf = −D − O + R R ∈ {P1, . . . , Pn, O}.
So −D−O +R = 0 in Pic0(C) which implies that D = R−O = AJ(R). The proof
is nearly identical when k = m + 1. Again this implies divf = −D −O + R, but in
this case the only difference is that R /∈ {P1, . . . , Pn, O}.

The group law on Pic0(C) then transfers to E via the bijection AJ .

Theorem 3.1.2. Let k be any field. Any elliptic curve (E,O) over k can be em-
bedded in P2 as a smooth cubic in Weierstrass form.

Note: The point O can be any point defined over k. Actually the property of
being a flex point is particular to a given embedding of C in projective space and
not intrinsic to the curve.

3.2. Why are the two group laws the same? If P +E Q+E R = 0 should mean
that

div(f) = (P − O) + (Q − O) + (R − O) = P + Q + R − 3O.

Indeed, can take f = `(X,Y,Z)
Z where ` is the line intersecting the curve at {P,Q,R}.

4. February 2, 2010

4.1. Overview. We have now established that when E is an elliptic curve (we drop
the notation (E,O) from now on, but implicitly E is a curve and a point) and k is
a field, E(k) is an abelian group. So we can consider E/Q as a functor

E : Fields → Q-alg

called the functor of points. (More generally, it is a functor form rings to abelian
groups, but we don’t have the language to quite understand this now.)

Of course, a functor must also respect morphisms. That is to say that if φ : k → l
is a map of fields then there is a map E(φ) : E(k) → E(l) which functorial (meaning
it respects compositions of morphisms...)

For an algebraic geometer an elliptic curve is not a “complex torus” even though
E(C) is a complex torus. Instead, he/she thinks of an elliptic curve in terms of this
functor.

We will see that E(C) is a complex torus, and that there are many such objects
of different ‘shape.’ We will also study E(Q) which can be many things. Since
E(Fq) is finite we will be interested in computing its order and structure.



8 ELLIPTIC CURVES AND MODULAR FORMS

Why do we study degree 3 curves? Well, for one it is the easiest non-trivial case.
If C is a degree 2 plane curve then C(C) ' CP1, a sphere; C(Q) is either empty or
easily shown to be in bijection to P1(Q) and C(Fq) has size q + 1.

4.2. Uniqueness of Weierstrass form. Can the same elliptic curve have dif-
ferent Weierstrass forms? By “same” one can mean “there is a projective linear
transformation taking one Weierstrass form to another” or “isomorphic as abstract
curves.”

The answer is “yes.” In fact, any linear transformation that takes one Weierstrass
form to another is of the form

(x, y) 7→ (u2x′ + r, u3y′ − u2xs′ + t).

If the original Weierstrass form is

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

then after this change of variables, one obtains

(y′)2 + a′
1x

′y′ + a′
3y

′ = (x′)3 + a′
2(x

′)2 + a′
4x

′ + a′
6

where, for example,

ua′
1 = a1 + 2s, u2a′

2 = a2 − sa1 + 3r − s2, . . .

So a1 is not an invariant of an elliptic curve (unless the characteristic of k is 2...)
However, certain functions of the ai do behave better. For example,

c4 = (a2
1 + 4a2)2 − 24(2a4 + a1a3)

satisfies u4c′4 = c4. How might one find such a relation? Well, one way is by
“invariant theory” as studied by 19th century mathematicians who were very good
at manipulating such things (and for whom the relation for c4 above would not
have been too challenging.) A more natural way, however, is to find c4 by doing
the manipulations that we did to get a Weierstrass equation in the form y2 =
x3 − 27c4x − 54c6. Similarly, c6 satisfies u6c′6 = c6.

One can further define ∆ as a polynomial in the ai’s such that
• ∆ = 0 if and only if E is non smooth
• 1728∆ = c3

4 − c2
6, and so u12∆′ = ∆.

If the characteristic is not 2 or 3 then this is the same ∆ as described above as the
discriminant of x3 − 27c4x − 54c6.

Now we have a true invariant:

j :=
c3
4

∆
= 1728 +

c2
6

∆
.

That is to say that j(E) is independent of the choice of Weierstrass equation.
Two examples. Let

(4.2.1) E1 : y2 = x3 − x, E2 : y2 = x3 − 1

In the first case c6 = 0 so j(E1) = 1728, and in the second case c4 = 0 =⇒ j(E2) =
0.

Theorem 4.2.1. Let k be an algebraically closed field. Let E1, E2 be elliptic curves
over k. Then E1 ' E2 if and only if j(E1) = j(E2).
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Proof. We have seen directly that isomorphic elliptic curves have the same j-
invariant. To show that the converse is true we prove that if j(E1) = j(E2) then
the two curves are isomorphic. For simplicity, we take characteristic not equal to 2
or 3. Write

Ei : y2 = x3 + Aix + Bi

for i = 1, 2. Then we know, that

4A3
1

4A3
1 + 27B2

1

=
4A3

2

4A3
2 + 27B2

2

from which is follows that
27B2

1

4A3
1

=
27B2

2

4A3
2

.

Thus, we can write (A2, B2) = (u4A1, u
6B1) for some u ∈ k. We have seen already

that the change of coordinates (x, y) 7→ (u2x, u3y) changes E1 → E2 so they are
isomorphic. ¤

Note that we are use the fact that k is algebraically closed to get the element u.
As an example, notice that the curves

y2 = x3 + x + 1 and y2 + x3 + 4x + 8

are isomorphic over Q (in fact, they are isomorphic over Q(
√

2).) They are not
isomorphic over Q.

More is true.

Theorem 4.2.2. Let k be any field. For any j0 ∈ k there exists an elliptic curve
defined over k(j0) having j-invariant j0. Thus the j-invariant gives a bijection
between the set of isomorphism classes of elliptic curves over k and elements of k.

Proof. All we need to show is that the j-invariant is surjective. To do this, let
k = Q(t) and write down an elliptic curve Euniv/k with j(E) = t:

y2 + xy = x3 − 3t

t + 1728
x − 1

t − 1728

If j0 6= 0 or 1728 then this curve specializes to a curve over k by substituting
t = j0. To prove the remaining two cases, we observe that the curves from (4.2.1)
so long as the characteristic is not 2 or 3. The remaining cases can be handled
individually. ¤

5. February 4, 2010

5.1. The invariant differential. Given an elliptic curve in Weierstrass form (2.2.1),
we define the invariant differential to be

ω =
dx

2y + a1x + a3
=

dy

3x2 + 2a2x + a4 − a1y
.

If a1 = a2 = a3 = 0 then ω = dx
2y = dy

3x2+a4
.

What is dx? More generally, what is a differential form? The answer can be
given purely algebraically.

In algebraic geometry a function on E (or rather on the affine part E − 0) is
an element of the coordinate ring R = k[x, y]/(y2 + · · · = x3 + · · · ). These can be
thought of as the 0-forms.
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Hartshorne II.8 gives definitions of differentials: If R is a k-algebra, the space of
1-forms on R over k is the free R-module generated by df for all f ∈ R, with the
equivalence relations

• d(fg) = gdf + fdg for all f, g ∈ R,
• da = 0 for all a ∈ k,
• d(f + g) = df + dg for all f, g ∈ R.

One can check that this is k-linear: d(af) = adf + fda = adf . It behaves (as is
proved in Hartshorne) the way you would expect.

Some remarks. We can define a differential on all of E (not just the affine part)
whose restriction is ω. Up to scaling, ω is the only differential form on E. Note
that (1 + x + y2)ω is also a differential form on E − 0, but it doesn’t extend to all
of E because it blows up at infinity.

It is a fact that if X is a smooth projective curve over k then the 1-forms on X
over k form a finite dimensional k vector space. This dimension is called the genus
of the curve.

Let us examine the example of P1 and the differential dz. The question is rather
or not this is defined at ∞. To see this make the change of coordinates w = 1/z.
Then dz = − 1

w2 dw (as expected) and thus a double pole at infinity. We can write
divdz = −2[∞].

If ω is a 1-form on X, div(ω) is called a canonical divisor on X. It is a fact that if
ω′ is another 1-form then ω′ = fω for some f ∈ k(X). Therefore, div(ω′) = div(ω)
in Pic(X). As an element of Pic(X) is called the canonical class and is denoted
KX . It has degree 2g − 2.

One can check that ω (as defined at the beginning of this section) is holomorphic
on all of E and that div(ω) = 0, implying that KE = 0. For this reason ω is
sometimes called the holomorphic differential or the trivial differential.

We now explain why ω is called ‘invariant.’ If P ∈ E(k) we have a map

tP : E → E Q 7→ P + Q.

This induces a map on differential forms. For example, if φ : E → k is a 0-form
then (t∗P φ) = φ(tp(Q)) = φ(P + Q). In algebro-geometric language, the map on
1-forms is

t∗P : Γ(E, Ω1
E/k) → Γ(E, Ω1

E/k)

where Γ(E, Ω1
E/k) is the space of “global sections of 1-forms.”

Thus f∗
P ω is a holomorphic differential on E which can’t be zero because the

map ∗
P is invertible. (It’s inverse is t∗−P .) In other words, t∗p is an element of k×, i.e.

a map E(k) → k×. In fact, this is an algebraic map E → Gm = A1 − 0 of varieties.
From algebraic geometry, we know that a map from a projective variety X to an
affine variety A must be constant. Putting this together with the fact that t∗0 acts
by 1 on differentials, it follows that t∗P ω = ω for all P .

If is a fact that under the usual change of coordinates (x, y) 7→ (u2x′, u3y′) we
get that u−1ω′ = ω. As we have discussed the map

{Weierstrass forms} −→ (E,O)

is surjective but not injective. However, we now have that

{Reduced Weierstrass formslongrightarrow(E,O, ω)

is one-to-one. (By “reduced” we mean in the form y2 = x3 + Ax + B.)
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5.2. First glimpse of modular forms and modular functions. A description
(not a definition): a modular function is an algebraic function F on equivalence
classes of elliptic curves. For example, the j-invariant. A modular form is an
algebraic function F on equivalence classes of pairs (E,ω) such that

• F (E, λω) = λ−kF (E,ω) for some k ∈ Z (called the weight) and all λ ∈ k,
and

• F has “slow growth at infinity.”
Examples of these are c4 and c6 which are modular forms of weights 4 and 6
respectively.

Why is c4 a modular form? The “function”

F (y2 = x3 − 27c4x − 54c6) = c4

is not well defined on E because there are several Weierstrass forms for the same
elliptic curve. However, having fixed ω a change in Weierstrass form would also
change ω. Concretely, if we scale x by u2 and y by u3 then ω will be changed by a
factor of u−1 and c4 by u4.

Comment: If the characteristic of k is 2, then a1 is a modular form of weight 1.

6. February 9, 2010

6.1. Isogenies. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is
a morphism of curves φ : E1 → E2 such that φ(OE1) = OE2 . An example is the
multiplication by m map

[m] : E → E [m]P = sgn m(P + P + · · · + P︸ ︷︷ ︸
|m| times

).

Note that the multiplication by 2 map is the composition of

E
∆ //E × E

m //E

where ∆ is the diagonal embedding and m is the group action m(P,Q) = P + Q.
Another example of a morphism can be given between the curves

(6.1.1) E : y2 = x3 + ax2 + bx E′ : y2 = x3 − 2ax2 + (a2 − 4b)x.

One can check that φ(x, y) =
(

y2

x2 , y b−x2

x2

)
is an isogeny from E to E′.

Let us discuss how one can see that OE 7→ OE′ in an informal way. As we
move towards ∞ on either of the curve x ∼ t2 and y ∼ t3. So the x-coordinate of
φ(x, y) grows like (t3)2

(t2)2 = t2, and the y-coordinate grows like t3
(

1
t2 − 1

)
∼ t3. So,

by continuity the origin of E must go towards that of E′.
Note that if we try to projectivize the equation for φ, we would get

(6.1.2) φ(X : Y : Z) = (Y 2Z : bY Z2 − X2Y : X2Z)

which is not defined at (0 : 1 : 0) (or at (0 : 0 : 1).) In fact, only linear maps from
P2 to P2 are defined everywhere. Higher degree “maps” (it’s not a morphism but
rather a rational map denoted V //___ V ′ ) between projective varieties V and V ′,
may not be defined on a subvariety of at most codimension 2 in V . Even though
φ does not extend to a morphism on all of P2 its restriction to E can (must if
we believe it’s a morphism!) be defined. Actually, the codimension 2 fact above,
implies that it must be defined on all of E.
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Exercise 6.1.1 (OPTIONAL). Show that φ can be defined on all of E using an
equivalent definition of φ near the points at which (6.1.2) is not defined.

Solution. The map φ is given by the following in projective coordinates.

Φ(X : Y : Z) =(Y 2Z : bY Z2 − X2Y : X2Z)

= (XY 2 : bXY Z − X3Y

Z
: X3)

= (XY 2 : bXY Z − (Y 2 − aX2 − bXZ)Y : X3) ((X : Y : Z) ∈ E)

= (XY 2 : 2bXY Z − Y 3 + aX2Y : X3)

Now, using this manifestation of φ, it is clear that φ(0 : 1 : 0) = (0 : 1 : 0). ¤

Following the same line of reasoning as above to determine φ(OE)+OE′ we will
analyze what φ(0, 0) is. If x ∼ t then, since y2 = bx + · · · , y ∼ t1/2. Then

φ(x, y) ∼
(

bx

x2
,
b3/2

x3/2

)
∼ (t−1, t−3/2).

Taking s = t−2 (which is growing we see that the x-coordinate of φ(x, y) grows like
s2 and the y-coordinate grows like s3, hence φ(0, 0) must be OE′ .

When φ is a nonzero isogeny, the degree of φ is the degree of the field extension
k(E1)/k(E2). Note that rational functions on E2 pull back to functions on E1 via
the map φ. The degree of the zero map is taken to be zero.

It’s a fact that if f : C1 → C2 is a map of curves over an algebraically closed field
k of characteristic zero then deg f = #f−1(P ) for all but finitely many P ∈ C2(k).
In the case of isogenies between elliptic curves we can remove the restriction “all
but finitely many points.”

As an example, consider the map P1 → P1 given by z 7→ z2. For every w ∈ P1(C)
except w = 0 or ∞, there are two points in the preimage of w. Evidently, this map
has degree two. This is verified by noting that the inclusion of function fields under
this map is k(z2) ⊂ k(z) which clear is degree two.

Question: If E1, E2, φ are all defined over Q is deg(φK) the same for any K/Q.
The answer is yes.

Exercise 6.1.2. Show that the isogeny φ between the curves (6.1.1) has degree 2.

Exercise 6.1.3. Let k = C. Describe all choices of a, b such that E ' E′ (i.e.
j(E) = J(E′).) In the case these cases there exists i : E′ → E. Show that
i ◦ φ : E → E is not [m] for any m ∈ Z.

Let k = Fq where q = pm and p is prime. Let E/k be an elliptic curve. (e.g.
E : y2 = x3 + Ax + B) The map Fr : (x, y) 7→ (xq, yq) is an isogeny from E to E.

Fact (to be proven later): The degree of Fr is q. However, if P = (x, y) ∈ E(Fq)
its preimage consists of the single point (x1/q, y1/q) because Fr : Fq → Fq is a
bijection.

Additional facts:
• If φ1, φ2 are isogenies over k then so is φ1 + φ2. So Homk(E1, E2) is an

abelian group.
• Homk(E,E) = Endk(E) is a ring with multiplication given by composition

of isogenies.
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• deg : Endk(E) → Z respects multiplication: deg(φ1φ2) = deg(φ1) deg(φ2).
Since deg(φ) = 0 if and only if φ = 0 this implies that Endk(E) has no zero
divisors.

• Every isogeny φ : E1 → E2 is also a group homomorphism.
To see why the last item is true consider the diagram

E1
AJ1//

φ

²²

Pic0(E1)
Â Ä // Pic(E1)

φ∗

²²Â
Â
Â

E2
AJ2// Pic0(E2)

Â Ä // Pic(E2)

The map φ∗ : Pic(E1) → Pic(E2) is defined on the level of divisors to be the
group homomorphism sending P to φ(P ). Have to check that this gives a well
defined map Pic(E1) → Pic(E2). In other words, need to see that it sends principal
divisors to principal divisors. Let f ∈ k(E1). Then one can check that φ∗(div(f)) =
div(Nk(E1)/k(E2)f).1 Proof of this is left to the student.

Since Pic0 is a subgroup of Pic this gives a map (also denoted φ∗) from Pic0(E1) →
Pic0(E2) that is, by definition, a group homomorphism. To complete the proof, we
must show that the diagram commutes. Suppose P ∈ E1(k). Then AJ2 ◦ φ(P ) =
φ(P ) + OE2 , and φ∗ ◦ AJ1(P ) = φ∗(P + OE1) = φ(P ) + φ(OE1) = φ(P ) + OE2 , so
indeed it does commute.

7. February 11, 2010

Last time we saw that if φ : E1 → E2 is an isogeny2, then kerφ is a finite
subgroup of E1.

7.1. Galois theory of isogenies. Let φ : E1 → E2 be an isogeny over an alge-
braically closed field k. The following is true.

• For any Q ∈ E2(k), #φ−1(Q) = degs φ where degs is the separable degree.
(e.g. degs(Fr) = 1.)

• The inseparable degree degi φ = eφ(P ) for each P ∈ E1(k).
• When φ is separable (i.e. degsφ = deg φ) then k(E1)/k(E2) is a Galois

extension with Galois group kerφ.
To prove the final point, have to show that kerφ acts on k(E1) preserving k(E2). Let
P ∈ ker φ. Then the translation by P map τP fits into the following commutative
diagrams.

E1
τP //

φ ÃÃB
BB

BB
BB

B E1

φ~~||
||

||
||

E2

Ã k(E1) k(E1)
τ∗

Poo

E2

φ

bbEEEEEEEE φ

<<yyyyyyyy

Therefore, τ∗
P is an automorphism of k(E1) that preserves k(E2). Since there are

exactly kerφ = deg φ many of these (by assumption) this implies kerφ is the Galois
group.

1The fact that we can do this relies on φ being a finite map. That is, the degree is finite.

Otherwise, the norm map would not be defined.
2Usually when we say ‘isogeny’ we mean ‘nonzero isogeny.’ This will often be implicit the facts

we present.
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Remark. In fact, the diagrams above are in complete correspondence because the
(contravariant) functor

(smooth curves/k) −→ (Fields of transc. deg 1 over k)
C 7→ k(C)

is an equivalence of categories.

Corollary 7.1.1. Let ψ : E1 → E2 and φ : E1 → E3 be isogenies. Then kerφ ⊂
kerψ if and only if ψ factors through φ.

To say that ψ factors through φ means that there is a map E3 → E2 making the
following diagram commute.

E1
ψ //

φ ÃÃB
BB

BB
BB

B E2

E3

>>|
|

|
|

Proof. The implication ⇐= is clear. We prove =⇒. On the level of function fields
we have

k(E1) k(E2)? _oo
L l

{{v v
v

v
v

k(E3)
2 R

ccHHHHHHHHH

By the above and Galois theory, it follows that

Gal(k(E1)/k(E2)) = {τ∗
P }P∈ker ψ =: τ∗

ker ψ,

and
k(E2) = k(E1)τ∗

ker ψ and k(E3) = k(E1)τ∗
ker φ .

Hence ker φ ⊂ ker ψ. ¤
Corollary 7.1.2. Let E be an elliptic curve with Ψ ⊂ E a finite subgroup. Then
there is a unique E′ and a separable isogeny φ : E → E′ such that kerφ = Ψ.

Remark. Since id : E → E and [−1] : E → E are different automorphisms of E
(i.e. they have the same kernel) it’s not the case that the isogeny φ of the corollary
is unique.

Proof. The group τ∗
Ψ acts on k(E). Let K = k(E)τ∗

Ψ be the fixed field. (One needs
to check that K 6= k, but this is simple and left to the student.) Thus K is a field of
transcendence degree 1 over k. By the equivalence of categories mentioned above,
this means there is a curve C/k such that K = k(C), and thus a map E → C. To
complete the proof, need to see that g(C) = 1 (and define its origin to be the image
of OE .)

A consequence of the Riemann-Hurwitz formula is that g(C) ≤ g(E). More
precisely, it implies that that

(7.1.1) χ(E) = deg φχ(C)

if and only if τ∗
Ψ acts freely, meaning that there is no non-identity element which

has fixed points. Since it is a group of translations this is obvious. The Euler
characteristic χ is 2g − 2, so the left hand side of (7.1.1) is zero for any φ, from
which it follows that g(C) = 1. ¤
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The upshot is that isogenous curves to E are in one-to-one correspondence with
finite subgroups of E. The sequence

0 //F //E
φ //E′ //0

is exact. We often write E′ = E/F = E/ ker φ.

Exercise 7.1.3. Prove that there exist elliptic curves E1 and E2 over C that are not
isogenous. (Hint: Use that C is uncountable.)

7.2. Isogenies and the invariant differential. Let φ : E1 → E2 be an isogeny
and ωE2 and invariant differential on E2. Then φ∗(ωE2) is an invariant differential
on E1.

Suppose that ψ : E1 → E2 is another isogeny. Then it is a fact that

ψ∗ωE2 + φ∗ωE2 = (ψ + φ)∗(ωE2).

This is not just abstract nonsense. Nor is it trivial because the addition on the left
hand side addition in the k vector space of holomorphic differentials Γ(E1,Ω1) and
on the right hand side the addition is that given b the group law on the elliptic
curve E2.

We often use this fact when E1 = E2. Let ω be a differential on E, and φ ∈
End(E). Then φ∗ω = cφω for some constant cφ. This gives a map c : End(E) → k.
The fact above tells us that c is actually a ring homomorphism.

7.3. The dual isogeny. Given φ : E1 → E2 we want to define φ∗ : Pic0(E2) →
Pic0(E1). On the level of divisors it is defined by φ∗(P ) = φ−1(P ). Need to check
that this sends principal divisors to principal divisors. Indeed, if f ∈ k(E2), we
have the following diagram.

E1
φ //E2

f //P1

So φ∗(div(f)) = div(f ◦ φ). (Recall that div looks at the zeros and poles of a
function. So the diagram says that the zeros (or poles) of f ◦ φ are exactly the
points whose image in E2 are zeros (or poles) of φ.)

This gives us a canonically defined isogeny φ̂ : E2 → E1.

8. February 16, 2010

Given an isogeny φ, φ̂ is called the dual isogeny. Note that

φ∗φ
∗(P ) = φ∗

 ∑
Q|φ(Q)=P

Q

 =
∑

Q|φ(Q)=P

φ(Q) = deg φQ.

We conclude that φ ◦ φ̂ = [deg φ].
Two facts:

• φ̂ ◦ ψ = ψ̂ ◦ φ̂

• φ̂ + ψ = φ̂ + ψ̂

The first of these is a formal exercise, the second is contentful—it says something
about the algebraic geometry of E1 × E2.

Proposition 8.0.1. • [̂m] = [m],
• deg [m] = m2.
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Proof. We induct on m. Clearly, if m = 1 the statements are obviously true. Then

̂[m + 1] = ̂[m] + [1]

=[̂m] + [̂1] by fact above

=[m] + [1] the inductive hypothesis

=[m + 1].

(One can also readily check the statement is true for −m.)
For the second statement, we have

[deg m] = [m][̂m] = [m][m] = [m2].

An argument can now be made that this implies deg m = m2. ¤

Note that φ ◦ φ̂ = [deg φ].

Taking the dual of both sides: ˆ̂
φ ◦ φ̂ = [deg φ]. So φ ◦ φ̂ = ˆ̂

φ ◦ φ̂ which implies

since the map is dominant that φ = ˆ̂
φ. We conclude, in particular, that dualization

is an involution on End(E).
Remark on similarities between End(E) and End(k2) = M2(k).

End(E) End(k2)
dual adjugate
[m] mI
deg det

Note that dualization and adjugate are linear contravariant and self-transpose.
The fact that deg [m] = m2 implies in characteristic prime to m that E[m] =

ker[m] has size m2. More precisely, #E(Q)[m] = m2. When m = p is prime

E[p] = Z/p × Z/p.

Basic group theory then implies that

E[m] = Z/m × Z/m

in general.
What if char(k) | m? For example, suppose char(k) = p. We have remarked

that #ker[p] = degs[p] and deg[p] = p2 = degs[p] degi[p]. It is impossible for degi[p]
to be 1, so there are two possibilities:

• Supersingular: degi[p] = p2,
• Ordinary: degi[p] = 1.

Note that Frobp : E → E(p) is purely inseparable of degree p. So F̂ rob ◦Frob =
[p]. From this the claim above that degi[p] > 1 follows. We conclude, moreover,
that the inseparability of [p] is determined by whether or not F̂ rob is separable.

Fact: degi : Hom(E1, E2) → Z is a positive definite quadratic form. That it is
positive definite is easy. That it is a quadratic form means that

deg(φ + ψ) − deg φ − deg ψ



ELLIPTIC CURVES AND MODULAR FORMS 17

is linear in φ and ψ. We check

[deg(φ + ψ)] − [deg φ] − [deg ψ] =(φ + ψ)(φ̂ + ψ) − φφ̂ − ψψ̂

=(φφ̂ + φψ̂ + ψφ̂ + ψψ̂) − φφ̂ − ψψ̂

=φψ̂ + ψφ̂.

So indeed it is bilinear.

Exercise 8.0.2. Let E : y2 = x3 − x. Note that [i] : (x, y) 7→ (−x, iy) is an isogeny
defined over Q(i). Hence there is a map Z[i] → End(E). Describe the quadratic
form on Z[i] which sends a + bi to deg(a + bi).

8.1. Tate module and Galois representations. If ` is a prime and E is an
elliptic curve over Q then we have seen that E[`] = E(Q)[`] = E[`](Q) is a finite
group isomorphic to Z/` × Z/`.

Suppose that P ∈ E[`] and σ ∈ GQ = Gal(Q/Q). Then [`]P = O. Moreover,
since GQ acts on E(Q) by group homomorphisms3, Pσ ∈ E[`] as well. This gives a
representation

ρE,` : Gal(Q/Q) → Aut(E[l]) ⊂ GL(E[`]) ' GL2(Z/`).

Last year, in class field theory, we studied one-dimensional representations of
GQ. Elliptic curves give a method of studying 2-dimensional representations.

9. February 18, 2010

Last time we studied E[p] = E[p](k), and discovered that when p 6= the charac-
teristic of k then

E[p] ' Z/p × Z/p

as an abelian group.

9.1. The Weil pairing. Today we will examine a deeper structure on E[m]. For
simplicity of exposition, we will assume that char(k) - m. The Weil pairing is an
alternating pairing

e : E[m] × E[m] → µm.

To define this let P ∈ E[m]. Because mP = 0, the divisor m(P − O) must be
principal say div(f) = m(P − O) where f ∈ k(E)×. Let P ′ ∈ E[m2] be any point
such that mP ′ = P . (We know such a P ′ exists because we know the structure of
E[m2] from last time.) Now let

D =
∑

R∈E[m]

([P ′ +E R] − [R])

Note that D = m2P ′ − m2O as an element of Pic0(E) and so it is principal, say
div(g).

On the other hand,

div(f ◦ [m]) =m
∑

R∈E[m]

[P ′ + R] − m
∑

R∈E[m]

[R]

=mD = m · div(g) = div(gm).

3The fact that (P + Q)σ = P σ + Qσ is a consequence of the fact that the group law is defined
over Q.



18 ELLIPTIC CURVES AND MODULAR FORMS

Hence gm = cf ◦ [m].
Now let Q be another point in E[m]. Define h ∈ k(E)× by

h(X) =
g(X + Q)

g(X)
.

By the above,

h(X)m =
g(X + Q)n

g(X)n
=

f([m](X + Q))
f([m]X)

=
f([m]X)
f([m]X)

= 1.

Therefore, h is independent of X and h(X) = e(P,Q) = 〈P,Q〉 is an mth root of
unity.

Properties of the Weil pairing.

(1) e is bilinear: e(P1+P2, Q) = e(P1, Q)e(P2, Q) and e(P,Q1+Q2) = e(P,Q1)e(P,Q2).
(2) e is alternating: e(P, P ) = 1.
(3) e is non-degenerate: if e(P,Q) = 1 for all Q ∈ E[m] then P = O.
(4) e commutes with Galois action: e(Pσ, Qσ) = e(P,Q)σ for all σ ∈ Gk.

Proof. (1) In the second variable we compute directly

e(P,Q + R) =
gP (X + Q + R)

gP (X)
=

gP (X + Q + R)
gP (X + R)

gP (X + R)
gP (X)

= e(P,Q)e(P,R).

To compute e(P +Q,R), let φ be a function with divisor [P +Q]− [P ]− [Q]+[O]
(which is clearly principal.) Since

div(fP ) = mP −mO, div(fQ) = mQ−mO, div(fP+Q) = m(P +Q)−mO,

it follows that

div

(
fP+Q

fP

)
= m · div(φ) = div(φm)

and thus that fP+Q = cfpfQφm. So

fP+Q ◦ [m] =c(fP ◦ [m])(fQ ◦ [m])(φ ◦ [m])m

gm
P+Q =cgm

P gm
Q (φ ◦ [m])m

Now we compute

e(P + Q,R) =
gP+Q(X + R)

gP+Q(X)

=
gP+Q(X + R)

gP (X)
gP+Q(X + R)

gQ(X)
φ([m](X + R)

φ([m]X)
=e(P,R) · e(Q,R) · 1.

(2) Let τP denote the translation by P map. Choose P ′ such that mP ′ = P .
Let

G =
m−1∏
i=0

gP ◦ τiP ′ .

Recall that div(gP ) =
∑

R[P ′ + R] − [R], meaning that gP has poles ate E[m] and
zeroes at P ′ + E[m]. Therefore, G has zeroes at iP ′ + E[m] for i = 1, 2, . . . ,m and
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poles at iP ′ + E[m] for i = 0, . . . ,m − 1. Since the sets iP ′ + E[m] coincide for
i = m and i = 0, it follows that div(G) = 0 and so G is constant. Hence

m−1∏
i=0

gP ◦ τiP ′ = G(X) = G(X + P ′) =
m∏

i=1

gP ◦ τiP ′ ,

from which it follows that gP = gP ◦ τP or, in other words, gP (X) = gP (X + P ).
So e(P, P ) = gP (X+P )

gP (X) = 1.
(3) Suppose e(P,Q) = 1 for all Q. Then gP (X + Q) = gP (X) for all Q ∈ E[m].

So gP is invariant under translation by E[m]. This means that under the map
[m] : E → E, gP is in the fixed field of k(E), i.e. gP = φ ◦ [m] for some φ : E → P1.
So

cf ◦ [m] = gm
P = (φ ◦ [m])m = φm ◦ [m].

and thus φm = cf . Since div(f) = mP − mO, this implies that div(φ) = P − O.
We can conclude that P = O because otherwise φ : E → P1 would be a degree 1
map, which is impossible.

(4) This is immediate since everything is defined over Q. ¤
Note that (2) implies that e(Q,P ) = e(P,Q)−1. Indeed, combining with (1),

1 = e(P + Q,P + Q) = e(P,Q)e(P, P )e(Q,P )e(Q,Q) = e(P,Q)e(Q,P ).

In characteristic 2, e(P, P ) = 1 is stronger than e(Q,P ) = e(P,Q)−1.
One way to write the Weil pairing:

e : ∧2E[m] = E[m] ⊗ E[m]/{P ⊗ P | P ∈ E[m]} → µ`

9.2. The Tate module. The Tate module T`(E) of an elliptic curve E is lim←−E[`n].
Recall that if {Ai} is a sequence of abelian groups together with homomorphisms

· · · −→ A3
φ2−→ A2

φ1−→ A1
φ0−→ A0

respecting composition then

lim←−
n

An = {(. . . , a2, a1, a0) | φi−1(ai) = ai−1}.

It is an abelian group under coordinate-wise addition.
An example of a projective limit is the `-adic integers Z`. The maps

· · · −→ Z/`3
`−→ Z/`2

`−→ Z/`

lead to Z` = lim←−Z/`n which is a characteristic zero ring.

10. February 23, 2010

A profinite group is any group which can be written as the inverse limit of finite
groups. (Recall/note that an inverse limit really depends on the maps φi not just
on the groups Ai.)

The Tate module T`E is the inverse limit of E[`n]. We can compatibly choose
isomorphisms E[`n] ' Z/`nZ such that the diagram

· · ·
[`] // E[`n]

[`] //

'
²²

E[`n−1]
[`] //

'
²²

· · ·

· · · // (Z/`nZ)2 // (Z/`n−1Z)2 // · · ·
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commutes. Therefore, as an abelian group T`E ' Z2
` . However, the Tate module

also carries an action of Gk.
Indeed, Gk action commutes with multiplication by [`] so the following is com-

mutative, and implies that Gk acts on the Tate module.

· · ·
[`] //E[`n]

[`] //

Gk

¼¼
E[`n−1]

[`] //

Gk

¼¼
· · ·

We write this action as

ρE,` : Gk → GL(T`E) ' GL2(Z`).

This is called the `-adic representation attached to E.
Moreover, the action of Gk is compatible with the Weil pairing. Again, we have

a commutative diagram:

· · · // E[`2] × E[`2] //

e`2

²²

E[`] × E[`]

e`

²²
· · · // µ`2 = Gm[`2]

[`] // Gm[`] = µ`

So the Weil pairing gives a map T`E × T`E → lim←−µ`n = T`Gm.
You can’t tell much about E from E[`]. For instance, suppose that char(k) 6= 2.

Let E : y2 = x(x− 1)(x− λ) and E′ : y2 = x(x− 1)(x− λ′) where λ, λ′ ∈ K. Then
E[2] and E′[2] are isomorphic as abelian groups with bilinear pairing. Indeed, if
E : y2 = f(x) then

E[2] = {O,Pi = (αi, 0) | αi is a root of f}.

From the properties of the Weil pairing it is not hard to see that e(O,Pi) = 1 for
all i and e(Pi, Pj) = −1 if i 6= j and 1 otherwise. In the case of E and E′ above,
E[2] and E′[2] are even isomorphic as Gk-modules. However, in general, E and E′

aren’t isomorphic.
In contrast, if k is a finite field (or a number field) Tate (resp. Faltings) proved

that T`E ' T`E
′ if and only if E and E′ are isogenous.

More generally, we can as what we can learn about the quadratic space Hom(E1, E2)
from E[`] and T`E. Suppose φ : E1 → E2 is an isogeny (with everything defined
over some field k.) Then φ induces a map E1[`] → E2[`] of Gk-modules, and this
extends to a map T`E1 → T`E2.

Theorem 10.0.1. Suppose that char(k) 6= `. Then Hom(E1, E2)⊗ZZ` → HomGk
(T`E1, T`E2)

is injective.

Remark. When k is a number field or a finite field the map on Hom spaces is an
isomorphism. One can check that this implies the statement of Tate/Faltings above.

Remark. Hom(E1, E2) → HomGk
(E1[`], E2[`]) need not be injective. For exam-

ple, take E1 = E2 = E and φ = [`]. Question:(optional exercise) What about
Hom(E1, E2) ⊗Z Z/`Z → HomGk

(E1[`], E2[`])?

Note that if A is an abelian group then A ⊗Z Z/`Z ' A/`A.

Corollary 10.0.2. End(E) is a free abelian group of rank ≤ 4.
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Lemma 10.0.3. Let M be a finitely generated submodule of Hom(E1, E2). Let
Mdiv be the submodule of Hom(E1, E2) containing all φ such that [m]φ ∈ M for
some m ∈ Z. Then Mdiv is finitely generated.

Note that this is not a general statement about finitely generated submodules
in general. For example, if M = Z ⊂ R. Then Mdiv = Q which is not finitely
generated.

In a word, the idea of the proof is that 1
mφ is an isogeny for arbitrarily large m

because the degree map prohibits it.

Proof. We have Mdiv ⊂ M ⊗Z R = Rr for some r. We claim that Mdiv is a discrete
subgroup. Indeed

{φ | deg φ ≤ 1, φ ∈ Mdiv} ⊂ {φ | deg φ < 1} ∩ Hom(E1, E2) = {0}.

Since deg is a positive definite quadratic form the set {φ | deg φ ≤ 1} is an open
region. This proves the claim. Since a discrete subgroup of Rr is finitely generated
this completes the proof. ¤

Proof of Theorem. Let φ ∈ Hom(E1, E2) ⊗Z Z` vanish at in Hom(T`E1, T`E2).
Write φ =

∑
βiψi (i = 1, . . . , n) a finite sum with βi ∈ Z` and ψi ∈ Hom(E1, E2).

Let M = Zψ1 + · · ·Zψn. Choose φ1, . . . , φr a basis of Mdiv (which exists by the
Lemma.)

So we can write φ =
∑

αiφi for some αi ∈ Z`. Choose ai ∈ Z such that
ai ≡ αi (mod `e), and let f =

∑
aiφi ∈ Hom(E1, E2). Then f ≡ φ (mod `e). i.e.

f−φ =
∑

γiφi such that γi ∈ `eZ`. So f−φ kills E[`e] as does φ. Hence f kills E[`e].
By Galois theory this means there exists g ∈ Hom(E1, E2) such that f = [`e] ◦ g.
So g =

∑
biφi with bi ∈ Z, hence f =

∑
`ebiφi. Hence ai = `ebi =⇒ ai ≡ 0

(mod `e) =⇒ αi ≡ 0 (mod `e). Since this is true for arbitrary e we conclude that
αi = 0 for all i and thus φ = 0. ¤

Regarding finite generation of Hom(E1, E2): What we have shown implies that
if M is a finitely generated subgroup of Hom(E1, E2) then M ⊗Z Z` injects into
Hom(T`E1, T`E2), and thus M has rank at most 4.

Now let M be a finitely generated subgroup of Hom(E1, E2) of maximal rank.
(Such an M exists because the rank of M is bounded above by 4!) By the lemma,
Mdiv is also finitely generated, so we can replace M with Mdiv (which clearly has
the same rank as M .)

Now let φ ∈ Hom(E1, E2) which is not in Mdiv. Then the module generated by
M and φ has rank strictly greater than the rank of M , since any relation

aφ + a1m1 + · · · + armr = 0

would imply that φ was in Mdiv. This contradicts the hypothesis that M had
maximal rank among finitely generated subgroups of Hom(E1, E2).

11. February 25, 2010

11.1. The endomorphism ring. Let E/K be an elliptic curve, End(E) = EndK(E)
is a ring with the following properties.

• It is a free Z-module of rank at most 4.
• It has an anti-involution ι : φ 7→ φ̂ which satisfies ι(φψ) = ι(ψ)ι(φ) and

ι2 = id, and φι(φ) ∈ Z≥0 and φι(φ) = 0 if and only if φ = 0.
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Some examples of rings that satisfy these properties:

(1) Z, ι = id.
(2) Z[

√
−d] for d ≥ 0. (Or Z[ 1+

√
−d

2 ] if d ≥ 0 and d ≡ 3 (mod 4).) ι equals
complex conjugation.

(3) H = Z + Zi + Zj + Zk where ijk = i2 = j2 = k2 = −1. More generally,
orders in a quaternion algebra.

Exercise 11.1.1. Check that the Hurwitz quaternion algebra H +Z( i+j+k
2 ) satisfies

the properties above. (The main thing here is to show that φι(φ) is integral.)

In fact, these are the only examples. That is, End(E) is Z, and order in OF for
some quadratic imaginary field F , or and order in a quaternion algebra.

An ring order of a ring R is finitely generated free Z-submodule R0 ↪→ R such
that R = R0 ⊗Z Q.

We showed that rkZ(End(E)) ≤ r by considering the action of End(E) on T`E.
We can also consider the action of End(E) on the (1-dimensional) K vector space of
holomorphic differentials on E H0(E/K, Ω1). The action is given by φ ·ω = φ∗(ω).
So we have a map

End(E) → EndK(H0(E/K, Ω1)) = K.

What is the kernel of this map? i.e. for which φ ∈ End(E) does φ∗ω = 0? In
characteristic zero only φ = 0 satisfies this property, so the map is injective, and,
in particular, End(E) is commutative.

Remark. All commutative rings (Z or an order in a quadratic imaginary field) arise
as End(E) for some E.

In characteristic p, Frob∗ = 0 because Frob is purely inseparable. To see that
quaternion orders arise, we give an example. Let

E : y2 = x3 − x over F7.

We have seen before that Z[i] ↪→ End(E). Since deg(Frob) = 7 6= a2 + b2 for any
a, b ∈ Z and Z[i] is maximal among orders of Q(i), we can conclude that End(E)
must be an order in a quaternion algebra Q.

To determine which quaternion algebra Q is we let ` 6= 7 be a prime. Then

Q ⊗ Q` = End(E) ⊗Z Q` ↪→ End(T`E) ⊗ Q` ' M2(Q`).

Since the rank of Q is 4 this implies that Q⊗Q` ' M2(Q`). When Q satisfies this,
we say that Q splits at `.

We still have to determine what happens at two more primes: {7,∞}. At ∞,
Q ⊗ Q∞ = Q ⊗ R can’t be M2(R) because Q is positive definite. This leaves only
7. One way to see that Q doesn’t split at 7 is by knowing that quaternion algebras
don’t split at an even number of places. A direct way of seeing this is to consider
the map

End(E) → End(H0(E/K, Ω1)) ' F7.

The existence of this map implies that Q⊗Q7 has a nontrivial two-sided ideal, and
that, therefore, Q ⊗ Q7 is not isomorphic to M2(Q7).

We say “Q is {7,∞}.”
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11.2. Elliptic curves over finite fields. Given E/Fq the basic invariant is #E(Fq).
If (q, 6) = 1 then we can write E : y2 = f(x). A good heuristic is to think that for
the q choices of x, the probability that f(x) is a square is 1/2. Since whenever f(x)
is a square there are two choices of y, one would expect there to be q + 1 points
on E (the 1 is the point at infinity.) Moreover, if one takes this heuristic further,
it can be deduced that #E(Fq) = q + 1 + error where the error term should be
bounded by c

√
q.

Theorem 11.2.1 (Hasse). q + 1 − 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.

Lemma 11.2.2. F − 1 is separable.

Proof. (F − 1)∗ω = F ∗ω − [1]∗ω = −ω. ¤

Let F : E → E be Frobenius. i.e. F (x, y) = (xq, yq). Let P = (x, y) ∈ E(Fq).
Then P ∈ E(Fq) if and only if FP = P . So, using the lemma, we can conclude
that

#E(Fq) ={P ∈ E(Fq) | (F − 1)P = 0}
=#ker(F − 1) = degs(F − 1) = deg(F − 1)

=(F − 1) ̂(F − 1) = FF̂ − (F + F̂ ) + 1 = q + 1 − (F + F̂ ).

So, we see that Hasse’s theorem is equivalent to
∣∣∣F + F̂

∣∣∣ ≤ 2
√

q.

12. March 2, 2010

Proof of 11.2.1. We compute

deg nF + m = (nF+m) ̂(nF + m) = m2FF̂+mn(F + F̂︸ ︷︷ ︸
a

)+n2 = m2q+mn(F+F̂ )+n2.

Since deg is positive definite we know that this is non negative for any choice of
m,n ∈ Z. This means that (mna)2 − 4(m2q)(n2) ≤ 0. Simplifying this gives
|a| ≤ 2

√
q as desired. ¤

Since GFq is procyclic, the representation ρE,` : GFq → GL2(Z`) is determined
by the image of Frobenius. On the other hand, what can we say about the action
of F on T`E, i.e. ρE,`(F ) ∈ GL2(Z`)?

We know detF equals the action of F on T`Gm = lim←−µ`n is raising to the q

power (or multiplication by q in the group law on Gm.) Since the action of F̂ must
satisfy FF̂ acts by qI = det FI, we conclude that F̂ is the adjugate to F . Hence
F + F̂ acts by trFI.

By definition, we have a = F + F̂ which is a “motivic description.” The above
discussion implies that a = tr ρE,`(F ), an “`-adic description.” Since tr doesn’t
depend on the choice of basis, a is independent of the choice of isomorphism T`E '
GL2(Z`).

Note that a priori tr ρE,`(F ) is an `-adic integer and dependant on `, but the
above implies that it is in fact an integer independent of `. This is the first example
of an “independence of `” result.
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12.1. The Weil conjectures. Given an elliptic curve E/Fq we have #E(Fqn) for
n = 1, 2, . . .. More generally, if X/Fq is a smooth projective variety, then we define

Z(X/Fq, T ) = exp

( ∞∑
n=1

#X(Fqn)
n

Tn

)
.

Some examples: X = pt.

Z(pt/Fq, T ) = exp

( ∞∑
n=1

#X(Fqn)
n

Tn

)
= exp

( ∞∑
n=1

Tn

n

)

=exp(− log(1 − T )) =
1

1 − T
.

X = P1:

Z(P1/Fq, T ) = exp

( ∞∑
n=1

#P1(Fqn)
n

Tn

)
= exp

( ∞∑
n=1

(qn + 1)Tn

n

)

= exp

( ∞∑
n=1

(qT )n

n
+

∞∑
n=1

Tn

n

)

= exp(− log(1 − qT ) − log(1 − T )) =
1

(1 − T )(1 − qT )
.

X = Pn: One can show that

Z(Pn/Fq, T ) =
1

(1 − T )(1 − qT ) · · · (1 − qnT )
.

Let us now look at the case X = E. We have

#E(Fqn) = deg(Fn − 1) = qn + 1 − (Fn + F̂n).

If we let α, β be the eigenvalues of ρE,`(F ) then we know that q = αβ and a = α+β.
Moreover, Fn + F̂n = αn + βn. So

Z(E/Fq, T ) = exp

( ∞∑
n=1

1 + qn − αn − βn

n
Tn

)

=exp

( ∞∑
n=1

Tn

n
+

∞∑
n=1

(qT )n

n
−

∞∑
n=1

(αT )n

n
−

∞∑
n=1

(βT )n

n

)

=
(1 − αT )(1 − βT )
(1 − T )(1 − qT )

=
1 − aT + qT 2

(1 − T )(1 − qT )
.

Again, although we have used the `-adic Tate representation to define α and β,
the final answer is independent of `.

If X is a smooth projective variety of dimension n, the Weil conjectures say that
(1) Z(X,T ) is a rational function of T with rational coefficients.
(2) (Functional equation) There exists an integer ε such that

Z(X, q−nT−1) = ±qnε/2T εZ(X,T ).

(3) (Riemann Hypothesis) Z(X,T ) = P1(T )···P2n−1(T )
P0(T )···P2n(T ) with P0 = 1 − T , P2n =

1 − qnT , and for all i Pi(T ) ∈ Z[T ] with all roots having archimedean
absolute value 1.
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We compute ε in the case X = Pn.

Z(Pn, q−nT−1) =
1

(1 − q−n/T )(1 − q−n+1/T ) · · · (1 − 1/T )
· Tn+1

Tn+1

=
Tn+1

(T − q−n)(T − q−n+1) · · · (T − 1)
· qnqn−1 · · · q
qnqn−1 · · · q

(−1)n+1

(−1)n+1

=(−1)n+1qn(n+1)/2Tn+1Z(Pn, T ).

So ε = n + 1.

13. March 9, 2010

We remark that part 1 of the Weil conjectures was proven by Dwork, while part
3 was proven by Deligne using etale cohomology.

If we set ζ(s) = Z(X, q−s) then the functional equation relates ζ(s) and ζ(n −
s), hence the terminology. Part 3 of the Weil conjectures is called the Reimann
hypothesis when n = 1. To explain this, note that Z(X,T ) = 0 if and only if
P1(T ) = 0. Since the roots of P1(T ) have absolute value q−1/2 this means that
which means that ζ(s) = 0 implies that |q−s| = q−1/2 so Re(s) = 1/2.

Hasse’s theorem is equivalent to the Riemann hypothesis for elliptic curves E/Fq.
To see this, it suffices to show that for P1(T ) = 1 − aT + qT 2 = (1 − αT )(1 − βT )
the numbers α and β are complex conjugates. If so, then α = β and |α| |β| = q
implies that |α| = |β| = q1/2. This will be the case if a2−4q ≤ 0, but this is exactly
Hasse’s theorem.

Remark: We proved stuff about a using the Tate module. More generally, when
X is a smooth projective variety of dimension 1 (i.e. a curve) then P1(T ) is the
characteristic polynomial of the Frobq acting on T`Jac(X) ' Z2g(X)

` . In this case,
deg(P1) = 2g.

Remark: The zeros of ζ(s) are periodic on Re(s) = 1/2. This is due to the
fact that T = q−s so multiples of 2πi/ log(q) added to s don’t change T . This
is in contrast to the Riemann zeta function for which the zeros get less dense as
Im(s) → ∞.

In general, deg(Pi) = dim(Hi
et(X, Q`). This is equal to dim(Hi(X/C, Q) if X is

the reduction of a complex variety.

13.1. Ordinariness and supersingularity. We assume that k is a field of char-
acteristic p. Recall that E/k is supersingular if F̂ is purely inseparable where
F : E → E(p) is the map (x, y) 7→ (xp, yp).

Theorem 13.1.1. If E is supersingular then E is isomorphic over k to a curve
defined over Fp2 .

Proof. Since F̂ is purely inseparable the map F̂ : E(p) → E must factor through
F . In other words, there is a map φ : E(p2) → E such that the following diagram
commutes.

E
F // E(p)

F̂ //

F

²²

E

E

φ

=={{{{{{{{
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By analyzing the degrees, one finds that deg(φ) = 1, hence φ is an isomorphism.
Thus j(E) = j(E(p2)) = j(E)p2

, so j(E) ∈ Fp2 . ¤

It is not hard to check that if k = Fq(T ) then Ty2 = f(x) and y2 = f(x) have
the same j-invariant but they are not isomorphic over Fp.

Theorem 13.1.2. E is supersingular if and only if Endk(E) has rank 4. If E is
ordinary and k is finite then Endk(E) has rank 2.

We first prove the following.

Lemma 13.1.3. If E′ and E are isogenous then End(E) ⊗Z Q ' End(E′) ⊗Z Q.

Note that there are isogenous curves such that End(E) = Z[i] and End(E′) =
Z[2i].

Proof. Let x ∈ End(E)⊗ then the following diagram is commutative.

E
φ //

x

²²

E′

φxφ′

²²Â
Â
Â

E
φ // E′

where φ′ = φ̂ ⊗ 1
deg(φ) . So the map x 7→ φ′xφ is an isomorphism. ¤

Proof of Theorem 13.1.2. Note that if M is an abelian group then rkZ(M) = dimQ(M⊗Z
Q).

Suppose that Endk(E) is an order in K = Q(
√
−d) and E is supersingular. Let

` 6= p be a prime that is inert in K, and let Φm ⊂ E be cyclic subgroups isomorphic
to Z/`mZ satisfying

Φ1 ⊂ · · · ⊂ Φm−1 ⊂ Φm ⊂ · · · .

Define Em = E/Φm, so we have φm : E → Em with kernel Φm. We have

[p]Em ◦ φm = φm ◦ [p]E .

Since E is supersingular, degi [p] = p2. By the Lemma, this is true of both [p]E
and [p]Em .

By the previous theorem there are only finitely many (at most p2) isomorphism
class of supersingular curves over k. In particular, there exists m,n such that
Em ' Em+n. Since Φm ⊂ Φm+n and Em has an endomorphism whose kernel is
cyclic and isomorphic to Z/`nZ, there exists φ = φm,n such that

E
φm //

φm+n ""EEEEEEEE Em

φ

²²
Em+n

commutes. So Em ' Em+n by φ.
As an element of End(E), NK/Q(φ) = deg(φ) = `n. Then φ = [`n/2 and n is

even. However, this is a contradiction because ker [`n/2] ' (Z/`n/2)2.
Suppose now that End(E) has rank 4 and E is ordinary. Then E[p] ' Z/p. In

fact, TpE ' Zp. Consider the map End(E) → TpE ' Zp. Since, by assumption,
End(E) is an order in a quaternion algebra, this cannot be injective. So there exists
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α ∈ End(E) such that α kills E[pk] for all k. Hence deg α > #E[pk] = pk for all k
which is clearly impossible. ¤

Note that when E is ordinary, End(E) ↪→ Zp. We can conclude that K is a
quadratic imaginary field in which p splits since the kernel is an ideal of norm p.
This leads to the natural question of whether, if K is a quadratic imaginary field in
which p splits, there is an elliptic curve E/Fq (ordinary) with Endk(E) ⊂ K. The
answer is “yes” by work of Tate-Honda, Deuring, and others.

Recall that E is supersingular if and only if F̂ is purely inseparable. This is
equivalent to each of the following.

• F̂ ∗ω = 0,
• (F + F̂ )∗ω = [a]∗ω = 0,
• The image of a in K (via the map Z → K, 1 7→ 1) kills ω which is equivalent

to a ≡ 0 (mod p) or p | a.
• #E(Fq) ≡ 1 (mod p)

And if q = p then E/Fp is supersingular if and only if #E(Fp) = p + 1.

14. March 11, 2010

14.1. Elliptic curves over C (What is E(C)?) We know that E : y2 = f(x)
where f is a polynomial of degree 3. We analyze the set of solutions as Riemann
did. Think of it as the graph of y =

√
f(x). The first approximation is then a

cover by two copies of C (identified at the roots of f(x).)
[Picture drawn of two copies of C above another C having 3 distinguished points

(the roots of f(x).) A loop around one of the points.]
It can’t be that the preimage of the loop lies on one of the copies of C. To

illustrate this, let us take f(x) = x(x − 1)(x − 2). Then we consider the preimage
of a small loop around the origin. Parametrize the loop by x = 0.01e2πit. Then the
preimages for several values of t are given in the following table.

t y
0 0.1,−0.1

1/2 0.1i,−0.1i
1 −0.1, 0.1

At t = 0 and t = 1 we see that we get the same preimages, but their order is
switched. This means that the preimage of the loop can’t be a loop.

[Picture drawn of two copies of C. A slit is cut between two of the points and
a slit is cut between the third point and the point at infinity (moved to a point in
the plane for visual convenience.) Crossing the slit moves from the top plane to the
bottom, or vice versa.]

Since the ‘planes’ should really be copies of CP1 (i.e. spheres) the resulting object
is two spheres each with two holes removed and then attached to each other along
those circles. So, topologically, E(C) is a torus, i.e. S1 × S1.

The algebraic structure of E(C) means it is a complex manifold. We’d like to
see its structure as such. To do this we try to make a map E → C by fixing an
invariant differential ω. Then we consider

P 7→
∫ P

O

ω.
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This is not well defined because there are lots of choices of paths and the value
depends on the choice of path. To fix this, notice that if γ1 and γ2 are two paths
then γ1γ

−1
2 gives an element of π1(E(C), O). If γ1γ

−1
2 represents the trivial element

in the fundamental group (i.e. it can be deformed to the constant loop) then∫
γ1

ω −
∫

γ2

ω =
∫

γ1γ−1
2

ω = 0.

[Picture drawn of torus with points O and P connected by two paths (that aren’t
homotopy equivalent.)]

In other words, we have a map π1(E(C), O) → C which is in fact a homomor-
phism of groups. Since π1(E(C), O) is a free abelian group of rank 2 this restricts
what Λ, its image in C, can be. It turns out that the map is injective and Λ is a
lattice. This means that Λ is a rank 2 discrete subgroup, or in other words a rank
two subgroup not contained in any zR.

So while the original map E(C) → C was not well defined, we now have a map
E(C) → C/Λ which is. Moreover, it is an isomorphism of complex manifolds. So
as a complex manifold, E(C) is C/Λ for some lattice Λ.

From this description it is easy to see what E[n](C) is without using any of the
facts that we have previously proven. The first way is to see that in a fundamental
domain for C/Λ (let w1, w2 be generators of Λ) the n-torsion is the n2 points
generated by w1/n and w2/n. [Picture drawn.]

Another purely algebraic way to see this is via the following diagram of exact
sequences.

0 // Λ //

×n

²²

C //

×n

²²

C/Λ //

×n

²²

0

0 // Λ // C // C/Λ // 0

The maps down are multiplication by n in the respective group. The snake lemma
now implies that C/Λ[n] ' Λ/nΛ which is clearly isomorphic to (Z/nZ)2.

From this we may deduce that if E is defined over a number field K then
E(K)[n] ⊂ (Z/nZ)2. Moreover, the Lefschetz principle implies that E(Q) '
(Z/nZ)2.

A natural question is “which lattices are possible?” The answer is that all of
them are. We now give an idea of how this is shown. First, note that our map
E → Λ required a choice of invariant differential. Thus, as a map from the set of
elliptic curves to lattices it is only defined up to multiplication by C×, i.e. up to
homothety.

The Weierstrass ℘Λ-function is a map

C/Λ → C ∪ {∞}

which satisfies
(℘′

Λ)2 = 4℘3
Λ + g4,Λ℘Λ + g6,Λ℘Λ.

This gives a map
C/Λ → CP2 z 7→ (℘Λ(z), ℘′

Λ(z))

whose image is the algebraic curve EΛ : y2 = 4x3 + g4,Λx + g6,Λ. In other words,
we have a map C/Λ → EΛ(C).
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The upshot of this is that there is a bijection{
homothety classes
of lattices Λ ⊂ C

}
↔

{
isomorphism classes

of elliptic curves E/C

}
One can view the left hand side as something related to “Hodge theory” and the
right hand side as something to do with “Moduli spaces.” A third bijection is C
via the j-invariant, i.e. E 7→ j(E).

14.2. The space of lattices. We now discuss a fourth equivalent characterization
of elliptic curves by describing the set of homothety classes of lattices. If Λ is
a lattice then it is generated by two complex numbers z1, z2. However, this not
unique.

{(Λ, z1, z2) | Λ = Zz1 + Zz2} ={(z1, z2) | z1, z2 are R-linearly independent}
=GL2(R)

Since we are interested in the space up to homothety we will restrict ourselves
to covolume 1 lattices:

{(z1, z2) | z1, z2 generate a covolume 1 lattice} = SL2(R)

A nice way to make this identification is (a + bi, c + di) 7→
(

a b
c d

)
.

Going to covolume 1 identifies lattices that differ by R×, but we would like to
identify those differing by x + iy ∈ C×. One readily checks that this action on
lattices is equivalent to multiplying

(
a b
c d

)
∈ SL2(R) by

( x y
−x y

)
on the right. In

order for this to act on SL2(R), x+ iy ∈ C(1), i.e. x2 +y2 = 1. This group is SO(2).
The final identification that we need to do is identify (z1, z2) with (z′1, z

′
2) if they

generated the same lattice. This corresponds to left multiplication on SL2(R) by
elements of SL2(Z).

We conclude that{
homothety classes
of lattices Λ ⊂ C

}
↔ SL2(Z)\SL2(R)/SO(2).

Remark: Traditionally, one makes this identification via the upper half plane H.
However, SL2(R)/SO(2) ' H, so this is indeed equivalent. We use this formulation
because it is often the case in number theory that one is interested in Γ\G/K
where G is a topological group Γ is a discrete subgroup and K is compact. This is
evidently such a case.

15. March 16, 2010

In the derivation last time we used the group SL2(R), but we could have used
GL+

2 (R) = {g ∈ GL2(R) | det g > 0}. It is easy to see that

SL2(Z)\SL2(R)/SO(2) ' SL2(Z)\GL+
2 (R)/GO(2)

where GO(2) = {
( x y
−y x

)
∈ GL2(R)}.

As remarked last time

SL2(R)/SO(2) ' H = {z ∈ C | Im(z) > 0}.
This isomorphism is realized by the map

(
a b
c d

)
7→ ai+b

ci+d .
This gives three realizations of the same space which we denote by Y (1). (Some-

times one of these formulations is more useful than the other for specific applica-
tions.)
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What does Y (1) look like? We can draw a fundamental domain for the action
of SL2(Z) = 〈( 1 1

1 ) 1, 〉 on H, [typical picture drawn with i and ω (a third root of
unity) identified] but in this picture the sides are identified as well as points along
the bottom arc. This makes the quotient space look like a large teardrop. [Picture
drawn with comment that the open portion corresponds to Im(τ) → ∞ and points
corresponding to τ = i and τ = ω.] This certainly looks like C (as the j-invariant
tells us it should.) Remark: j(EZ+Zi) = 0 and j(EZ+Zω) = 1728.

Locally, near i what does this quotient space look like? In a small neighborhood
of i only the action of

(
1

−1

)
: τ 7→ − 1

τ is visible. So z is identified with

− 1
z + i

− i = i(1 − z

i
+ . . .) − i.

Looking just at the tangent space, the higher order terms in the expansion above
are zero, so the identification is z ↔ −z. In other words, near i the quotient is
C/{±1}. This is isomorphic to C as a topological space, but not as a manifold. It
is an example of what is called an orbifold.

15.1. Level structures. Let’s consider the space

{(E, T ) | E/C is an ell. curve , T ∈ E[N ] has exact order N}/ ∼ .

where (E1, T1) ∼ (E2, T2) if there is an isogeny φ : E1 → E2 such that φ(T1) = T2.
We can think of this space as

{(Λ, T ) | Λ is a lattice, T ∈ Λ/nΛ has exact order N}/homothety.

When N = 1 (as we have seen), this space, denoted Y1(N), is

SL2(Z)\SL2(R)/SO(2).

In general it is
Γ1(N)\SL2(R)/SO(2)

where
Γ1(N) = {

(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ( 1 ∗

1 ) (mod N)}.
Similarly if we replace T by C ⊂ E[N ] where C is cyclic of order N then one

finds that the corresponding space is

Γ0(N)\SL2(R)/SO(2)

where
Γ0(N) = {

(
a b
c d

)
∈ SL2(Z) | N | c}.

This space is denoted Y0(N).
In the case of pairs (E, φ : Λ/NΛ → (Z/NZ)2), where φ is a given isomorphism,

the resulting space is
Γ(N)\SL2(R)/SO(2)

where
Γ(N) = {

(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ( 1

1 ) (mod N)}.
This space is denoted Y (N).

Notice that there are maps

Y (N) → Y1(N) → Y (N) → Y (1)

given by (Λ, φ) 7→ (Λ, φ−1(1, 0)) and (Λ, T ) 7→ (Λ, 〈T 〉) and (E,C) 7→ E.
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It is a fact that these are algebraic curves, but this is far from obvious. We have
that Y (1) ' C (ignoring orbifold issues.) However, Y0(N) is not isomorphic to C
in general.

We now hint at how one establishes that these are algebraic curves. Besides the
map Y0(N) → Y (1) above (as Yoda says) “there is another.” This is (E,C) 7→ E/C.
This gives a map

Y0(N) → C2 (E,C) 7→ (j(E), j(E/C)).

There is an algebraic relation between j(E) and j(E/C) so actually the image
lies on a curve in C2. (This isn’t the end of the story because the map may not
necessarily be injective, but this is certainly the idea of the first step.)

More generally, given M,N (coprime) we have a two maps Y0(MN) → Y0(N)

f1 :(E,CMN ) 7→ (E,CN )

f2 :(E,CMN ) 7→ (E/CM , CMN/CM )

where CN (resp. CM ) is the unique subgroup of CMN of order N (resp. order M .)
This gives a (Hecke) correspondence. A correspondence on a curve X is a curve

Z ⊂ X×X which projects dominantly (over an algebraically closed field this means
surjectivity) to each copy of X. Ours is given by

Y0(MN)
(f1,f2)//Y0(N) × Y0(N).

One can think of a correspondence as a generalization of the graph of a function.
Consider D ∈ Pic0(Y0(N)) =: J0(N). Our correspondence gives a homomor-

phism TM : J0(N) → J0(N) as follows. Write D = P1 + · · · + Pr − Q1 − · · · − Qr.
Then

Tm(D) = f2(f−1
1 (P1)) + · · · + f2(f−1

1 (Pr)) − f2(f−1
1 (Q1)) − · · · − f2(f−1

1 (Qr)).

More compactly, Tm : J0(N) → J0(N) is TmD = f2∗f
∗
1 D. (Recall that the upper

and lower star maps are well defined on Pic0.)

15.2. Modular forms. A (weak) modular form F of weight k is a function on
pairs (E,ω) of elliptic curves together with invariant differential such that

F (E, λω) = λkF (E,ω).

For elliptic curves over C, we define f(τ) = F (C/Λτ , dz). Then

f(
(

a b
c d

)
· τ) =F (C/Λ aτ+b

cτ+d
, dz)

=F (C/Z + Z
aτ + b

cτ + d
, dz)

=F (C/Z(cτ + d) + Z(aτ + b), (cτ + d)dz)

=F (C/Z + Zτ, (cτ + d)dz)

=(cτ + d)kF (C/Λτ , dz)

=(cτ + d)kf(τ).

Therefore, f(τ + 1) = f(τ). With the proper definition of F , f must be holo-
morphic on C, hence Fourier analysis then gives that

(15.2.1) f(τ) =
∑
n∈Z

cnqn where q := e2πiτ .
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An example is the j function:

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · ·

16. March 18, 2010

We define the following power series.

s3 =
∑
n≥1

n3qn

1 − qn
, s5 =

∑
n≥1

n5qn

1 − qn

One can check that the coefficient of qm in Sk is
∑

d|m dk. Moreover, the following
belong to Z[[q]].

h4 = −5s3, h6 = −(5s3 + 7s5)/12

Using these, one defines the Tate curve

(16.0.2) ETate : y2 + xy = x3 + h4x + h6.

We also take ωTate to be the invariant differential dx
2y+x .

What is interesting about this curve? If τ0 ∈ H then, on the one hand, we have
E = C/Λτ . On the other hand, q0 = e2πiτ0 has absolute value, so one can see that
the power series s3, s5 converge, and (16.0.2) defines an elliptic curve E′ over C. It
turns out that

j(E) = j(E′) =
1
q

+ 744 + 196884q + · · ·

and so these are the same curves.
Let F be a (weak) modular form. Using the Tate curve we can define the

q-expansion of F to be F (ETate, ωTate) ∈ Q((q)). Last time we saw that if f is
holomorphic then f has a q-expansion as in (15.2.1). Hence the point of view we are
adapting for modular forms (i.e. functions on pairs (E,ω)) can define a q-expansion
without having to give the holomorphicity condition.

Let h̃4, h̃6 denote the coefficients of h4, h6 reduced modulo p, and define

ẼTate
p : y2 + xy = x3 + h̃4x + h̃6

which is defined over Fp((q)). This is an elliptic curve. To see this, we remark that
the discriminant of this Weierstrass equation is ∆ = q

∏
n≥1(1 − qn)24 = q + · · · .

So regardless of what p is, ∆ is nonzero in Fp((q)). We define the q-expansion of F

modulo p to be F (ẼTate
p , ωTate).

For instance, there is a modular form Hp called the Hasse invariant such that
Hp(E) = 0 if and only if E is supersingular.4 Can check that the q-expansion of
Hp is identically 1. This implies, in particular, that ẼTate

p is never supersingular.5

A modular form of weight k over a field F is a weak modular form of weight k
whose q-expansion in F ((q)) actually lies in F [[q]]. If furthermore the q-expansion
lies in qF [[q]], we call it a cusp form. (Remark that for higher level structures there
are multiple cusps, and defining a modular (or cusp) form is more complicated.)

4Note that the vanishing of a modular is independent of the choice of invariant differential.
5Although over C every elliptic curve is isomorphic to a Tate curve, this phenomenon is not

general.
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16.1. Elliptic curves over local fields. Let R be a complete discrete valuation
ring (dvr) with K its field of fractions, m its maximal ideal, and v : K× → Z the
valuation. Examples include k[[t]] where k is any field and Kπ a finite extension of
Qp.

What is an elliptic curve over R? You could say

E : y2 + · · · = x3 + · · ·

where the coefficients ai ∈ R and ∆ 6= 0. However, you would like that when
R → R′ is any ring homomorphism then there should be a map E(R) → E(R′).
For R′ = k = R/m the resulting reduced curve E(k) will not be an elliptic curve
unless ∆ does not belong to m, that is, ∆ ∈ R×.

This turns out to be much better, but one still has to be careful because the
discriminant depends on the choice of Weierstrass equation. To rectify this, let E
be an elliptic curve over K. A given Weiestrass equation is called minimal of if
v(∆) is minimal among all Weierstrass equations with ai ∈ R. The discriminant of
such an equation is also called minimal and may be denoted ∆min.

Two (isomorphic) examples:

y2 = x3 + x + 1 y2 = x2 + 54x + 56.

The first equation has ∆ = −24 · 31. The second has ∆ = −24 · 512 · 31. Over Z5,
the first is minimal, the second isn’t.

An elliptic curve over R is one over K such that v(∆min) = 0.
Note that if v(∆) < 12 then ∆ = ∆min. Similarly, if v(c4) < 4 or v(c6) < 6 then

∆ = ∆min. In fact, if the residue characteristic is not 2 or 3 then ∆ = ∆min if and
only if either v(∆) < 12 or v(c4) < 4. (This is exercise 7.1 of AEC.)

If the residue characteristic is 2 or 3 the story is more complicated, but it is
completely understood via Tate’s algorithm. For example, over Q2

(16.1.1) y2 = x3 − 11x − 890

is not minimal. It’s discriminant is −212 · 174. However, it is visibly clear that
v(c4) = v(11) = 0. A minimal Weierstrass form for this curve is

(16.1.2) y2 + xy + y = x3 − x2 − x − 14.

Given a minimal Weiestrass form for an elliptic curve E/K, the curve Ẽ/k

defined by reducing the coefficients modulo m may be singular. Let Ẽns denote the
nonsingular locus. We can classify Ẽns as follows.

• If v(∆) = we say that E has good reduction or that E extends to an elliptic
curve E/R. In this case, Ẽ = Ẽns is an elliptic curve over k.

• If v(∆) > 0 and v(c4) = 0 we say E has multiplicative reduction. Then Ẽ

is a nodal singular curve and Ẽns(k) ' k
×

.
• If v(∆) > 0 and v(c4) > 0 we say E has additive reduction. Then Ẽ is a

cuspidal cubic and Ẽns(k) ' k.

Multiplicative and additive reduction are both called bad reduction.
Returning to our example above in equations (16.1.1) and 16.1.2, gives an ex-

ample of a curve which has multiplicative reduction over Q17 and good reduction
over Q2.



34 ELLIPTIC CURVES AND MODULAR FORMS

17. March 23, 2010

17.1. Motives. There is not a definition of motive in that we can say a motive
is , but we can say that is a motive. Today we’ll talk about a
motive as a “system of realizations” as in Deligne’s paper on P1 − {0, 1,∞}. Two
other senses in which motives are studied are as “objects cut out by correspondences
on algebraic varieties over C” and “ring of motives K0(V arK).” In the latter of
these, scissors construction, motivic integration and connection with logic (model
theory) are discussed.

17.1.1. The motive of an elliptic curve. What about an elliptic curve makes it a
motive? A motive is a “linearization” of an algebraic variety. There are three (plus
a fourth “crystalline” notion that we won’t discuss today) ways one can obtain a
vector space from E/Q.

(1) (etale story) T`E = lim←−E[`n] which is isomorphic as a group to Z2
` . Define

V`E = Hom(T`E, Q`). This is a 2-dimensional vector space over Q` with
an action of GQ.

(2) (Betti story) Consider EC/C. Recall that for each holomorphic differential
ω on E, we have a map π1(E) → C given by γ 7→

∫
γ

ω ∈ C. Since π1(E) is
abelian

π1(E) = H1(E, Z) = {loops γ on E up to isotopy}.

Our second space is Hom(H1(E, Z), Q) which is a 2-dimensional Q vector
space.

(3) (deRham story) We already have the space of invariant differentials on E:
H0(E, Ω1

E). Over C, deRham cohomology gives an exact sequence

0 → H0(E/C, Ω1
E) → H1

dR(E/C) → H1(E,OE) → 0

and, moreover, H1(E,OE) is canonically isomorphic to H0(E/C, Ω1
E) ⊕

H0(E/C, Ω1
E). The theory of deRham cohomology can be described alge-

braically, and one gets an exact sequence

0 → H0(E, Ω1
E) → H1

dR(E/Q) → H1(E,OE) → 0

of Q vector spaces. H1
dR(E/Q) is our final vector space. Note that this

looks just like the exact sequence above, but there is no canonical splitting.

17.1.2. Comparison maps. Betti ↔ etale. Recall that we showed that E[m](Q) '
1
mΛ/Λ ' 1

mH1(E, Z)/H1(E, Z). Let m = `n and taking the inverse limit, we find

T`E
∼//H1(E(C), Z) ⊗Z Z`

Taking Hom(·, Q`) yields

V`E Hom(H1(E(C), Z), Q`) ' H1
Betti(E(C), Q`)∼

oo

Betti ↔ deRham. We have seen a map

H0(E, Ω1
E) × H1(E(C), Z) → C (ω, γ) 7→

∫
γ

ω.

Equivalently, we have a map

H0(E, Ω1
E) → Hom(H1(E(C), Z), C)
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which can be extended to a map

H1
dR(E) → Hom(H1(E(C), Z), C)

Tensoring with C gives a natural isomorphism

H1
dR(E) ⊗Q C ∼// Hom(H1(E(C), Z), C) ⊗ C.

Per Deligne, a motive M is (at least) a set of vector spaces MB/Q, MdR/C and
M`/Q` (for all primes `) together with isomorphism

MB ⊗ Q`
∼

cB,`

//M` MB ⊗ C ∼ //MdR ⊗ C.

What’s more, MdR ⊗ C should have a filtration

MdR = FkMdR ⊃ Fk−1MdR ⊃ · · · ⊃ F0MdR ⊃ F−1MdR = 0.

The constant k is called the weight of the motive. This is called the Hodge filtration.
It should also be the case that for all but finitely many p the representation

GQ → GL(M`) is unramified at p, and so the map GQp → GL(M`) factors through
GQp/Ip ' GFp = 〈Frobp〉. In this case the representation is determined by the
image of Frobp. We require that the eigenvalues of this action are algebraic integers
all with complex absolute value p−k/2. (In the elliptic curve case this matches what
we’ve proved with k = 1–the Riemann hypothesis.)

Theorem 17.1.1. If X/Q is a smooth projective variety and i ∈ Z≥0 then there is
a motive (in the sense above) Hi(X) with

Hi(X)B = H1(X(C), Q), Hi(X)dR = Hi
dR(X/Q), Hi(X)` = Hi

et(X, Q`).

Recall that Faltings proved that Hom(V`E1, V`E2) ' Hom(E1, E2) ⊗ Z`. It is
not true that

Hom(E1, E2) ' Hom(H1
dR(E1),H1

dR(E2))
However, given φ ∈ Hom(H1

dR(E1),H1
dR(E2)) that is compatible with the isomor-

phisms to Hi
B(Ej) one does have a correspondence just as in the Faltings theorem.

(This may become an exercise if Jordan can work it out himself.)

17.1.3. The Tate motive: Q(1). We finish with an example other than an elliptic
curve, namely X = Gm. From homework we know ω = dz

z is an invariant differen-
tial. Also, Gm(C) = C× = C \ {0} which clearly has H1(Gm) = Z generated by a
loop around the origin γ. Then

MB = Q · γ and MdR = Q
dz

z
.

We have seen in the homework that M` = Hom(T`Gm, Q`) has GQ acting by the
inverse of the cyclotomic character. This is denoted Q(1).

Since
∫

γ
dz
z = 2πi, we could write MB = 2πiQ and MdR = Q, and this gives the

compatibility isomorphism.
We proved that ∧2V`E = Q`(1) in the homework. This suggests that one should

have a motivic isomorphism ∧2H1(E) → Q(1). In particular, should have maps

∧2V`
//

∧2cB,dR

²²

2πiQ

∧2H1
dR(E, Q) ⊗ C // Q
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So the map ∧2cB,dR should have determinant 2πi. This is the content of exercise
6.? from AEC about quasiperiods in which one proves that

η1ω2 − η2ω1 = 2πi.

18. April 6, 2010

Recall that a modular form of level N and weight k over a ring R (such that N ∈
R×) is a function F which to any triple (E/S, ω,C) assigns a value in S. Here, E is
an elliptic curve over an R-algebra S, ω is an invariant differential and C is a cyclic
group of order N . Moreover, we require that F (E/S, λω,C) = λkF (E/S, ω,C) for
all λ ∈ S× and that F (ETate, ωTate, CTate) =

∑
n∈Z anqn, the q-expansion of F ,

satisfies an = 0 for all n < 0 (at all of the cusps.) If, moreover, the constant term(s)
are all zero, we call F a cuspform.

Holomorphically, if F is a form over C, we define f : H → C by

f(τ) = F (C/Z + Zτ, dz, 1/NZ/Z).

Recall that f(γτ) = (cτ + d)kf(τ) for all γ =
(

a b
c d

)
∈ Γ0(N).

We introduce the standard notation

g
∣∣
([γ] τ) = (cτ + d)−kg(γτ),

and denote the set of actions by a group Γ under this operation by [Γ]k. (Note that
f |k[γ] |k[γ′] = f |k[γγ′] , so this is indeed a group action.) Hence if g is a classical
modular form of level N and weight k (i.e. an f as above coming from a form F )
then it is fixed by [Γ0(N)]k.

We showed earlier that f is holomorphic, and, since ( 1 1
1 ) ∈ Γ0(N), if we write

q = e2πiτ then f(τ) =
∑

n≥0 anqn. However, a function of this form that is invariant
by [Γ0(N)]k need not be a modular form. A third condition is necessary which we
now describe.

We say a function f : H → C is a modular form of level N and weight k if
• f is holomorphic,
• f |=[γ] f for all γ ∈ Γ0(N),
• f |k[γ] has a q-expansion with no nonzero coefficients for negative powers

of q for all γ ∈ SL2(Z).
If furthermore, the q-expansions all have nonzero constant terms then f is called a
cuspform.

The condition on the q-expansion of f says that as q → 0 (Im(τ) → ∞) f(τ)
is bounded. The third condition means that f has similar behavior “at all of the
cusps.”

[Picture drawn of the fundamental domain F of the SL2(Z) action on H along
with translates

(
0 1
−1 0

)
F and αF .]

Let G = F ∪
(

0 1
−1 0

)
F ∪ αF . The following statements are equivalent.

• G is a fundamental domain for the action of Γ0(2).
• S = {1, α,

(
0 1
−1 0

)
} forms a complete set of coset representatives for Γ0(2)\SL2(Z).

To see why this is the case, suppose that γz, z ∈ G. Without loss of generality, we
may assume that z ∈ F . If γz ∈ βF then β−1γz ∈ F . So β−1γ = 1. Therefore, β ∈
S if and only if the elements represent distinct cosets in Γ0(2)\SL2(Z). Furthermore,
the set is a complete set of coset representatives is equivalent to the requirement
that translates of G by Γ0(2) cover H. Indeed, if z ∈ H then γz ∈ F for some
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γ ∈ SL2(Z). So γ = βγ′ for some β in S if and only if S forms a complete set of
cosets.

Remark: [Γ0(p) : SL2(Z)] = p + 1. Why? We have the inclusions

Γ(p) ⊂ Γ0(p) ⊂ SL2(Z)

where Γ(p) is normal in each of the other two subgroups. Thus, modding out gives

1 ⊂ {( ∗ ∗
∗ )} ⊂ SL2(Fp)

and the index of Γ0(p) in SL2(Z) is equivalent to that of B = {( ∗ ∗
∗ )} in SL2(Fp).

Since SL2(Fp) acts transitively on lines in F2
p and B is the stabilizer of

[ Fp

0

]
, this,

in turn, is equal to the number of the lines inf F2
p. This is readily seen to be p + 1.

What happens to f(τ) as τ → 0? It turns out that f
∣∣
k

[(
0 1
−1 0

)]
has a q-

expansion of the right type is equivalent to f behaves itself as τ → 0.
To verify the third condition in the definition of modular forms, we need to

check verify that f |k[γ] has the proper q-expansion. It suffices to check this for
γ ∈ Γ0(N)\SL2(Z), but a smaller set may be sufficient. How many γ need to be
verified is the same as asking “how many cusps are there?”

If γ∞ ∈ Γ∞ = {( 1 ∗
1 )} then g |k[γ∞] (τ) = g(τ + n) is bounded as Im τ → ∞ if

and only if g(τ) is. Thus it sufices to check γ ∈ Γ0(N)\SL2(Z)/Γ∞. These are the
“cusps.”

For example, take Γ0(2). Let f be a modular form for Γ0(2), and set g =
f

∣∣
k

[(
0 1
−1 0

)]
. If γ ∈ Γ0(N) then

g |k[γ] = f
∣∣
k

[(
0 1
−1 0

)]
|k[γ] = f

∣∣∣∣k[
γ

“

0 1
−1 0

”

] ∣∣
k

[(
0 1
−1 0

)]
.

If γ ∈ Γ = Γ0(2)
“

0 1
−1 0

”

then this is equal to g, but Γ0(2) is not normal so this need
not be the case.

In other words, g is a modular form not for Γ0(2) but rather the smaller group
Γ = {( ∗

∗ ∗ ) mod 2}. So g(τ + 1) 6= g(τ), but since ( 1 2
0 1 ) ∈ Γ, g(τ + 2) = g(τ) and

if q = e2πiz then g(τ) =
∑

n anqn/2. The integer 2 is the width of the cusp.
In general, if Γ ⊂ SL2(Z) is a congruence subgroup (meaning Γ(N) ⊂ Γ for some

N) then Γ\SL2(Z)/Γ∞ consists of double cosets D1, . . . , Dk where Di consists of
wi cosets of Γ\SL2(Z). There are k cusps with cusp i having width wi. Another
way of defining the width of a cusp γ ∈ Γ\SL2(Z)/Γ∞ is as the smallest positive
integer n such that ( 1 n

0 1 ) ∈ Γγ . For Γ0(p) there is one cusp (∞) of width 1 and one
cups (0) of width p.

The q-expansion of f “at a cusp” is dependant on the choice of γ ∈ Γ\SL2(Z)
modulo Γ∞. To see this note that f |k[γ ( 1 1

0 1 )] (τ) = f |k[γ] (τ +1). So if
∑

anqn/w

is the q-expansion of the first one then
∑

ane2πi(tau+1)n/w =
∑

ane2πin/wqn/w is
the q-expansion of the second. So the two q-expansions differ by twisting by a
character.

19. April 8, 2010

19.1. Modular curves. Let Y0(N) = Γ0(N)\H where Γ0(N) ⊂ SL2(Z)/ ± I.
Y0(N) is a non-compact Riemann surface (missing cusps.) We must compactify.

The analytic approach to compactifying: Look at the region −1/2 ≤ Re(z) ≤
1/2, Im(z) > 1. In the q variable this corresponds to 0 < |q| < e−2π. The map
z 7→ q is an analytic isomorphism, so to compactify we just add q = 0. By symmetry,
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do the same at each cusp. This process gives X0(N). This surface might not have
genus 0, and in the case N = 2 is has some elliptic/orbifold points.

Algebraic approach: We have two natural holomorphic functions on

Y0(N) = {(E/C, C) | C ⊂ E is a cyclic subgroup of order N}/ ∼ .

Namely,

j : Y0(N) → C (E,C) 7→ j(E), j′ : Y0(N) → C (E,C) 7→ j(E/C).

This gives a map ΦN = (j, j′) : Y0(N) → A2. One can show that j and j′ satisfy an
algebraic relation f(j, j′) = 0. (This is not obvious by pure thought.) In fact, ΦN

is generically one-to-one. Thus ΦN (Y0(N)) is an affine algebraic curve in A2. Call
it C : f(x, y) = 0. It could be singular, but there is a smooth compact algebraic
curve C0/C with C(C) = C(C0) (meaning their function fields coincide, hence C
and C0 are birationally equivalent.) C0 = X0(N). Since this is a compact smooth
curve birational to Y0(N), it must contain Y0(N).

The two approaches give the same X0(N). The relation f ∈ Q[x, y]. In fact, f is
defined over Z[1/N ]. Thus C descends to a curve defined over Q, and we can take
X0(N)/Q to be the unique smooth proper curve over Q with function field Q(C).
We remark that Shimura was the one to recognize that this stuff is defined over
number fields.

So we have curves X0(N)/Q with the property that for any K/Q

{P ∈ X0(N)(K)} ↔
{

(E/K,C/K)
∣∣∣∣ E is a generalized e.c.,

C ⊂ E a cyclic subgrp of order N

}
By “generalized” we mean that at cusps we get a nodal/degenerate curve.

An example. Look for E/Q with P ∈ E(Q), 0 6= P ∈ E[523]. (Note that 523 is
prime.) Given such a pair, we have that 〈P 〉 is defined over Q, so (E/Q, 〈P 〉/Q) ∈
X0(523)(Q). This curve has genus bigger than one. (It is approximately 523/12.)
So it has only finitely many such Q points by Faltings. In fact, there aren’t any.
This is the idea behind Mazur’s theorem that if E/Q has C/Q cyclic of prime order
then #C < 163.

19.2. Returning to modular forms.

Proposition 19.2.1. Let Mk(Γ0(N)) be the space of weight k modular forms for
Γ0(N). then dimMk(Γ0(N)) is finite.

Proof. Let f0 ∈ Mk(Γ0(N)), f0 6= 0. Make a map

Mk(Γ0(N)) → C(Γ0(N)\H) f 7→ f

f0
.

This is well defined because f(γτ)/f0(γτ) = f(τ)/f0(τ) for all γ ∈ Γ0(N). More-
over, this extends to the cusps because we know that they are defined there.

Let V ⊂ C(X0(N)) be the image. (V = 1
f0

Mk(Γ0(N)).) So if g = f/f0 write
÷f = D+ −D− where D+ (resp. D−) consists of the zeros (respectively, the poles)
of g. Note that D− is a subset of the zeros of f0. Let d = deg f0 (the zeros of f0.)
It is finite.

Suppose that dim V > d+1. Choose P ∈ Y0(N) where f0 does not vanish. Look
at the Tayler expansion of g ∈ V at P is some variable w:

g = c0 + c1w + c2w
2 + · · ·
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Now consider the map V → Cd+1, g 7→ (c0, . . . , cd). Since dim V > d + 1, this has
a nontrivial kernel. Take g = cd+1w

d+1 + · · · in the kernel, so that

÷g = (d + 1)P + · · · − {zeros of f0}.

But this is a contradiction because X0(N) is compact and so deg g = 0. ¤

Remark. S2(Γ0(N)) is especially nice. Note that

d(γτ) = d(
aτ + b

cτ + d
) = (cτ + d)−2dτ.

Therefore, if f ∈ S2(Γ0(N)) then f(τ)dτ is a holomorphic 1-form on H invariant
by Γ0(N), so it is a holomorphic 1-form on Y0(N). What about at on X0(N)? If
f(τ) =

∑
anqn, since dτ = d( 1

2πi log q) = 1
2πi

dq
q , then f(τ)dτ is holomorphic at the

cusp if and only if f is a cuspform. Indeed, this gives a map from cuspforms to
holomoprhic differentials

S2(Γ0(N)) → H0(X0(N), Ω1) f 7→ f(τ)dτ

that is actually an isomorphism. As a consequence dim S2(Γ0(N) = g(X0(N)).
For example take N = 11. One can check that g(X0(11)) = 1, so it is an

elliptic curve. Therefore, S2(Γ0(11)) is generated by a single f and f(τ)dτ is the
holomorphic differential on X0(11).

19.3. Hecke operators. Given a modular form f ∈ Mk(Γ0(N)) and an integer m
prime to N , define a new modular form Tmf ∈ Mk(Γ0(N)) by

Tmf(E,CN ) =
∑

Cm⊂E
cyclic

f(E/Cm, CN/Cm).

Notice that since m,N are relatively prime, if φ : E → E/Cm then φ(CN ) =
CN/Cm is still a subgroup of order N .

What are these? Fact: if f is a cusp form then so is Tmf . For example, if N = 11
then Tmf = λmf because the space of cusp forms is 1-dimensional. Next time we
will discuss what these λm are.

20. April 13, 2010

Last time we saw that if F is a modular form of level N and p is a prime such
that p - N ,

TpF (E,ω,CN ) =
∑

φ:E→E′

deg φ=p

(φ(E), φ(ω), φ(CN )).

This gives a map

Tp : Mk(Γ0(N)) → Mk(Γ0(N))

which happens to satisfy TpT` = T`Tp for all primes p, `.
Question (same as at the end of last time): What are these?
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20.1. Hecke correspondences. The Hecke correspondence Tp ⊂ X0(N)×X0(N)
is the subvariety parametrizing pairs

[(E,CN ), (φ(E), φ(CN )]

with deg φ = p as above. Looking at the fiber of over a point [E] ∈ X0(N) we see
that there are p + 1 points in Tp ∩ ([E] × X0(N)) because there are exactly p + 1
isogenies of degree p (corresponding to the p + 1 subgroups of E–i.e. of E[p]–of
order p.) Similarly, there are p + 1 elements in Tp ∩ (X0(N) × [E]). Hence Tp is a
correspondence of degree p+1 in the first variable and p+1 in the second variable.
We say degree of Tp is therefore (p + 1, p + 1).

Remark. If f : X0(N) → X0(N) is a morphism, the graph of f Γf is the
subvariety of points (P, f(P )). Given P there is exactly one point lying over it in
Γf , and given f(P ) there are exactly deg f points. So the degree of Γf is (1, p).

Suppose we have a correspondence C on an elliptic curve E. Denote the projec-
tion maps by π1, π2. Because E is a group, can construct a map

(20.1.1) fC : E → E P 7→
∑

π2(π−1
1 (P )).

(We remark that we can arrange for this to be a morphism, i.e. such that fC(0) = 0.)
In particular, get an element of End(E).

Let us consider those N for which X0(N) is an elliptic curve. For simplicity with
will take N = 11, but any N for which X0(N) has genus N would be the same, and
for general N their is a similar theory. Using (20.1.1) we think of Tp ∈ End(X0(11)).
This is some (algebraic) integer. Which?

Theorem 20.1.1 (Eichler-Shimura). Tp = ap.

We now describe why this is the case. Recall that ap is related to the curve
X0(11)/Fp. It is a fact (observed by Shimura) that that X0(N) can be defined over
Q. Indeed X0(11) can be given by the Weierstrass equation y2 + y = x3 − x2 −
10x − 20.

Over Fp, Tp should be consist of pairs (E,E′) where φ : E → E′ is an isogeny of
degree p. i.e. E′ = E/Cp. However, it seems there’s only 1 cyclic subgroup to use
because

E[p] =
{

Z/pZ if E is ordinary,
1 if E is supersingular.

Question: What happens to the p + 1 isogenies from E (over Q or C) when we
reduce modulo p?

To get an idea of what is happening lets us look at the group µ2 of square roots
of unity. Over Q this consists of two points ±1. But we should really think of
µ2 as, not the points, but rather the equation. That is µ2 is the vanishing locus
of x2 − 1. (In algebraic geometry we write Spec Z[x]/(x2 − 1).) We can consider
µ2/Fp for any prime. For most primes its points are ±1, but if p = 2, the polynomial
x2 − 1 = (x − 1)2 which is a “double point,” or a “thickened point.”

The same type of phenomenon is occurring for Tp. Let us take p = 2 and
E/Fp ordinary. Then E[2] consists of four points and the reduction consists of two
(thickened) points. [Picture drawn of four points in a square mapping to 2 thick
points. Three more copies of this map with the subgroups of order 2 and their
images circled.]

What does “modding out by the first subgroup” (i.e. the one which maps to
a single thickened point) mean? Well, it should be an isogeny of degree 2 whose
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kernel consists of a single point. The map Frob2 : E → E(2) is such a map. For
general p, ΓFrobp is a subvariety in Tp ⊂ (X0(11)/Fp)2 of degree (1, p).

On the other hand, the set of pairs (Ep, E) lie on Tp as well since F̂ robp :
E(p) → E. This subvariety has degree (p, 1). The union of this and ΓFrobp has
degree (p + 1, p + 1) and so it must be all of Tp.

(At this point Ekin suggested that the intersection points are supersingular el-
liptic curves, but Jordan wasn’t so sure...)

So as a correspondence, Tp = Fr + F̂ r which is exactly ap by definition!

20.2. More on elliptic curves over local fields. Let Kv be a nonarchimedean
local field with residue field kv. Let E/Kv be an elliptic curve and Ẽ/kv the
reduction of a minimal Weierstrass equation. If we write Ẽns for the nonsingular
locus of Ẽ,

E has


good reduction if Ẽns = Ẽ,

multiplicative reduction if Ẽns(k) ' Ga(k) = k
×

,

additive reduction if Ẽns(k) ' Ga(k) = k.

We have a Galois representation

ρE,p : GKv → GL(E[p]).

Let Iv denote the inertia subgroup6 of GKv . Since the sequence

1 → Iv → GKv → Gkv → 1

is exact, if ρE,p | Iv is trivial, in which case we say it is unramified, then ρE,p is
determined by the action of Gkv which in many cases (all of those of interest to us)
is generated by a single element. In these cases, therefore, ρE,p is determined by a
single matrix.

Proposition 20.2.1. If E has good reduction and the characteristic of kv is prime
to m then ρE,p : GKv → GL(E[m]) is unramified.

The converse is not true.

Theorem 20.2.2 (Neron-Ogg-Shafarevich). Let Kv be a nonarchimedean local field
and p a prime different form the residue characteristic of Kv. Denote by the ρE,P

the Galois representation of

Since ρE,p is the composition of ρE,p and the reduction map GL(TpE) → GL(E[p]),
it is immediate that Proposition 20.2.1 follows from Theorem 20.2.2.

We will prove the proposition next time.

21. April 15, 2010

The main engine in proving Proposition 20.2.1 is the following sequence of groups.
Let Lw/Kv be any finite extension and `w/kv the corresponding extension of residue
fields. Recall that (m, p) = 1 where p is the characteristic of kv. Let Ens(`w) denote

6Let Qnr
p denote the maximal unramified extension of Qp in Qp. Then Iv is defined to be

Gal(Qp/Qnr
p ). The exact sequence is a consequence of basic Galois theory and the fact that

Gal(Qnr
p /Qp) = GFp .
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the set of smooth points of the reduced curve, and let p denote the reduction map.
Define

E0(Lw) = {P ∈ E(Lw) | p(P ) ∈ Ens()}, and

E1(Lw) = {P ∈ E(Lw) | p(P ) = 0}.

By definition,

E1(Lw) → E0(Lw) → Ens(`w)

is exact.
Moreover, the map E0(Lw) → Ens(`w) is surjective. This requires the following

fact from formal groups. Any torsion point in E1(Lw) has order a power of p.
Taking Lw = Kv(E[m]), this says that E0(Lw)[m] → Ens(`w)[m] is injective.
Now, one can apply Hensel’s Lemma to get surjectivity.

We remark that the content to Hensel’s Lemma doesn’t apply blindly. For ex-
ample, x2 − p ∈ Qp[x] reduces to x2 ∈ Fp[x] which has a solution. However, this
solution does not lift to a solution in Qp (because α were such a lift then v(α) would
have to be 1/2.) The necessary condition is smoothness.

Proof of Proposition 20.2.1. In the case that E has good reduction, Ens(`w) =
E(`w) and E0(Lw) = E(Lw). So we get E(Lw)[m] ↪→ E(`w)[m]. Suppose that
ι ∈ Iv acts nontrivially on E[m], i.e. there exist P such that i(P ) 6= P . By
the definition of inertia, P and i(P ) reduce to the same thing modulo w.7 This
contradicts injectivity, hence we can conclude that Iv acts trivially. ¤

The absence of torsion in E1(Lw) arises from an identification of E1(Lw) with the
Lw points of a certain formal group. We compare with the case of the multiplicative
group Gm/Qp to give an idea of how this works. Let us assume p > 2. Again, we
have a surjective reduction map

Gm(Zp) → Fp

which gives an exact sequence

1 → 1 + pZp → Z×
p → F×

p → 1.

The key fact is that 1 + pZp has no nontrivial torsion. One way to prove this is an
“analytic” (or, more accurately, a formal power series) method. The map

T 7→ log(T ) =
∑

n

(−1)n (T − 1)n

n

defines an isomorphism of groups 1 + pZp → Zp. The map converges precisely
because if u ∈ 1 + pZp then v(u − 1) ≥ 1, and so one sees that the power series
above converges in Qp. That it is group homomorphism follows formally. (As power
series log(ST ) = log(T ) + log(S).)

A similar “analytic” argument shows that E1(Kv) has a finite index subgroup
isomorphic as a group to OKv with group law addition.

7The terminology inertia (meaning lazy or weak) describes Iv because these are the elements
of GKv that don’t move Kv around enough to change the valuation.
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21.1. Galois representations coming from elliptic curves over global fields
and from points on such curves. Let K be a global field. So K is a number field
(a finite extension of Q) or the function field of a curve over Fq (a finite extension
of Fq(T ).) We have defined

ρE,p : GK → GL(E[p]) ' GL2(Fp).

Let v be a prime of K. We say E has good reduction at v if E/Kv has good
reduction. E has good reduction at all but finitely many places. To see why, let
y2 + · · · = x3 + · · · be a Weierstrass equation for E. For all but finitely many
primes, the discriminant ∆ ∈ O×

Kv
.

If S = {v | E has good reduction at v}, ρE,p is unramified for all v not in S∪{p}.
Recall that we have an inclusion Iv ⊂ GKv ↪→ GK that is unique up to conjugacy.
Since being in the kernel of ρE,p is conjugacy invariant, this gives a well defined
notion of being unramified.

We are aiming to prove

Theorem 21.1.1 (Mordell-Weil). E(K) is a finitely generated abelian group. So
E(K) ' Zr ⊕ finite grp.

Remark. For a given S and a given finite group G there are only finitely many
isomorphism classes of homomorphisms GK → G which are unramified outside S.
For example, G = Z/2Z and K = Q. A map GQ → Z/2Z is unramified outside
S = {p1, . . . , pr} is a quadratic extension L/Q unramified (in the usual notion of
algebraic number theory) outside of S. Say L = Q(

√
d). Then this says that d has

no prime factors other than p1, . . . , pr. Since we can take d to be squarefree, we see
there are on the order of 2r such fields.

In general, GK → G unramified outside S has kernel GL where L/Q is Galois
with group G and L is unramified outside S. In particular, L/K has degree #G.
What is

∣∣DL/Q
∣∣? We have

DL/Q =
∏
p∈S

pνp

where νp is bounded in terms of p and #G. So there is a bound D(S, #G) such
that

∣∣DL/Q
∣∣ ≤ D(S, #G).

Theorem 21.1.2 (Hermite). For any n,X there are only finitely many number
fields L/Q with [L : Q] = n and

∣∣DL/Q
∣∣ < X.

We have seen that given E can construct ρE,p : GQ → GL2(Fp). Can ask what
about the converse: given ρ : GQ → GL2(Fp), is there E/Q such that ρ = ρE,p?
Suppose (since it is an obvious necessary condition) that det ρ is the cyclotomic
character χp. Then the answer is ‘yes’ for p = 2, 3, 5 but ‘no’ for larger p. (Proven
by Rubin-Silverberg in the 90s.)

We can describe why in the case p = 2. GL2(F2) ' S3. Let GL be the preimage
of the group generated by a transposition. By Galois theory, this corresponds to
a cubic extension L. Let f(x) be the minimal polynomial of some α ∈ L. Then
E : y2 = f(x) has ρE,p = ρ.

The answer is ‘yes’ for the analogous question about existence of modular forms
with given mod p Galois representation. This is Serre’s conjecture (recently proved.)

A few words aout Galois representations associated to points. Let E/K and
P ∈ E(K), p a prime. Choose Q ∈ E(K) such that pQ = P . (Note that the
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set of such points is Q + E[p] so this choice is not unique.) We can consider the
permutation action of GK on Q + E[p]. This is not a linear action, but it isn’t
arbitrary either.

22. April 20, 2010

22.1. Riad’s talk: Ranks of elliptic curves. Let E/Q be an elliptic curve. So
E : y2 = x3 + ax + b, a, b ∈ Q, and ∆ = 4a3 + 27b2 6= 0. Let E(Q) be the group of
rational points. The Mordell-Weil theorem says that E(Q) ' Zr ⊕ E(Q)tor. The
integer r = rank(E) is called the rank of E.

The subgroup E(Q)tor, the subgroup of finite order elements, is well understood.
There is a description of which groups can occur as E(Q)tor due to Mazur. Namely,
it’s one of the following fifteen groups:

Z/nZ(1 ≤ n ≤ 10, n = 12) Z/mZ × Z/2Z(1 ≤ m ≤ 4)

On the other hand, r is not well understood comparitively. For example, it is not
known which integers can occur as ranks of elliptic curves. So how can we study r?

The idea of Birch and Swinnerton-Dyer is to pick a prime p - ∆ and reduce E
modulo p: E : y2 = x3 +ax+b, a, b ∈ Fp. We know that |#E(Fp) − (p + 1)| < 2

√
p

by Hasse. So, the idea is, the larger E(Q) is, the larger the Np = #E(Fp) should
be on average as p varies. With this in mind, consider

πE(X) =
∏

p<X
p-∆

Np

p
.

Conjecture 22.1.1 (BSD). πE ∼ cE log(X)rank(E).

This can be recast in terms of L-functions as follows. Define

L(s,E) =
∏
p-∆

(1 + app
−s + p1−2s)−1

∏
p|∆

lp(s,E)−1

where ap = Np − (p + 1) and lp(s,E) is a polynomial in p−s such that lp(E, 1) 6= 0.
The Hasse bound implies that L(s,E) converges for Re(s) > 3/2, but let’s formally
plug in s = 1:

L(1, E) “=”
∏
p-∆

p

Np

∏
p-∆

lp(1, E).

So, if L(1, E) 6= 0 then the values of Np shouldn’t get too large, so the rank should
be zero.

Conjecture 22.1.2 (BSD 2). The function L(s,E) extends analytically to all of
C, and ords=1 L(s,E) = rank(E).

Theorem 22.1.3 (Wiles, and others). L(E, s) extends analytically to C.

The case of CM elliptic curves was known beforehand due to Deuring.
Can complete L(s,E) to Λ(s,E) which satisfies

Λ(s,E) = δ(E)Λ(E, 2 − s)

for some δ(E) ∈ {±1} which is called the root number.

Theorem 22.1.4 (Gross-Zagier, Kolyvagin). If L(1, E) 6= 0 then rank(E) = 0. If
L(1, E) = 0 and L′(1, E) 6= 0 then rank(E) = 1.
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This is why people care about vanishing of central values.
So how can we study the rank by studying the nonvanishing of L(s,E) and

L′(s,E)? We want to convert to the study of L(s, fE) where fE is the modular
form corresponding to E.

Theorem 22.1.5 (Taylor-Wiles, Breuil-Conrad-Darmon-T). If E is an elliptic
curve over Q of conductor N , there is a new form fE ∈ S2(Γ0(N)) such that
L(s,E) = L(f, s).

The previous theorem (of Wiles, et al) is really a corollary of this result. For
a reference on this material see “Rational points on modular elliptic curves” by
H. Darmon on his website.

22.2. Quadratic twists of elliptic curves. Let D be a fundament discriminant.
The D-th quadratic twist of E is the elliptic curve ED : Dy2 = x3 + ax + b. We
would like to study the variation of rank(ED) as D → ∞.

Let F = fE =
∑∞

n=1 anqn ∈ S2(Γ0(N)) be the modular form attached to E via
the theorem above. If (D,N) = 1 then the twist of F by χD, where χD be the
Kronecker symbol, is

F ⊗ χ(z) =
∞∑

n=1

χD(n)anqn,

and L(s, F ⊗ χ) =
∑∞

n=1 χD(n)ann−s = L(s,ED).

Conjecture 22.2.1 (Goldfeld). (G1)
∑

1≤|D|<X ords=1 L(1, F⊗χD) ∼ 1
2

∑
1≤|D|<X 1.

(G1’) The average rank

A(E) = lim
X→∞

∑
1≤|D|<X rank(ED)

#{1 ≤ |D| < X}
=

1
2
.

(G2) {#D | 1 ≤ |D| < X,L(1, F ⊗ χD) 6= 0} ÀF X.
(G2’) {#D | 1 ≤ |D| < X, rank(ED) 6= 0} ÀE X.

Kevin James and N. Vatsal have proved (G2’) for some choices of E.

Theorem 22.2.2 (Ono-Skinner). #{1 ≤ D < X,D ∈ P (ε, π) | L(F⊗χD 6= 0} ÀF
X

log X where P (ε, π) is an auxiliary set requiring minor constraints.

Theorem 22.2.3 (Ono). Under mild conditions on F ,

#{1 ≤ D < X | L(F ⊗ χD 6= 0} ÀF
X

log X1−α(F )

where α(F ) ∈ (0, 1).

How is the proved?

Theorem 22.2.4 (Waldspurger). Let D0 be |D| if D is odd and |D| /4 if D is
even. Let F ∈ S2(Γ0(N)). There exists an integer M > 0 with N | M , a Dirichlet
character χ modulo 4M , a nonzero number Ω)F ∈ C and a nonzero eigenform
gF

∑∞
n=1 bF (n)qn ∈ S3/2(Γ0(4M), χ) such that if δ(F (D) > 0 then

bF (D0)2 =

{
εDL(1,F⊗χD,1)D

1/2
0

ΩF
if (D0, 4M) = 1

0 otherwise.

where ε)D is algebraic.
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Aside for rank 1: Without using Waldspurger for L′ we have the following.

Theorem 22.2.5 (Perelli-Pomykala). #{1 ≤ D < X | rank(ED) = 1} ÀF X1−ε.

22.3. Congruent number curves. Consider the congruent number curve Ec
D :

Dy2 = x3 − x. The congruent number problem is to determine which integers are
areas of right triangles with rational sides. It is a fact that D is a congruent number
if and only if rank(Ec

D) ≥ 1.
Heath-Brown has shown that a positive proportion of such twists have rank 0.

In 2002 Silverberg and Rubin gave the following table.

D rank(Ec
D)

1 0 (Fermat 1640)
5 1 (1937)
34 2 (1945)

1254 3
29274 4

205015206 5 (2000)
61471349610 (2000)

Theorem 22.3.1 (Tunnel, 1983). L(1, Ec
D) = (n−2m)2aΩ

16
√

|D|
where a = 1 if D is even

and a = 2 if D is odd and

n = #{(x, y, z) ∈ Z3 | x2 + 2ay2 + 8z2 = |D| /a},

m = #{(x, y, z) ∈ Z3 | x2 + 2ay2 + 32z2 = |D| /a}
and Ω ∼ 2.62. In particular, L(1, Ec

D) = 1 if and only if n = 2m.

23. April 27, 2010

Let K be a global field, and E/K an elliptic curve. Let S be the set of primes of
residue characteristic ` together with those for which E has good reduction. Last
time (the time before Riad) we discussed the fact that ρE,` : GK → GL(E[`]) is
unramified at all primes outside of S. Equivalently, the field K(E[`]) is unramified
over K outside of S.

In order to study E(K), we also began to discuss the homomorphism ρP,` :
GK → Sym(T ) where P ∈ E(K) and T = [`]−1P = Q + E[`] for some Q ∈ E(K).
If σ ∈ GK then

[`](Qσ) = ([`]Q)σ = Pσ = P.

Therefore, GK acts on T .
Claim: ρP,` is unramified outside of S. To prove this let Q ∈ T and σ ∈ Iv.

Then Qσ and Q reduce modulo v to the same point of E/kv. Hence Qσ−Q reduces
to the identity. But, Qσ − Q ∈ E[`] on which for v /∈ S the reduction is injective.
Therefore, Qσ − Q is the identity. Since σ and Q were arbitrary, it follows that Iv

acts trivially on T .
In particular, K(T )/K is unramified outside S. Since GK(T ) is the kernel of ρP,`

and #T = `2, the degree of K(T )/K less than or equal to (`2)!. (Actually, it’s
much smaller, but for our purposes the best bound isn’t necessary.) By Hermite,

(23.0.1)
there are only finitely many

extesnions of K of degree ≤ `2)!.
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Enumerate the points of E(K) in some way P1, P2, · · · . Then we say P ∼ P ′

if K(T (P )) = K(T (P ′)). So (23.0.1) implies that there are only finitely many
equivalence classes. What can we say about P, P ′ if P ∼ P ′? It turns out that this
answer is “not much.” A slightly refined equivalence relation is better.

We say that P and P ′ are torsor equivalent (P ∼t P ′) if there exists a bijection
α : T (P ) → T (P ′) such that

• for all σ ∈ GK and all Q ∈ T (P ), α(Qσ) = α(Q)σ;
• for all x ∈ E[`] and all Q ∈ T (P ), α(Q + x) = α(Q) + x.

Note that by the first condition if P ∼t P ′ then P ∼ P ′. This is because K(T (P ))
is the fixed field of σ such that Qσ = Q for all Q ∈ T . Since α commutes with the
action of Galois K(T (P ′)) must be this same field.

So we have, as maps of sets, the following coverings.

E(K) → E(K)/ ∼t→ E(K)/ ∼

Our claim is that the second map is finite to one (which would imply that there
are finitely many torsor classes.)

To prove the claim, suppose that L = K(T (P )) is fixed. If T = T (P ′) is in
this equivalence class, T carries an action of Gal(L/K) and of E[`]. There are only
finitely many possibilities for an action of Gal(L/K) and E[`] on a finite set Σ of size
`2. That is to say, even if you have infinitely many Σ1, Σ2, · · · , they fall into finitely
many equivalence classes where Σi ∼ Σj if there exists a bijection α : Σi → Σj

commuting with both actions.
What does it say about P, P ′ if P ∼t P ′? Take as given such a bijection α :

T (P ) → T (P ′) and consider α(Q) − Q.

Proposition 23.0.2. α(Q) − Q ∈ E(K).

Proof. Since the Galois action commutes with α, we have

(α(Q) − Q)σ = α(Q)σ − Qσ = α(Qσ) − Qσ.

On the other hand, Qσ − Q = x ∈ E[`]. So

α(Qσ) − Qσ = α(Qσ − x) − (Qσ − x) = α(Q) − Q.

¤

Now we multiply by `: [`](α(Q) − Q) = P ′ − P ∈ `E(K). In other words, P
and P ′ are equivalent in E(K)/`E(K). Since there are only finitely many torsor
equivalence classes in E(K) there are only finitely many in E(K)/`E(K) which
implies the following.

Theorem 23.0.3 (Weak Mordell-Weil). E(K)/`E(K) is finite for all primes `.

Note that an abelian can fail to be finitely generated in three essential ways:
(1) It has lots of free generators. (eg. ZZ)
(2) It has high divisibility. (eg. Q)
(3) It has large torsion. (eg.

⊕
p ZpZ)

The weak Mordell-Weil theorem rules out the first possiblity, but not the second
because Q/`Q = 0 (and hence is finite) for all primes `, but Q is not finitely
generated. We will rule out the second possibility next time using the theory of
heights.
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We can prove that E(K)tor is finite (ruling out the third possibility) in the
following manner. Let v be the smallest place (i.e. #kv = #Kv/OKv = q is
minimal) such that E has good reduction at v. Thus E(K)[`] ↪→ E(kv)[`]. On the
other hand, suppose that Z/`Z ⊂ E(K) for arbitrarily large `. Then combining
these gives an injection Z/`Z ↪→ E(kv)[`] for arbitrarily large `. But this is a
contradiction to the Weil bound for large enough `.

Note that the third case is that for which E(K) fails to be finitely generated for
more general K. For example, let K = Fq(T ). Then a curve like

E : y2 = x3 + tx +
1 − t

5 − t

is an elliptic curve over K which satisfied the Mordell-Weil theorem. However,

E′ : y2 = x3 + x + 1

does not. (It is a fact that non “isotrivial curves” do satisfy MW where “isotrivial”
means that the curve is actually defined over Fq.)

23.1. Upper bounds for ranks. Given E/Q how can we get a decent upper
bound for rank(E(Q))? Take ` = 2, so we’ll study E(Q)/2E(Q). Let K = Q(E[2]).
Choose P ∈ E(Q) and Q ∈ T (P ) = [2]−1P . Now define

ζP : GK → E[2] ζP (σ) = Qσ − Q.

This is well defined because if x ∈ E[2] then (Q+x)σ − (Q+x) = Qσ −Q+xσ −x.
But xσ = x. In fact, ζP is a homomorphism. We have seen that Qσ −Q is fixed by
GK . Therefore,

(Qσ − Q) + (Qτ − Q) = (Qσ − Q)τ + (Qτ − Q) = Qστ − Q.

Notice that Hom(GK , Z/2Z) is in bijection with both K×/(K×)2 and quadratic
extension of K. Given d ∈ K×/(K×)2, the corresponding homomorphism is ex-
actly that whose kernel is K(

√
d). Thus ζP can be thought of as an element of

(K×/(K×)2)2. One can check that

E(Q)/2E(Q) → K×/(K×)2 × K×/(K×)2

is actually a homomorphism of abelian groups.
For the moment, assume that K = Q. Let S be the set of bad primes plus 2.

then ζP : GQ → E[2] is unramified outside of S. Equivalently if ζP = (d1, d2) ∈
(Q×/(Q×)2)2 then (di, p) = 1 for all p /∈ S. (We can take of d1, d2 to be squarefree
integers.) We find there are at most 2#S+1 choices for each di. Hence

dimZ/2Z E(Q)/2E(Q) ≤ 2#S + 2.

So, for example, if E has prime conductor (#S = 1) then rank(E(Q)/2E(Q)) ≤
4. This is an example of what is called 2-descent.

We have seen injectivity of the map

E(Q)/2E(Q) ↪→ {ζP }.
The object on the right is called the mod 2 Selmer group. One may ask whether
the map is surjective, and the answer is “no” in general. The difference is the
Tate-Shafarevich group.

If K 6= Q then the same idea works only elements of (K×/(K×)2)2 are slightly
more difficult to describe. But, again, one can show that there are only finitely
many possibilities for ζP .
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Remark: In this lecture we have been doing Galois cohomology without saying
so.

24. April 29, 2010

Last time we proved the weak Mordell-Weil theorem which says that if K is a
global field, and E/K is an elliptic curve then E(K)/mE(K) is finite for all integers
m. We want to leverage this to show that E(K) is finitely generated.

As mentioned last time, the main problem is that we don’t want E(K) to be
infinitely divisible. i.e. we want that there does not exist P ∈ E(K) of infinite
order such that 1

2P, 1
4P, 1

8P, · · · all in E(K). We’d like a notion of “complexity” of
a point of E(K) for which [2]P is more complicated that P and such that there
exist only finitely many point of E(K) with bounded complexity. We do this via
the theory of heights.

24.1. Heights. Let K be a global field and P = (X0 : X1 : · · · : Xn) ∈ Pn(K).
Define

H(P ) =
∏
v

max{|X0|v , . . . , |Xn|v}.

This notion is well defined because if λ ∈ K× then∏
v

max{|λX0|v , . . . , |λXn|v} =
∏
v

|λ|v
∏
v

max{|X0|v , . . . , |Xn|v} = H(P )

by the product formula. Let h(P ) = log H(P ).
From now on we simplify the discussion by assuming K = Q. In this case we

may write P = (X0 : · · · : Xn) such that the Xi are relatively prime integers. (Note
that we are relying on the fact that Z is a PID.) If v is finite then, because the
elements are relatively prime, max{|Xi|v} = 1. Therefore H(P ) = max{|Xi|∞},
and so it is obvious that there are only finitely many points of height less than B
for any finite B.

Fact: Suppose F : Pn → Pn is a morphism of degree d. So F = (f0, f1, . . . , fn)
with each fi a homogeneous degree d polynomial such that they have no nontrivial
common vanishing.8 Then there exist constant CF and cF such that

cF H(P )d < H(F (P )) < CF H(P )d ! h(F (P )) = dh(P ) + o(1)

for all P ∈ Pn(K).
Why is this true? We may assume that H(P ) is a large as we want (since

there are only finitely many exceptions which would influence the constants but
not their existence.) Let mF be the largest coefficient of all of the polynomials fi.
Write P = (X0 : · · · : Xn) with the Xi relatively prime integers as above. Then
Xi belongs to the interval [−H(P ), H(P )] and fi(X0, . . . , Xn) has height at most(
n+1

d

)
mF H(P )d.

To show the lower bound is more challenging. It passes through the Nullstellen-
satz which is famously non effective. So the problem is to rule out P very compli-
cated but somehow fi take very small values. By Nullstallensatz, since f0, . . . , fn

have no common vanishing, we can actually write that the ideal (f0, . . . , fn) is the
unit ideal. (Here, for sake of argument, we’re subbing Xi = 1 and looking affinely.)

8Note that we need n ≤ m in order to satisfy the vanishing condition, unless d = 0 in which
case constant maps work.
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Thus there are polynomials gi such that g0f0 + · · · + gnfn = 1. (Nullstellensatz
doesn’t say anything about the size of the coefficients of the gi.)

In fact, the same result is true if we take any finite morphism of projective
varieties f : X → Y of degree d. Here the height on X ⊂ Pn (or Y ) is given by
restricting the height on Pn. This is dependant on the choice of embedding, but
that is just the nature of height.

In particular, consider [2] : E → E with the embedding in projective space given
by a Weiestrass equation. Then τQ : E → E is the morphism P 7→ P + Q, and so
by the above

h(P + Q) > h(P ) + cQ

for some constant cQ. However, because we are avoiding using the teminology “line
bundles,” this is slightly cheating. Everything would be okay except the morphism
[2] does not extend to a morphism on all of P2. The problem is that [2] : O → O
but τQ does not. What is true is that

h(P + Q) − h(P ) = o(h(P )).

So

(24.1.1) (1 + ε)h(P ) − cQ < h(P + Q) < (1 + ε)h(P ) + cQ.

Given all this, how to prove the Mordell-Weil conjecture? Let S = {Q1, . . . , Qr}
be a set of representatives for E(K)/mE(K). Let P ∈ E(K), and define a sequence
of points Pi such that

P = Qi1 + mP1, P1 = Qi2 + mP2, . . . , Pn−1 = Qin + mPn.

So Pj = Q + mPj+1 for some Q ∈ S. Then (we take ε = 1 in formula (24.1.1))

h(mPj+1) < 2h(Pj)+cQ, m2h(Pj+1) < 2h(Pj)+cQ+C =⇒ h(Pj+1) <
2

m2
h(Pj)+d.

Iterating this process, we may say that h(Pj+1) < 2
m2

h(P ) + d. Let R be the set of
all such points in E(K). Then S ∪ R is a finite generating set for E(K).

24.2. Height over Fq(t). A point P ∈ P1(Fq(t)) may be written as (f : g), and
the absolute value |f |v = q− ordv(f) where ordv(f) is the order of vanishing (or pole)
at v ∈ P1(Fq). Thus

h(P ) = logq H(P ) =
∑

v

max{− ordv(f),− ordv(g)}.

We can think of P as a morphism P1 → P1 sending (t : 1) to (f(t) : g(t)). As
an exercise, check that h(P ) is the degree of this map. In particular, for this case,
there are no difficult constants to consider when computing heights.

24.3. The canonical height. Recall that h([2]P ) ∼ 4h(P ). So h([2n]P ) ∼ 4nh(P ),
but the bound is even better. With this in mind, define the canonical height

ĥ(P ) = hNT (P ) = lim
n→∞

h([2n]P )
4n

.

It is hard to show, but true, that the set of points {P ∈ E(K) | ĥ(P ) < B} is
finite, but it is easy to see that ĥ([2]P ) = 4ĥ(P ). In fact, ĥ : E(K) → R≥0 is a
positive definite quadratic form.

When E(Q) ' Z and P is a generator then ĥ(P ) is related to L′(1, E) by the
Gross-Zagier formula.
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Exercises

In addition to the exercises interspersed in the text, Jordan assigned the follow-
ing. (The numbered problems come from AEC.)

• 1.1, 1.10 (see examples 2.3 and 2.5 for inspiration), 3.2, 3.3, 3.5. OP-
TIONAL algebraic geometry: 2.2, 2.3, 2.4, 2.7, 2.8, 2.11, 3.10, ...

• Differentials: Let k be a field, let P1/k be the projective line over k, and
let z be a coordinate on P1. Gm is what we call the variety obtained by
removing the points z = 0 and z = ∞. from P1. Alternatively, we can
think of Gm as the affine line with the point z = 0 removed, or, for the
scheme fans, Spec(k[z, u]/[uz − 1]).

Note that Gm is a GROUP SCHEME – that is, there is a morphism

M : Gm × Gm → Gm

which obeys the axioms of a group. This is just what you think: M(z1, z2) =
z1z2.
(a) Describe the space of holomorphic differentials on Gm. (That is: the

space of differentials on P1 whose poles are all at either 0 or ∞.)
Note that, by contrast with the case of elliptic curves, this is not a 1-
dimensional or even finite-dimensional space! (Hint: every function f
on Gm can be written as a polynomial in z and u = 1/z; it follows that
every differential can be written as P (z, 1/z)dz for some polynomial
P .)

(b) A translation in Gm is a map ta : Gm → Gm sending z to az. You
have a translation morphism ta for each a ∈ k×. Describe the space
of TRANSLATION-INVARIANT holomorphic differentials. In par-
ticular, show that (just as for elliptic curves) the space of invariant
differentials is 1-dimensional, and that every nonzero invariant differ-
ential is not only holomorphic but everywhere nonzero.

• Write down an holomorphic, everywhere nonzero differential on the curve
X3 + Y 3 + Z3 = 0. By the arguments made in class, such a differential
must be translation-invariant, but you need not prove this.

• Modular forms: Recall the preliminary definition of modular form given
in class: a (weak) modular form of weight k over a field K is an algebraic
function f which – for each K-algebra L and each (E,ω)/L, returns a value
f(E,ω) in L satisfying

f(E, λω) = λ−kf(E,ω).

Equivalently (I didn’t prove this in class), f is an algebraic function of
the coefficients of a Weierstrass form (a1, a2, a3, a4, a6) which is HOMO-
GENEOUS in the sense that

F (a1, a2, a3, a4, a6) = ukF (a′
1, a

′
2, a

′
3, a

′
4, a

′
6)

where a′
i are related to ai by a standard coordinate transformation, as in

Table III.1.3 of Silverman. Show that a1 is a modular form over the field
F2, and b2 is a modular form over the field F2 and also over F3.

• Isogenies: Write down an elliptic curve E/Q with a point P ∈ E(Q) such
that [4]P = 0. (Feel free to construct such a curve in any way you like
except for looking it up.)

• 3.8, 3.12.
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• 3.16, 3.17, 3.18, 3.20, 3.24.
• 2-torsion problems: Let K be a field of characteristic not equal to 2, and let

E be an elliptic curve with equation y2 = f(x) with f a cubic polynomial.
(a) Show that f(x) is irreducible if and only if the mod 2 Galois represen-

tation ρE,2 is irreducible.
(b) Suppose K is a number field and let v be a prime of OK . Let ∆

be the discriminant of E. Let Iv be the inertia group of GK at v.
Prove that the subgroup ρE,2(Iv) of GL(E[2]) is a Borel subgroup if
and only if ordv(∆) is odd. (Note that, while ∆ may depend on the
choice of Weierstrass model, the parity of ordv(∆) does not.) Possible
counterexample due to Guillermo: Let E : y2 = x3−3 and p = 3. Here
the image of inertia is the whole group GL(E[2]) since Q(

√
−3, 3

√
3) is

a degree 6 extension of Q totally ramified at 6. On the other hand the
valuation at 3 of the discriminant is 5, however the image is not Borel.
The idea behind the example is that the valuation of the discriminant
at a prime v is odd iff the image of inertia at v is not contained in
the Galois group of the extension Q(E[2])/Q(

√
Disc(E)). Now this

last group has generically order 3, hence the condition is equivalent
to say that ρ(Iv) is not inside a group of order 3. So it is either a
group of order 2 or 6, but the last could happen. (Jordan’s comment
in response: “Really sorry. The question I asked should be OK so long
as the prime in question is not 2 or 3. A solution assuming the prime
is 2 or 3 is a-OK.”)

– (OPTIONAL CHALLENGE EXERCISE) Suppose ∆ is a perfect cube
in K. What can we say about the image of the mod-3 Galois repre-
sentation ρE,3? Feel free to investigate this numerically using pari or
MAGMA.

(c) Suppose that K = Q, and that #E(Fp) is even for all but finitely
many primes p. Prove that E[2] contains a nonzero point defined over
Q.

• Wedge product problems: If V is a vector space over a field k, we define
the “wedge product” ∧2V to be the quotient of V ⊗ V by the subspace
generated by all elements of the form v⊗ v, as v ranges over V . We denote
the image of v ⊗ w in ∧2V by v ∧ w. (So, for instance, v ∧ v = 0.).
(a) Suppose dimV = 2. Show that dim∧2V = 1.
(b) Suppose that g is an automorphism of V , i.e. an element of GL(V ).

Then g induces an automorphism of ∧2V by the rule

g(v ∧ w) = gv ∧ gw.

This gives a homomorphism

GL(V ) → GL(∧2V ).

Suppose V = k2. Then ∧2V is 1-dimensional, so GL(∧2V ) is canoni-
cally identified with k×. Prove that the resulting map M2(k) → k× is
the determinant.

(c) Using the Weil pairing, prove that there exists a homomorphism ∧2E[p] →
µp which is equivariant for the action of the Galois group on either side.
Using this and (b), prove that the determinant of ρE,p is the cyclotomic
character mod p.
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• 5.3, 5.4, 5.6, 5.12, 6.7, 6.8, 6.9, 6.10 (note – for 6.8-10, you will definitely
want to have read section VI.4 of Silverman, which is more explicit than I
was about the lattice-theoretic description of isogenies of complex elliptic
curves), 7.1, 7.5.

• (ISOGENIES OVER EXTENSION FIELDS) Let E : y2 = f(x) be the
equation for an elliptic curve over a finite field Fq, where char(q) > 3.
Let d in Fq be a non quadratic residue, and write Ed for the elliptic curve
dy2 = f(x). This is called a ”quadratic twist” of E.
(a) Show that Ed and E are isomorphic (whence isogenous) over Fq2 . In

particular, they have the same j-invariant.
(b) Show that a(Ed) = −a(E). In particular, by problem 5.4, Ed and E

are isogenous over Fq if and only if a(E) = 0.
optional Now suppose a(E) = 0. Are E and Ed isomorphic over Fq?
• (ZETA FUNCTIONS OF PRODUCTS) Let A = E1 × E2 be the direct

product of two elliptic curves. A is an example of an ”abelian surface.” By
definition, A(Fq) = E1(Fq)×E2(Fq). Prove that the Weil conjectures hold
for A (given that you already know they hold for E1 and E2.)

• 7.8, 7.9, 8.3, 8.8, 8.15, 8.19 (8.19 is about L-functions and would be a good
one to do in advance of Riad’s talk.) OPTIONAL (but required for people
who know or want to learn the notation of group cohomology) 8.5

• Diamond Shurman Problems: 1.1.3, 1.2.3, 1.2.5, 1.2.11, 1.5.2


