Exercise 1. Prove that for a subset $A \subset \mathbb{R}^N$, the following statements are equivalent:

1. A is a convex subset of \mathbb{R}^N;
2. any convex combination of a finitely number of points in A is in A.

Exercise 2. Let $M \subset \mathbb{R}^N$ be a set and P be the set of all affine combinations of elements in M. Show that P is an affine subspace of \mathbb{R}^N.

Exercise 3. Let $x_1, \cdots, x_n \in \mathbb{R}^N$ be distinct points. Show that there exists $\alpha \in (\mathbb{R}^N)^*$, $\alpha \neq 0$ such that for any $b \in \mathbb{R}$, the hyperplane $H_{\alpha,b}$ contains at most one of the points x_1, \cdots, x_n.

Exercise 4. For any subset $M \subset \mathbb{R}^N$, show that:

1. if $0 \in \text{aff}(M)$, then $\dim \text{aff}(M) = \dim \text{span}_\mathbb{R}M$;
2. if $0 \notin \text{aff}(M)$, then $\dim \text{aff}(M) = \dim \text{span}_\mathbb{R}M - 1$.