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Introduction

Let Mn{k) denote the algebra of n x n matrices over some field k of characteristic
zero. For each A>valued function / on the symmetric group Sn, we may define a
corresponding matrix function on Mn(k) in which

( f l j j i — • > X\w )&i (i)'"a ( )' ( U
weSn

If/ is an irreducible character of Sn, these functions are known as immanants; if/ is
an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by
defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note
that the determinant and permanent are obtained by choosing / to be the sign
character and trivial character of Sn, respectively.

We should point out that it is more traditional to use /(vv) in (1) where we have
used /(W1). This change can be undone by transposing the matrix. If/ happens to be
a character, then /(w-1) = x(w), so the generalized matrix function we have indexed
by / is the complex conjugate of the traditional one. Since the characters of Sn are real
(and integral), it follows that there is no difference between our indexing of
immanants and the traditional one.

It is convenient to associate with each AeMn(k) the following element of the
group algebra kSn:

[A]:= £ flliW(1)...flBiW(B)-w~\

In terms of this notation, the matrix function defined by (1) can be described more
simply as A\—+x\Ai\, provided that we extend / linearly to kSn. Note that if we had
used w in place of vv"1 here and in (1), then the restriction of [•] to the group of
permutation matrices would have been an anti-homomorphism, rather than a
homomorphism.

Recall that a (real) matrix A is totally positive if all minors of A are nonnegative
(that is, every submatrix has nonnegative determinant). We shall use TP as an
abbreviation for the set of totally positive AeMJR). In a previous paper [11], we
developed a series of conjectures for immanants, the most fundamental of which was
the conjecture that immanants of totally positive matrices are nonnegative. In this
paper, we shall prove this conjecture, as well as one of the other conjectures in [11]
concerning the convex cone in RSn spanned by the elements [A] for A e TP.
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Let deg (j) = x(id) denote the degree of any character x- One of the consequences
of our proof of the above conjectures will be the following evidently stronger result
for immanants: . , , , x , , x , _ .

*[i4]^degft)det(i4) (AeTP).
This is analogous to Schur's Dominance Theorem [10], which asserts that the same
inequality is true for generalized matrix functions of positive semi-definite Hermitian
matrices.

1. Cauchy—Binet and the group algebra of Sn

Although the map [ • ]: Mn(k) -* kSn is not a homomorphism of algebras, our first
step is to show that there does exist a useful way to describe the effect of [ • ] on a
matrix product. This description can be viewed as a refinement of the Cauchy-Binet
formula, which plays an important role in the analysis of total positivity [7]. The
existence of this formula was suggested by previous extensions of the Cauchy-Binet
formula to generalized matrix functions associated with linear characters by Marcus
and Mine [9], and to multivariate kernels by Karlin and Rinott [8].

First, we need to consider submatrices of a given matrix A that are obtained by
selecting certain rows and columns, with repetitions allowed. We shall refer to these
as generalized submatrices of A. More explicitly, let us define

Jtr{n) = {(iv...,ir)eZr: 1 < ix ^ ^ ir ^ ri),

and for any such IeMr(ri), let

z,= n mi]>

where mt denotes the multiplicity of / in /. If A is an m x n matrix and / e Mr{rri),
Je Jts(n), let us define A, j to be the r x s (generalized) submatrix obtained by selecting
the rows of A indexed by / and columns indexed by J. For the special case in which
/indexes one copy of each row of A, we shall write A+ d for A, j . The notation A, *
will be used analogously.

THEOREM 1.1. Let A and B be matrices of size pxq and qxr, respectively. If
IeJ£n{p), JeJfn{r) and C = AB, then

[CiJ= E UAI<K]-[BKJ. (2)
KeJtn(q) ZK

To recover the Cauchy-Binet identity, one merely applies the sign character of Sn

to (2); each occurrence of [ • ] becomes a determinant, and the only possibly nonzero
terms in the sum correspond to «-tuples K without repetition. More generally, if one
applies a linear character of any subgroup of Sn to (2), one recovers the generalized
Cauchy-Binet identity due to Marcus and Mine [9].

Proof. Let A' = A, „, and B' = B+ j , so that A'B' = Ct d. For simplicity, we
write ^ and btj for the zj-entries of A' and B' (rather than A and B). In these terms,
we have

[A'B']= £ £ ai.<A.w(i)-.•«».<„ ^.woo'w-1

^ s n i v *n-i

= E E Uh,-,in)*-\ (3)
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where

Jw\h> • • • ' ln) = ^l,il ' ' ' ̂ n,in ^il,w(,l) • ' • °in,w(n)'

In general, if/ is any function of n indices, one has

Q \

2J A ' I J • • • s ln) = 2J ~ L A^w(l) S (B) ) '
<i < n - l KeJ(n(,g)ZKweSn

where K = (kv...,kn), since each distinct rearrangement of (kv...,kn)is realized by
exactly zK different permutations w.

Applying this reasoning to (3), we obtain

[AB]= 2 J — L ai,kwW---an,kU)W
bkwW<w-w-bk W>M'W'

KeJ(n(q) LK w,w'eSn

= L ~ L ai, kwW • • • an, kwW Ukv w-w-\i) • • • bkn W'w-\n)
 # W

KeJ(n(q) ZK w,w'eSn

= T. — Y\ a, k . . . a n k bk W'n\---bk W'(n)'(w"w)~1

i — i - l—i iî ujd) n>lcw(n) Kvw W kn,w {n) \ /
KeJKn(g) ZK w,w"eSn

KeJtn(,q) ZK

Since A'^ K = Aj K and B'K „, = BK J} this agrees with (2).

Let p: RSn -> GLm(R) be any matrix representation of R5n. We shall say that
AeMn(R) is p-positive if the matrix entries of p([A]) are nonnegative. For such A,
one clearly has x[d] ^ 0, where / denotes the character of p.

Let us also define A e Afn(R) to be strictly /^-positive if A and also all of its n x n
generalized submatrices are p-positive. An immediate consequence of Theorem 1.1 is
the following.

COROLLARY 1.2. If A and B are strictly p-positive, then so is AB.

2. The cone of total positivity

For any S a RSn, let ^(S) denote the convex cone spanned by nonnegative linear
combinations of elements of S. If ̂ (S) is closed under the product in RSn, we shall
say that <$(S) is multiplicative. Let %!*(S) denote the smallest multiplicative cone
containing S; clearly, ^*(S) = ^(S*), where S* denotes the set of products of
elements of S, including S itself.

The cone we are interested is the one generated by S = {[/4]: A e TP}; let us
denote this ' cone of total positivity' by #TP. Although the geometric structure of this
cone is not well understood (for example, it is not even known whether it is
polyhedral), we can show that its multiplicative closure tf£P has a fairly simple set of
generators.

For any subinterval [ij] of {1,2,...,«}, let j c ^ e R S , , denote the sum of all
permutations weSn that fix every k$[i,j] (for example, x[2 4] = id + (23) + (34) +
(24)+ (234)+ (243)). Define
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The following result confirms Conjecture 5.3 of [11].

THEOREM 2.1. #*p = #*(!) . In particular, the cone of total positivity is contained
in the multiplicative cone generated by 2.

Our proof depends crucially on the following theorem of Cryer [2] (compare also
Theorem 3.5 and Corollary 3.6 of [1]).

THEOREM 2.2. Assume that AeMn(R) is totally positive.
(a) There is a factorization A = LU, with L and U lower and upper triangular

(respectively), in which L and U are totally positive.
(b) If A is upper triangular, then there is a factorization A = U1...Ulin which each

Ut is upper triangular, tri-diagonal, and entrywise nonnegative.

It is easy to check that any upper triangular matrix U = [uit] that satisfies the
conditions in part (b) (that is, wy ^ 0 for j—i = 0 ,1 ; and ui} = 0 otherwise) is totally
positive.

LEMMA 2.3. IfUeMJR) is upper triangular, tri-diagonal and nonnegative, then

for all I,JeJ(n(n)-

Proof. Let ri (respectively sf) denote the multiplicity of i in / (respectively / ) . We
may partition the rows (respectively columns) of f/7 d into blocks of size rx,...,rn

(respectively slt... ,sn) so that each block-submatrix of UI j has constant entries. For
example, if n = 4, we have

'"l l^r , . . , U™Ervs2 0 0

0 "22^r2,*2
 U23E

ri,s3 0

0 0 uzzE uME,

0 0 0 " 4

where Ers denotes the rxs matrix of ones.
Let Z denote the special instance of U obtained by setting un = u12 = u22 =

... = 1, and define SPItJ to be the set of weSn such that the coefficient of w in
[Zj j] is nonzero. We shall assume that Sfl 3 is nonempty, since otherwise we have

[uij = [ZiJ = o-
Given that Sfl%J is nonempty, it must be possible to place n non-attacking rooks

on the set of nonzero matrix entries of Z1 j . In particular, this requires placing 5X

rooks on the rx xsx block, r1—s1 rooks on the rx xs2 block, 52 — r ^ ^ rooks on the
r2 x s2 block, and so on. We therefore have

si+i > ri-si+... + r1-s1 ^ 0 (i>\).

These inequalities imply that SfItJ contains the identity permutation.
Let Sj denote the subgroup of Sn that fixes /. For any w e SI} we have wSfj 3 =

SfItJ and w[Ur J] = [UJ j]. Similarly, if weSj then &ItJw = Sf^j and [UItJ\w =
[Uj j]. A moment of thought shows that the combination of these left and right
actions is transitive on SftJ, so we have
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This also shows that the number of ways to express a fixed weSfj j in the form w1 • vv2

with wx e S, and vv2 e Sj does not depend on w. If we choose w = id, we see that this
number is \S, fl SJ. Using u, j to denote the product of the diagonal entries of U, d
(that is, the coefficient of id in [UItJ]), it follows that

[U,.A = ultJ[ZItJ = ultJ £ w = - ^ - Z »V E *Y

However,

and there is a similar factorization for Sj. Hence [£//i<7] is a nonnegative multiple of
products of elements of I , and thus a member of #*(E).

Proof of Theorem 2.1. Let I,JeJtn(ri). If C/eTP is upper triangular, then
Theorems 2.2(b) and 1.1 show that [U, J is a nonnegative linear combination of
products of terms of the form [U'K J for various upper triangular, tri-diagonal,
nonnegative matrices U'. By Lemma 2.3, these terms belong to #*(I), so we conclude
that [U, J e ^ * ( E ) for all upper triangular C/eTP.

Next, let f denote the anti-automorphism of RSn defined by w i-> w"1 (extended
linearly). Note that xj4 ; ] = JC[U], so ^*(I) is ^invariant. Since [y4]r = [.4'], it follows
that [L, J e ^ * ( I ) for all lower triangular LeTP.

By Theorem 2.2(a) and a second application of Theorem 1.1, we may conclude
that [A]e^*(l) for all ^ e T P ; that is, #*P c #*(S). Conversely, one knows < *̂P 2
#*(E), since each generator x[tJ] of ^*(S) is of the form |/1] for suitable A e TP. (Take
A to be the 0-1 matrix with Is on the diagonal and in the rows and columns of [ij].)

3. The denouement

To prove that immanants of totally positive matrices are nonnegative, we shall
show, in fact, that for every irreducible character x of Sn, there exists a matrix
representation p of RSn with character / such that A is /^-positive for every A 6 TP.

For this, we may rely on the following theorem of Greene [4].

THEOREM 3.1. For each irreducible representation ofRSn, the representing matrix
for every x[t n is nonnegative with respect to the Young seminormal basis.

It should be noted that Greene proved more than just the nonnegativity; he also
gave an explicit description of the representing matrices for each xiuy Haiman has
also pointed out that Theorem 3.1 remains true if one replaces the Young seminormal
basis with the Kazhdan-Lusztig basis [5].

In view of Theorem 2.1, we may now deduce the following.

THEOREM 3.2. If A e Mn(R) is totally positive andp is an irreducible representation
ofRSn, then the matrix entries of p([A]) are nonnegative with respect to the Young
seminormal basis (as well as the Kazhdan-Lusztig basis) for p.

Taking traces, we obtain Conjecture 2.2 of [11].



IMMANANTS OF TOTALLY POSITIVE MATRICES ARE NONNEGATIVE 427

COROLLARY 3.3. Immanants of totally positive matrices are nonnegative, that is,
/[A] ^ 0 for every AeTP and every character / of Sn.

With slightly more work, we can prove the analogue of Schur's Dominance
Theorem mentioned in the Introduction.

COROLLARY 3.4. IfAsTP and/ is a character of Sn, then

Proof. Let sgn: RSn —»• R denote the sign homomorphism. The claimed inequality
is equivalent to

^ 0 (4)

for all ce%p. Since Theorem 2.1 shows that %p £ #*(!), it suffices to prove
(4) whenever c is a product of generators in E. If c = id, then equality occurs.
Otherwise, if c is a product of one or more of the generators x[in, then the fact that
sgn (x[t}]) = 0 shows that the nonnegativity of (4) is equivalent to x(c) ^ 0.
This is a consequence of Theorem 3.1.

Since Schur's Dominance Theorem applies not only to immanants but also to
generalized matrix functions, it is natural to ask whether Corollary 3.4 can be
extended to this more general case. In order to make this question meaningful, it is
reasonable to restrict our attention to characters of subgroups of Sn that are real-
valued. Without this restriction, we could not guarantee that x[A] would be real-
valued for all y4eTP. The following example, due to Gordon James [6], shows that
even under these circumstances, generalized matrix functions of totally positive
matrices need not be nonnegative.

Let G be the subgroup of S6 generated by (1,2) (4,5) and (2,3) (5,6). Note that
G s S3. Let x be the sign character of G, so that /((1,2)(4,5)) = /((2,3)(5,6)) = - 1 .
For any ^ . ^ e ^ R ) , we have

where A o 5 denotes the Hadamard (that is, entrywise) product of A and B. If we take

then A 0 B is totally positive but det (A o B) = - 1 .
As a final remark, it is interesting to point out that one of the stronger conjectures

that remains open (namely, Conjecture 2.1 of [11]) would characterize the convex
cone of linear functional 0: RSn -• R that are constant on the conjugacy classes of
Sn and nonnegative on the cone of total positivity. In view of Theorem 2.1, it would
suffice to prove that these functionals are also nonnegative on the cone #*(I); this is
the content of Conjecture 5.2 in [11].
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