NOTES ON QUADRATIC EXTENSIONS OF p-ADIC FIELDS

MIKE WOODBURY

Let F' be a p-adic field with uniformizer w, ring of integers O and residue field
k whose order will be denoted ¢ = p/. (So k ~ F,.) Let v be the valuation such
that v(w) = 1, and |-| the normalized absolute value, i.e. || = ¢~1.

1. CLASSIFICATION OF QUADRATIC EXTENSIONS OF F

We begin with F' = Q,. Obviously the classification of quadratic extensions
is equivalent to understanding the group Q) / (Q; )2. This is established via the
following propositions on the structure of Q. Let U = Z; and U,, = {1+ ap™ |
x € Zp} for n > 1.

Proposition 1. If p # 2 the group Q) is isomorphic to Z x L, x Z/(p — 1)Z, and
Q5 is isomorphic to 7 X Zs x Z)27.

Proposition 2. Suppose that p # 2. Write x € Q) as x = p"u. Then x is a
square if and only if n is even and the image of w in U/Uy is a square.

Proposition 3. An element x = 2"u € Q5 is a square if and only if n is even and
u=1 (mod 8).

To see how this generalizes to F' any extension of Q, we will outline the proofs
of the above propositions. First, note that the decomposition x = @w"u for x € F*
and u € O* = U is unique. Therefore F* ~Z x U.

In order to understand U, we define

U,={142w" |z € O} n>1
as above. This gives a filtration
UDUlDUQD"',
and U = limU/U,. Se we want to understanding U/U, for n > 1.

We have that U/U; = k* ~ Z/(q¢ — 1)Z and U, /U,y1 ~ O/wO. The first

statement is immediate. The second follows from the map
U,/Ups1 — O/wO 1+zw" —x
which is easily seen to be an isormophism.

Next we want to understand Uy. Let a € Uy \ Us. We claim that if ¢ # 2 then
al € Ui+1\Uit2. To see this, write & = 14 kw™. Now apply the binomial theorem
to (1 + kw™)? modulo w"*2. One gets that a? = 1 + kww" ! whence the claim
follows. (If ¢ = 2 the above works as long as n > 2.)

From the above one can deduce the structure of U;:

U ~0 ifg#2.

Now Proposition 1 is evident for p # 2. The fact for Qy follows after understanding
that Uy ~ {£1} X Z2 in this case.
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Proposition 2 is a corollary. Indeed, write x = p™ - v - u where v is a root of
unity and u € U;. Obviously, x is a square if and only if n is even and v, u are
squares. However, u is guaranteed to be a square. To see this, write v’ = 1 + xw
and u = 1 + yw. Given y, we want to find = so that

2

1+ 2z +2°w)w=u?=u=1+yw.

In other words, we want to find z so that 2x + z?cw = y. This can be solved
modulo w as long as 2 is invertible. Assuming that 2 1 ¢, this condition is satisfied.
Moreover, such a solution lifts to a solution with z € O. This proves the claim.

Corollary 4. Let u be an element of U with the property that its image in U/U; is
not a square. If 21 q then {1,u,w,uw} form a complete set of coset representatives
for F*/(F*)2. In other words, there are 3 quadratic extensions of F two of which
are ramified.

2. INJECTION OF E INTO M5 (F)

Let E[a] a quadratic extension with ring of integers O. Assume that o € Op
and that « is a uniformizer if E/F is ramified.

Because a € Op it satisfies a> = Ta— A where T' = trg/p(«) and A = Ng,p(a)
are in O. Thinking of F as a vector space over F' with basis {1, a} gives the injection

B My(F)  1=(9), a=(ar)-
This injection is obtained by thinking of E = F+aF ~ F2. Note that o = (g _01 )
Let K = GL2(O). Then under the above inclusion K NE = Og. This is because

Op = O+ a0. Let Ko(w™) be the set of matrices (2Y) € K such that v(c) > n.
Set
G — EXK if E/F is unramified
E71 EXKy(w) if E/F is ramified

Let Z and Z’ to be the cyclic groups of GLa(F') generated by (¥ ) and (1)
respectively. If E/F is unramified then EX = (7)Opf, so Gg = ZK.

On the other hand, if E/F is ramified then because « is prime we must have
that a@ = A is a prime element of F. Moreover, o> = Ta — D € w0, so T € wO.
We conclude that

(21)(9=") = (T —ay=) € Ko(@),

and since E* = (a)Oj it follows that Gg = Z'Ky(w).
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