
1. Determinantal identities

Let X be a matrix, I a subset of its rows and J a subset of its columns. We denote
XI,J the corresponding minor of X and |XI,J | its determinant.

1.1. Cauchy-Binet identity. Let X be an n×m matrix and let Y be a m× n matrix,
n ≤ m.

Theorem 1.1. We have

det(XY ) =
∑

J⊆[m],|J |=n

|X[n],J ||YJ,[n]|.

Proof. The formula is multilinear in rows of X and columns of Y . Thus, it suffices to
prove it for each row of X and column of Y being a 0− 1 vector with all entries but one
equal to zero.

Thus we essentially have two functions f : [n]→ [m] and g : [n]→ [m], which tell us the
location of unit entries in X and Y respectively. If either of the two is not injective, both
sides are 0. If the two have not the same image, the two sides are again zero. Indeed, on
the right each summand vanishes, while on the left one of the rows is identically zero.

Finally, assume f and g have the same image. Then we have product of two permu-
tation matrices, and the result follows from the fact that signatures of permutations are
multiplicative. �

Exercise 1.2. Show that any real matrix can be realized by a planar acyclic network in a
disk with real weights. Deduce from this the Cauchy-Binet identity.

1.2. Sylvester’s identity. Fix I, J ⊂ [n], |I| = |J | = k and for i ∈ [n]/I, j ∈ [n]/J let

yi,j = |XI∪i,J∪j|.

Theorem 1.3. We have

det(Y ) = |XI,J |
n−k−1|X|.

Exercise 1.4 (Desnanont-Jacobi). Prove Sylvester’s identity for n− k = 2.

We give the proof of the identity for n− k > 2 by induction.

Proof. For n−k = 1 the statement is trivial and we assume we know it is true for n−k = 2
by the above exercise.

Let [n]/I = i1 ∪ i2 ∪ Ī and [n]/J = j1 ∪ j2 ∪ J̄ for arbitrary choice of indexes i1 < i2,
j1 < j2. Then by induction assumption we have

|Y ||YĪ,J̄ | = |Yi1∪Ī ,j1∪J̄ ||Yi2∪Ī ,j2∪J̄ | − |Yi1∪Ī ,j2∪J̄ ||Yi2∪Ī ,j1∪J̄ |.

By induction assumption

|YĪ,J̄ | = |XI,J |
n−k−3|XĪ∪I,J̄∪J | and |Yi∪Ī,j∪J̄ | = |XI,J |

n−k−3|Xi∪Ī∪I,j∪J̄∪J |.

Finally, plugging in those values, we get that the formula we want for |Y | is equivalent to

|Xi1∪Ī∪I,j1∪J̄∪J ||Xi2∪Ī∪I,j2∪J̄∪J | − |Xi1∪Ī∪I,j2∪J̄∪J ||Xi2∪Ī∪I,j1∪J̄∪J | = |X||XĪ∪I,∪J̄∪J |,

which is again the Sylvester’s identity for n− k = 2. �
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1.3. Plücker relations. We state the Plücker relations in the coordinate ring of Grass-
manian Gr(n, m). A simple trick of appending an identity matrix to any matrix allows to
switch between determinantal identities among minors of any matrix and relations among
Plücker coordinates of a Grassmanian.

For a subset J ⊂ [m] of size n we denote XJ the Plücker coordinate with columns
labelled by J . Fix a subset of J of size k < n. If elements of J are not ordered increasingly,
we let |XJ | = ǫ(J)|XJ̄ |, where J̄ is the increasing rearrangement of J and ǫ(J) is the sign
of permutation that accomplishes the rearrangement.

Theorem 1.5. We have

|XI ||XJ | =
∑

|XI′||XJ ′|,

where the summation is taken over all pairs I ′ and J ′ obtained from I and J by swapping
the chosen k elements of J with any k elements of I.

Proof. Without loss of generality we can assume that we are swapping the first k elements
of J . We argue that |XI ||XJ | −

∑

|XI′||XJ ′| is antisymmetric in all columns labelled by
I together with the k-th column of J . The proof is by induction on k, case k = 0 trivial.
It is easy to check that the expression is antisymmetric in pairs of adjacent columns in I.
Next, all the terms where k-th element of J was not swapped with the n-th element of
I clearly are antisymmetric in those two columns. As for the rest, they form a part of a
Plücker relation with value of k one smaller, plus some extra terms again untisymmetric
in the two vectors we are interested in.

The only multilinear function antisymmetric in n + 1 vectors of size n is constant
zero. �

1.4. Matrix inverse and Laplace expansion. Assume X is an n× n matrix.

Theorem 1.6. We have

X−1
i,j =

(−1)i+j |X[n]/j,[n]/i|

|X|
.

Theorem 1.7. We have

|X| =
∑

J⊂[n],|J |=k

(−1)ǫ([k])+ǫ(J)|X[k],J ||X[n]/[k],[n]/J|,

where ǫ(S) =
∑

s∈S s.

Proof. Follows from Plücker relations. �

1.5. Binomial relations. The following two-term relation will play a special role in what
follows. Let X be a n× (n + 1) matrix.

Theorem 1.8. For any 1 < k, l < n + 1 we have

|X[n],[n+1]/l||X[n]/k,[n]/1| = |X[n],[n+1]/1||X[n]/k,[n]/l|+ |X[n],[n]||X[n]/k,[n+1]/{1,l}|.

Proof. Add an extra row to X filled with 0-s and 1, apply Sylvester’s identity. �

Exercise 1.9. Let X be an n × n matrix, ∅ ⊆ I, J ⊆ [n] two subsets of [n] of the same
cardinality |I| = |J |. We consider products |XI,J ||X[n]/I,[n]/J | of complementary minors of
X. Find the dimension of the vector space generated by all such products.
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Exercise 1.10 (Dodgson condensation). Start with an n×n matrix X = X1, and assume
X0 is an (n + 1)× (n + 1) matrix filled with 1-s. Given matrices X i and X i−1, we create
matrix X i+1 of size one smaller than that of X i according to the rule

xi+1
j,k = det

(

xi
j,k xi

j,k+1

xi
j+1,k xi

j+1,k+1

)

/xi−1
j+1,k+1.

Show that once we get to a 1× 1 matrix Xn, its entry is equal to det(X).
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2. Criteria for total positivity

Lemma 2.1 (Fekete). Assume X is an n×m matrix, n ≥ m such that all minors of size
m − 1 with columns [m − 1] are positive and all minors of size m with consecutive rows
are positive. Then all minors of X of size m are positive.

Proof. For I = i1 < . . . < ik let d(I) = ik − i1 − k + 1 be the dispersion of I. We prove
the positivity of minors XI,[m] by induction on d(I). The base case d(I) = 0 follows from
assumption of the lemma.

Assume d(I) > 0 and thus we can find J and 1 < l < m + 1 such that J/jl = I. The
binomial relation gives us:

|XJ/j1,[m−1]||XJ/jl,[m]| = |XJ/{jl,jm+1},[m−1]||XJ/j1,[m]|+ |XJ/{jl,j1},[m−1]||XJ/jm+1,[m]|.

The terms of size m − 1 are positive by assumption, and the sets J/j1 and J/jm+1 have
smaller dispersion than I, and thus are positive by induction hypothesis. The statement
follows. �

Theorem 2.2. Assume all minors of X having consecutive rows and consecutive columns
are positive. Then X is totally positive.

Proof. First we can use the Fekete lemma to show that all column-solid minors of X are
positive. This is done by induction on the size of the minor. Then, we can use the same
argument in horizontal direction to show that any minor at all is positive. �

It turns out that in order for a matrix to be TP it suffices to check even smaller set of
solid minors.

Theorem 2.3. Assume all solid minors of X with rows [k] and also all solid minors of
X with columns [k] are positive, k = 1, 2, . . . . Then X is totally positive.

Proof. We prove that if the condition of the theorem holds then all solid minors of X are
positive, thus reducing to the previous theorem. Call an entry of the matrix nice if all
solid minors having it as a NW corner are positive. Originally all entries in the first row
and first column are known to be nice. We prove that if (i, j), (i + 1, j) and (i, j + 1) are
nice, then so is (i + 1, j + 1). We show how it works for i = j = 1, the same proof works
in general.

Using

x1,2x2,1 + |X[1,2],[1,2]| = x1,1x2,2

and assumption of the theorem we conclude that x2,2 > 0. Next from the identity

|X[k],[k]||X[2,k+1],[2,k+1]| = |X[k],[2,k+1]||X[2,k+1],[k]|+ |X[2,k],[2,k]||X[k+1],[k+1]|

we conclude by induction on k that |X[2,k],[2,k]| is always positive. �

Exercise 2.4. Minors of the matrix X of the form |XI,I| are called principal. Show that
in a non-singular TNN square matrix all principal minors are strictly positive.

Exercise 2.5. Let X be a totally nonnegative nonsingular square matrix, and define
matrix Y = Xc by yi,j = (−1)i+j(X−1)i,j. Show that Y is also totally nonnegative.
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2.1. Density.

Theorem 2.6. Totally positive matrices are dense in the class of totally nonnegative
matrices.

Proof. For q ∈ (0, 1) the matrix Qn(q) = (q(i−j)2)n
i,j=1 is strictly totally positive. Indeed,

this is equivalent to positivity of P = (pij)n
i,j=1, where p = q−2. The latter reduces to

positivity of a Vandermonde determinant.
Note also that

lim
q→0+

Qn(q) = In

is the identity matrix. Let A be an n × m totally nonnegative matrix of rank r. Let
Bq = Qn(q)AQm(q). By Cauchy-Binet formula all minors of Bq of size at most r are
strictly positive, and limq→0+ Bn(q) = A. If r = min(n, m), we are done. Otherwise add
small ǫ > 0 to the first entry of Bq and repeat the argument for the resulting matrix of
rank r + 1. �

Proposition 2.7. Let A be an n×n nonsingular matrix. Assume all column-solid minors
of A are nonnegative. Then A is totally nonnegative.

Proof. Let Aq = Qn(q)A. Then by Cauchy-Beniet formula and non-singularity of A, all
column-solid minors of Aq are strictly positive. By Theorem 2.2 we conclude Aq is totally
positive. Taking limit q → 0+ we conclude that A is totally nonnegative. �

2.2. Triangular total positivity. An upper triangular matrix is upper totally positive if
all its minors that are not forced to vanish by triangularity condition are strictly positive.
Those are the minors |XI,J | where ik ≤ jk for I = i1 < . . . < im, J = j1 < . . . < jm,
k ∈ [m]. We write this condition I ≤ J and call such minors dominant.

Theorem 2.8. Let X be an n × n upper triangular matrix satisfying |X[k],J | > 0 for all
solid minors. Then X is upper totally positive.

Proof. By Fekete’s lemma all minors of the form |X[k],J | are positive, not only the solid
ones. Applying it to the minors of the form

|X[i+k],[i]∪J| = |X[i],[i]||X[i+1,i+k],J |

with [i + 1, i + k] ≤ J , we conclude that all row-solid dominant minors of X are positive.
Recall the notion of dispersion d(I). Assume that we know |XI,J | > 0 for I ≤ J with

|I| = |J | ≤ k and d(I) < p. We apply induction on both k and p. We know the statement
is true for d(I) = 0 and any k.

Assume d(I) > 0 and add rl to I to obtain R = r1 < . . . < rk+1 = I ∪ rl, 1 < l < k + 1.
By the binomial relation we have

|XR/rl,J ||XR/{r1,rk+1},J/j1| = |XR/r1,J ||XR/{rl,rk+1},J/j1|+ |XR/rk+1,J ||XR/{r1,rl},J/j1 |.

Now, R/rk+1 ≤ J , and thus by induction assumption on dispersion |XR/{r1,rk+1},J/j1| > 0.
Similarly, the four terms on the right either vanish or are positive. Note that |XR/r1,J | = 0
if rm+1 > jm for some m ∈ [l − 1], otherwise it is positive since it has smaller dispersion.
This allows us to conclude that |XI,J |, completing the step of induction. �

Theorem 2.9. Assume X is upper triangular nonsingular matrix with all minors |X[k],J | ≥
0 nonnegative. Then X is TNN.
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Proof. It is easy to find an upper TP matrix Rn(q) such that Rn(q)→ In as q → 0+. Then
the product XRn(q) is upper TP by Cauchy-Binet and the previous theorem. Taking limit
q → 0 we obtain the needed statement. �

2.3. LDU factorization. Let X be a nonsingular n × n TNN matrix. Then One can
write

X = LDU,

where L is a unipotent lower triangular matrix, D is a diagonal matrix and U is a unipotent
upper triangular matrix, all given by

li,j =
|X[j−1]∪i,[j]|

|X[j],[j]|
; ui,j =

|X[i],[i−1]∪j|

|X[i],[i]|
; di,i =

|X[i],[i]|

|X[i−1],[i−1]|
.

Recall that the denominators are strictly positive by the exercise above.

Theorem 2.10. This is a factorization into TNN matrices.

Proof. By Cauchy-Binet we have

|X[k],J | =
∑

I

|L[k],I ||DI,I||UI,J |.

The term |L[k],I| is non-zero only if I = [k], thus

|X[k],J | = |L[k],[k]||D[k],[k]||U[k],J |.

This implies |U[k],J | ≥ 0 since the other two terms are positive. By the previous theorem
we know that this implies U TNN. Same for L. �

2.4. Factorization into Chevalley generators. Let Chevalley generators be matrices
ei(a) different from identity matrix only in (i, i + 1)-st entry, the value of which is a, as
well as fi(a) different from identity matrix only in (i + 1, i)-st entry, the value of which is
a.

Theorem 2.11. An upper triangular unipotent matrix X can be factored into Chevalley
generators eia with nonnegative parameters a ≥ 0. Similarly, a lower triangular unipotent
matrix X can be factored into Chevalley generators fia with nonnegative parameters a ≥ 0.

Proof. We prove the case of upper triangular matrices, the lower triangular case is similar.
It is easy to see that zero-nonzero pattern of entries of X has the form of order ideal in
North-East oriented ordering of entries. In other words, it looks like a staircase. Let xi,j

be one of the corners of this staircase, in other words xi,j > 0 but xk,j = 0 for k < i and
xi,k = 0 for k > j. Among all such corners we can always find one such that xi+1,j+1

either does not exist or is equal to 0.
Now, multiply X on the left by ei(−

xi,j

xi+1,j
). We claim that the resulting matrix is still

upper triangular unipotent TNN matrix. Only TNN is non-trivial. We know that for a
non-singular matrix its enough to check that all row-solid minors are nonnegative. The
minors not involving i-th row or the ones involving both i-th and i + 1-st rows did not
change after multiplication. Consider now a minor |XI,J | with last row i. We claim that

|XI,J |

|XI/i∪(i+1),J |
≥

xi,j

xi+1,j
.
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This follows from expanding the determinant of XI∪(i+1),J∪j along the j-th column. Note
that if J contains a column to the right of j, both |XI,J | and |XI/i∪(i+1),J | are zero. If J
contains column j itself, we replicate it and thus create a needed matrix. �
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3. Networks

3.1. Lindström lemma. Unless otherwise specified, we call network a graph which is

• directed;
• acyclic;
• imbedded in a disk, boundary vertices on the boundary of the disk and internal

vertices inside;
• planar, that is the only common points of edges are vertices;
• edge-weighted, where weights are either real numbers or formal variables;
• each boundary vertex is either a source or a sink, source and sink vertices do not

interlace.

To a network N one can associate the matrix X(N) of boundary measurements in the
following way. The rows of X(N) correspond to sources of N and columns correspond
to sinks. For any multiset S of edges of N let weight w(S) =

∏

e∈S w(e) of S be the
product of weights of edges in S, counted with multiplicities. Let (i, j)-th entry of X(N)
be defined by

xi,j =
∑

p : i→j

w(p),

where the sum is over all directed paths from i-th source to j-th sink.

Theorem 3.1. Assume N has n sources and n sinks. Then

det(X(N)) =
∑

P

w(P ),

where the sum is taken over all non-crossing families P of paths from sources to sinks.

Proof. Clearly

det(X(N)) =
∑

Q

ǫ(Q)w(Q),

where the sum is over all families of paths Q from sources to sinks and ǫ(Q) denotes
the sign of the permutation induced by Q. We construct a sign-reversing involution on
families Q which would cancel out all terms that have a crossing. Indeed, assume Q is a
family of paths that has crossings. Acyclic network Q induces a partial order on vertices
of N , where sources are maximal elements and sinks are minimal. Fix an extension of this
partial order. Among all vertices where paths in Q = (q1, . . . , qn) cross choose v largest in
this order. Among the paths passing through v choose qi and qj for which the sinks i and
j in which they start are minimal. Build a new family of paths Q by swapping between
qi and qj the parts that comve after they cross in v. We claim that v is still the largest
crossing vertex in Q′. This is trivial since the set of all vertices of crossing in Q′ is the
same as in Q. Thus this gives an involution, which is clearly sign reversing, and we are
done. �

Corollary 3.2. Assume edge weights of N are nonnegative real numbers. Then the matrix
X(N) is TNN.

Proof. Any minor of X(N) counts non-crossing families of paths from a subset of sources
to a subset of sinks. �

Theorem 3.3. Any non-singular square TNN matrix can be realized by a network with
nonnegative edge weights.
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Proof. We have shown that any such matrix factors into Chevalley generators and torus.
Concatinating the corresponding simple networks we obtained the needed network. �

Exercise 3.4. Show that any TNN matrix can be realized by a network with nonnegative
edge weights.

Exercise 3.5. Show that the network on the **** Figure can realize any TNN non-
singular n× n matrix.
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4. Pfaffians

Call two pairs (i, j) and (k, l) crossing if when drawn as two arcs above line containing
vertices they must cross. For a complete matching π on vertices [2n] let

ǫ(π) = (−1)number of crossings in π.

Let A = (ai,j)1≤i<j≤2n be a skew-symmetric matrix. Define pfaffian pf(A) as follows:

pf(A) =
∑

π

ǫ(π)
∏

(i,j)∈π

ai,j,

where the sum is taken over all complete matchings π on [2n].

Example 4.1. For n = 2 we have pf(A) = a1,2a3,4 − a1,3a2,4 + a1,4a2,3.

Theorem 4.1. We have (pf(A))2 = det(A).

Proof. Let E2n ⊂ S2n be the set of permutations where every cycle is even. Let σ =
σ1 . . . σl ∈ S2n/E2n be such that σ1 is odd with smallest element as small as possible.
Then σ 7→ σ′ = σ−1

1 . . . σn is an involution that changes sign of aσ = a1,σ(1) . . . a2n,σ(2n). As
permutations however σ and σ′ have the same sign, thus corresponding terms in det(A)
cancel out. Therefore

det(A) =
∑

σ∈E2n

ǫ(σ)aσ.

There exists a natural bijection between pairs (π, π′) of complete matchings on [2n] and
σ ∈ E2n obtained by taking union π ∪ π′ and orienting each cycle from smallest element
to edge of π. We claim that

ǫ(π)ǫ(π′)
∏

(i<j)∈π∪π′

ai,j = ǫ(σ)aσ.

Once known, the claim implies the theorem. Define e(σ) = |{i | σ(i) < i}|. The claim is
equivalent to equality

ǫ(π)ǫ(π′) = ǫ(σ)(−1)e(σ).

Assume it is true for some σ. We argue that it is true for conjugate of σ by si for any i.
If i and i + 1 are consecutive in the same cycle. both sides change sign. If not, both sides
stay the same. It remains now for each cycle type to present a σ for which the equality
holds. One can choose σ such that each cycle acts on consecutive indexes, both sides in
such case are equal to 1. �

Exercise 4.2. Assume ai,j = 1 for any i, j ∈ [2n], i < j. Show that pf(A) = 1.

4.1. Planar networks a la Stembridge. Assume now we have a planar network N in
the same class as before with 2n sources and any numbe of sinks. Create a skew-symmetric
matrix A(N) from it as follows:

ai,j =
∑

p,q

w(p)w(q),

where the sum is taken over all pairs of noncrossing paths from sources i and j to any
pair of sinks. **** example
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Theorem 4.3 (Stembridge). We have

pf(A(N)) =
∑

P

w(P ),

where the sum is taken over all non-crossing families of paths P from all sources to any
subset of sinks.

Proof. The proof resembles the proof of Linström lemma. We build a sign reversing
involution that gets rid of the terms in pf(A) such that the corresponding path families
have a crossing. Assume path family P has crossings and v is the largest one in previously
fixed order. Among all paths that go through v assume pi and pj start at smallest sources i
and j. Swap their parts that follow v and also swap i and j in the corresponding complete
matching π. We claim that in each pair (k, l) ∈ π the corresponding pair of paths still
does not intersect. This follows from the fact that there are no crossing points on parts
of pi and pj preceding v. We also argue that this involution is sign-reversing. Indeed, if
there is any k between i and j, then the path pk would intersect either pi or pj in a vertex
bigger than v, or would path through v. In both case we get contradiction with choices
made.

Once we are left only with non-crossing families, we apply the exercise above. �

Exercise 4.4. Assume n = 2 and N is a network with nonnegative edge weights. Show
that a1,3a2,4−a1,4a2,3 ≥ 0. Deduce that there are skew-symmetric matrices with all pfaffians
nonnegative which do not come from a network with nonnegative edge weights.

Exercise 4.5. Can any 4×4 skew symmetric matrix A with ai,j, a1,2a3,4−a1,3a2,4+a1,4a2,3

and a1,3a2,4 − a1,4a2,3 positive (or nonnegative) be realized by a planar network?

Exercise 4.6. Assume N has nonnegative edge weights. Show that for I ≤ J of even size
we have |A(N)I,J | ≥ 0.

Problem 4.7. Give semialgebraic description of skew symmetric matrices that come from
networks with nonnegative edge weights.
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5. Immanants

5.1. Immanants. Let X = (xi,j)
n
i,j=1 be a square matrix, and let f : Sn → R be a

function on symmetric group. If f is constant on conjugacy classes of Sn we call it a class
function, or a character. The functions of the form

Immf (X) =
∑

w∈Sn

f(w)x1,w(1) . . . xn,w(n)

we call immanants of X. If f happens to be a class function we call Immf character
immanant of X. Historically the term was immanant used only in cases when f is an
irreducible character of Sn, but we shall use it more widely. In the case when f is an
irreducible character we call Immf irreducible immanant.

Example 5.1. The determinant is an irreducible immanant corresponding to alternating
character of Sn.

Example 5.2. The permanent is an irreducible immanant corresponding to trivial character
of Sn.

An immanant Immf is called totally positive if it takes nonnegative values on totally
nonnegative matrices X.

Problem 5.1. Describe the cone of totally positive immanants. Is it polyhedral (probably
not).

Exercise 5.2. Describe explicitely the cone of totally positive immanants when X is a

(1) 2× 2
(2) 3× 3

matrix.

5.2. Goulden-Jackson argument. We know by a result of Brenti that each totally non-
negative matrix X = X(N) is representible by a planar network N with nonnegative edge
weights. Let us treat those edge weights as variables, and collect the terms in Immf (X)
according to monomials in those edge variables. Each such monomial determines a E
multiset of edges in N that can be viewed as union of n paths from sources to sinks,
possibly in more than one way. The coefficient of such monomial is equal to

∑

w

f(w)nw,

where n(w) denotes the number of different ways to split E into n paths that determine
permutation w between sources and sinks of N . In order for Immf to be a totally
positive immanant it is sufficient for each such coefficient to be nonnegative. Thus, we
are interested in all possible vectors of nw, w ∈ Sn as we vary E. Each such vector
determines a wall in the cone, and all immanants inside this cone are totally positive.

Now, each E can be reduced to sequential concatination of simple building blocks of
the following form. Choose an interval of [i, j] ∈ [1, n] and connect sources i through j
and sinks i through j to the same internal vertex. For k 6∈ [i, j] connect k-th source to
k-th sink. By abuse of notation, let

[i, j] =
∑

w∈S[i,j]

w
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be the sum of all permutations in the parabolic subgroup permuting elements i through
j. For example, [1, 2] = 1 + s1, while [2, 4] = 1 + s2 + s3 + s2s3 + s3s2 + s2s3s2. Assume
E is obtained by concatinating building blocks corresponding to [i1, j1], . . . , [ik, jk]. Then
we have the following simple proposition.

Proposition 5.3. The nw is the coefficient of w in [i1, j1] . . . [ik, jk].

The cone bounded by all such hyperplanes is contained in the cone of total positivity.
We call it the cone of polynomial total positivity. Note that a priori this cone can have
infinitely many walls, and thus not be polyhedral.

Conjecture 5.4 (Stembridge). The cone of polynomial total positivity is polyhedral.

Example 5.3. For n = 3 the walls of the cone are determined by 1 (identity), [1, 2], [2, 3],
[1, 2][2, 3], [2, 3][1, 2], [1, 3]. One can deduce this from the relation

[1, 2][2, 3][1, 2] = [1, 3] + [1, 2].

For n = 4 the cone has 24 walls, for n = 5 it has 121 walls, beyond that the conjecture is
not varified.

For pairs of permutations u, v ∈ Sn consider immanants of the form

Immu,v(X) = x1,u(1)x2,u(2) . . . xn,u(n) − x1,v(1)x2,v(2) . . . xn,v(n).

Theorem 5.5. Immu,v is polynomial TP if and only if u ≤ v in Bruhat order.

Exercise 5.6. Call a subset I ⊆ Sn an ideal if whenever v ∈ I and u < v in Bruhat
order, then u ∈ I. Denote [I] =

∑

w∈I w, call such elements of the group algebra ideals.
Show that product of any two ideals [I][J ] is a nonnegative combination of some ideals.

Proof. Once we know the statement of the exercise, we can deduce the theorem. Indeed,
each [i, j] is an ideal. Therefor if u < v, reapeated application of the exercise implies that
coefficient of u in

∏

k[ik, jk] is at least as large as that of v. By the argument above, this
implies one direction of the statement.

For the other direction, note that if u 6≤ v, one can always find a product
∏

k[ik, jk] such
that v is largest term occuring in it. Then on a network of corresponding combinatorial
type the value of the immanant above is negative. �

5.3. Irreducible immanants. Let us see now how the Goulden-Jackson argument can
be used to prove positivity of immanants.

Theorem 5.7 (Stembridge). The irreducible immanants Immλ are totally positive.

The original proof used a result of Greene on Young’s seminormal form of elements
[i, j]. We give a quick and dirty argument using Kazhdan-Lusztig theory.

Proof. We have
∑

w

f(w)nw =
∑

w

χλ(w)nw = χλ([i1, j1] . . . [ik, jk]).

In other words, we want to show that irreducible characters of group algebra elements of
the form [i1, j1] . . . [ik, jk] are nonnegative. It is well known that C ′

w0
= [1, n], and thus each

[i, j] is equal to C ′
w for w longest element in S[i,j]. The group algebra CSn has nonnegative

structure constants with respect to Kazhdan-Lusztig basis, which implies that all matrix
entries of any C ′

w in (Kazhdan-Lusztig realization of) any irreducible representation are
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nonnegative. A product of several matrices with nonnegative entries has nonnegative
trace. �

Note that if one takes the alternating representation of the symmetric group, one re-
covers the usual Lindstrom lemma argument.

Exercise 5.8. Show that Immλ take nonnegative values for two-row partitions λ if it is
known that all minors of the matrix of size at most 2 are nonnegative.

Exercise 5.9. Let p and q be two entries in a standard tableau T of shape λ ⊢ n. If p
lies in row r column c and q lies in row r′ column c′, denote

δ(p, q) = c′ − r′ − c + r.

Symmetric group Sn acts on tableaux of shape λ by permuting the entries. Consider the
vector space spanned by standard tableaux Ti of shape λ. Let δi = δ(k, k + 1) taken in Ti.
Define matrices ρλ(sk) as follows:

ρλ(sk)|i,j =



















1/δi if i = j;

0 if i 6= j and Tj 6= skTi;

1− 1/δ2
i if i < j and Tj = skTi;

1 if i > j and Tj = skTi.

(1) Show that this gives a representation of the symmetric group Sn.
(2) Show that all matrix entries of elements [i, j] in this representation are nonnega-

tive.

5.4. Temperley-Lieb immanants. Temperley-Lieb algebra TLn is a C-algebra gener-
ated by t1, . . . , tn−1 subject to relations

t2i = 2ti; titj = tjti if |i− j| > 1; titjti = ti if |i− j| = 1.

For a permutation w ∈ Sn let w = si1 . . . sil be a reduced decomposition, and denote
tw = ti1 . . . til.

Exercise 5.10. Show that tw does not depend on the reduced decomposition chosen for w
(as long as w is 321-avoiding). Show that as w ranges over 321-avoiding permutations in
Sn, the tw form a linear basis of TLn.

Proposition 5.11. The map θ : si 7→ ti−1 determines a homomorphism θ : CSn → TLn.

Proof. Directly verify relations. �

Elements of TLn can be represented by Kauffman diagrams **** figure . A diagram
for tw can be obtained by uncrossing vertically all crossings in the wiring diagram of
w. This gives a bijection between 321-avoiding permutations in Sn and non-crossing
matchings on 2n vertices. If we have a Kauffman diagram containing loops, each loop can
be removed at the cast of adding factor 2 to the expression.

For a 321-avoiding permutation w and any permutation v let

fw(v) = coefficient of tw in θ(v) = (ti1 − 1) . . . (til − 1)

for a reduced decomposition v = si1 . . . sil. Rhoades and Skandera have defined Temperley-
Lieb immanants

Immw = Immfw
.
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Example 5.4. Let w = s1. Then fw(1) = 0, fw(s1) = 1, fw(s2) = 0, fw(s1s2) = −1,
fw(s2s1) = −1, fw(s1s2s1) = 1. Thus

Imms1(X) = x1,2x2,1x3,3 − x1,2x2,3x3,1 − x1,3x2,1x3,2 + x1,3x2,2x3,1.

5.5. Decomposition of minor products. Consider 2n points arrange around a disk so
that n of them are on the left and n on the right. For a subset S ⊆ [2n] of cardinality |S| =
n let Θ(S) be a set of non-crossing matchings on [2n] compatible with S in the following
sense: each edge of a matching has one endpoint in S and one not in S. Equivalently, one
can think of points in S colored white and points of the complement [2n]/S colored black.
Then a matching is compatible with this coloring if each edge has endpoints of different
color. By abuse of notation we also denote Θ(S) the set of 321-avoiding permutations in
Sn which are in bijection with matchings in Θ(S).

Theorem 5.12 (Rhoades-Skandera). For two subsets I, J ⊆ [n] of the same cardinality
and S = I ∪ {2n + 1− i | i 6∈ J} we have

|XI,J ||X[n]/I,[n]/J| =
∑

w∈Θ(S)

Immw(X).

Proof. Let us fix a permutation v ∈ Sn with a reduced decomposition v = si1 · · · sil . The
coefficient of the monomial x1,v(1) · · ·xn,v(n) in the expansion of the product of two minors
|XI,J ||X[n]/I,[n]/J| equals

{

(−1)inv(I)+inv([n]/I) if v(I) = J,
0 if v(I) 6= J,

where inv(I) is the number of inversions i < j, v(i) > v(j) such that i, j ∈ I.
On the other hand, by the definition of Immw, the coefficient of x1,v(1) · · ·xn,v(n) in

the right-hand side of the identity equals the sum
∑

(−1)r 2s over all diagrams obtained
from the wiring diagram of the reduced decomposition si1 · · · sil by replacing each crossing
“ ” with either a vertical uncrossing “ ” or a horizontal uncrossing “ ” so that the
resulting diagram is S-compatible, where r is the number of horizontal uncrossings “ ”
and s is the number of internal loops in the resulting diagram.

Let us pick directions of all strands and loops in such diagrams so that the initial vertex
in each strand belongs to S (and, thus, the end-point is not in S). There are 2s ways
to pick directions of s internal loops. Thus the above sum can be written as the sum
∑

(−1)r over such directed Temperley-Lieb diagrams.
**** example
Let us construct a sign reversing partial involution ι on the set of such directed Temperley-

Lieb diagrams. If a diagram has a misaligned uncrossing , i.e., an uncrossing of the form
“ ”, “ ”, “ ”, or “ ”, then ι switches the leftmost such uncrossing according to
the rules ι : ↔ and ι : ↔ . Otherwise, when the diagram involves only
aligned uncrossings “ ”, “ ”, “ ”, “ ”, the involution ι is not defined.

**** example
Since the involution ι reverses signs, this shows that the total contribution of all di-

agrams with at least one misaligned uncrossing is zero. Let us show that there is at
most one S-compatible directed Temperley-Lieb diagram with all aligned uncrossings.
If we have a such diagram, then we can direct the strands of the wiring diagram for
v = si1 . . . sil so that each segment of the wiring diagram has the same direction as in the
Temperley-Lieb diagram. In particular, the end-points of strands in the wiring diagram
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should have different colors. Thus each strand starting at an element of J should finish at
an element of I∧, or, equivalently, v(I) = J . The directed Temperley-Lieb diagram can
be uniquely recovered from this directed wiring diagram by replacing the crossings with
uncrossings, as follows: → , → , → , → . Thus the coefficient
of x1,v(1) · · ·xn,v(n) in the right-hand side of the needed identity is zero, if v(I) 6= J , and
is (−1)r, if v(I) = J , where r is the number of crossings of the form “ ” or “ ” in
the wiring diagram. In other words, r equals the number of crossings such that the right
end-points of the pair of crossing strands have the same color. This is exactly the same
as the expression for the coefficient in the left-hand side of the needed identity. �

Corollary 5.13. TL immanants form a basis for the space of product of complementary
minors.

Proof. They form a generating set, and their number is equal to the dimension. �

5.6. TL immanants are TP. Above we have computed Imms1 in 3× 3 matrices. Re-
call that to check that this immanant is totally positive it suffices to verify six linear
inequalities for fs1. **** check inequalities explicitely .

It turns out that all Temperley-Lieb immanants are totally positive. The proof below
gives an explicite interpretation to Immw(X) in terms of weighted network N realizing
X = X(N).

Let E be a multiset of edges in a network N such that

• E can be decomposed into union of paths from n sources of N to its n sinks;
• no vertex in N is contained in more than two of such paths.

For a non-crossing matching w on [2n] we say that E is of type w if after uncrossing
vertically all vertices in E the resulting matching is w **** figure, example . Denote
mult(E) the number of closed loops formed after such uncrossing.

Theorem 5.14 (Rhoades-Skandera). If X = X(N) is the matrix associated to weighted
network N , then

Immw(X) =
∑

E

2mult(E)wt(E),

where the sum is taken over all E of type w. In particular, Temperley-Lieb immanants of
totally nonnegative matrices are nonnegative.

Proof. The function fw is clearly linear, and thus to give interpretation to the immanants
we need to compute fw([i1, j1] . . . [ik, jk]). Now, if j − i > 1, then it is easy to check that
θ([i, j]) = 0, while if j − i = 1, then θ([i, j]) = ti. Thus, only the terms without triple
crossings will contribute. The value of fw([i1, j1] . . . [ik, jk]) is then either 0 or the desired
power of 2, depending on whether the resulting product of ti-s produces (constant times)
tw or some other basis element of TLn. �

The following is an example of how TL immanants can be used to prove inequalities.

Corollary 5.15. For a TNN matrix X we have

xi,i|X[n]/i,[n]/i| ≥ |X|.

Proof. One of the immanants accuring in the decomposition of this product is the deter-
minant, the rest are nonnegative. �

Exercise 5.16. Show that TL immanants of Jacobi-Trudi matrices are Schur positive.
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Exercise 5.17. Assume some pairs of neighboring rows and columns of a TNN matrix
are equal. Find a necessary and sufficient consition for a particular TL immanant Immw

not to vanish constantly on such matrices.

Exercise 5.18. Use TL immanants to prove Plücker relations.

5.7. Monomial immanants. To any symmetric function f one can associate a (possibly
virtual) character χf via

χf(w) = 〈f, pρ(w)〉.

When f = sλ this is the irreducible character labeled by λ.Denote

ηλ = χmλ
,

where mλ is the monomial symmetric function labeled by λ, and call the corresponding
immanants monomial immanants.

Conjecture 5.19 (Stembridge). Monomial immanants of TNN matrices are nonnegative.

Theorem 5.20. The monomial immanant η(2,1n−2) is TP.

Proof. Note that m(2,1n−2) = en−1p1 − nen. We claim that

η(2,1n−2) = −n|X|+
n
∑

i=1

xi,i|X[n]/i,[n]/i|.

Indeed, the character corresponding to en is alternating character, and thus the corre-
sponding immanant is just a determinant. Next, 〈en−1p1, pρ〉 = 0 unless ρ has a part of
size 1. Thus permutations without fixed point do not appear in the immanant of en−1p1.
It remains to note that pλ-s form an orthogonal basis for symmetric functions and

〈pρ′p1k , pρ′p1k〉 = k〈pρ′p1k−1 , pρ′p1k−1〉.

Now, using Theorem 5.12 one checks that for each i

xi,i|X[n]/i,[n]/i| − |X|

is a nonnegative combination of Temperley-Lieb immanants, and thus is nonnegative when
evaluated on TNN matrices. �

Exercise 5.21. Assume λ has two columns. Show that Immηλ
is a nonnegative combi-

nation of Temperley-Lieb immanants. Deduce that such immanants are TP.

Exercise 5.22. Assume λ = rl is a rectangular shape. Show that

Immηλ
(X) =

∑

|XI1,I2||XI2,I3| . . . |XIr,I1|,

where the sum ranges over all ordered partitions (I1, . . . , Ir) of [n] into disjoint subsets of
size l.
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6. Edrei-Thoma theorem

6.1. The tower of symmetric group algebras. Let Sn be a symmetric group on n
symbols. There exists a natural embedding Sn →֒ Sn+1 such that the elements of Sn acts
on first n symbols and fixes the (n + 1)-st one. Recall that irreducible characters πλ of
the symmetric group Sn are indexed by partitions λ of n. Let λ be a partition of n, and
µ a partition of n + 1. Then by Frobenius reciprocity

〈Res
Sn+1

Sn
πµ, πλ〉 = 〈πµ, Ind

Sn+1

Sn
πλ〉.

Denote this number by Ξ(λ, µ). One can form a graph then by connecting partitions λ
and µ by an edge of multiplicity Ξ(λ, µ). Gluing such graphs together for all n we obtain
the Bratelli diagram, or branching graph of the tower of algebras

C[S0] →֒ C[S1] →֒ C[S2] →֒ . . . .

Here for convinience we introduce the group algebra C[S0] = C of the nonexisting group
S0. It turns out that

Ξ(λ, µ) =

{

1 if λ is obtained from µ by deleting a single corner box;

0 otherwise.

Thus, all edges of the Bratelli diagram in this case are multiplicity-free. The resulting
graph Y on partitions is called Young’s lattice, and is shown on the figure. **** figure

We denote
C[S∞] = lim

→
C[Sn]

the inductive limit of algebras C[Sn]. C[S∞] is an example of a locally semisimple algebra,
see [Ker].

6.2. Characters of S∞. A character of a discrete group G is any function χ : G → C

with the following properties:

• (positive definitness) for any g1, . . . , gn ∈ G and any z1, . . . , zn ∈ C we have
n
∑

i,j=1

χ(gig
−1
j )ziz̄j ≥ 0;

• (centrality) for any g, h ∈ G we have χ(gh) = χ(hg);
• (normalization) for unity e ∈ G we have χ(e) = 1.

Denote π(G) the set of characters of G endowed with pointwise convergence topology.
Clearly π(G) is convex and compact. Hense each character χ ∈ π(G) is the barycenter of
a measure supported by the set of extreme points E(G).

Exercise 6.1. Show that when G is a finite group, E(G) consists of normalized characters
of irreducible representations of G.

In fact, it can be shown that space π(G) is always a simplex, see [Ker].
We wish to describe the set π(S∞) of characters of infinite symmetric group. This will

be accomplished in three steps as follows:

(1) characters can be identified with harmonic functions on Young’s lattice Y;
(2) extreme harmonic functions correspond homomorphisms from the ring Λ of sym-

metric functions to R, taking nonnegative values on Schur functions (totally posi-
tive homomorphisms);
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(3) totally positive homomorphisms are in bijection with totally positive sequences and
are classified by the Edrei-Thoma theorem.

6.3. Characters as harmonic functions. Let us restrict a character χ of C[S∞] to a
character χn of C[Sn]:

χn = Res
C[S∞]
C[Sn] χ.

The resulting function by the above exercise is a nonnegative combination of irreducible
characters of Sn:

χn =
∑

λ⊢n

ϕ(λ)πλ.

If we are restricting to C[Sn−1], the result should not depend on whether we have the
intermidiate step of restricting to C[Sn]. Therefore

ResC

C[Sn−1][Sn](
∑

λ⊢n

ϕ(λ)πλ) =
∑

µ⊢n−1

ϕ(µ)πµ,

and thus

ϕ(µ) =
∑

µ≺λ

ϕ(λ),

where µ ≺ λ denotes the covering relation in Y. Such functions ϕ we call harmonic.

Theorem 6.2. [Ker, Theorem 1] Normalized (ϕ(∅) = 1) harmonic functions ϕ : Y→ R+

are in bijection with characters χ : C[S∞]→ C, given by

χ(w) =
∑

λ⊢n

ϕ(λ)πλ(a).

Proof. We have already seen that each character corresponds to a harmonic function. On
the other hand, the three conditions one must check for a function to be a character hold
once they hold inside some C[Sn] →֒ C[S∞]. By the above exercise, the latter is true for
any character coming from a harmonic function. �

6.4. Extreme harmonic functions as totally positive homomorphisms. Let us
multiply partitions the way we multiply Schur functions:

λ · µ =
∑

cν
λ,µν if sλsµ =

∑

cν
λ,µsν .

Extend functions ϕ : Y→ R by linearily to CY.

Theorem 6.3. A (normalized) harmonic function ϕ : Y → R+ is extreme if and only if
for any f, g ∈ CY we have

ϕ(f)ϕ(g) = ϕ(f · g).

Proof. First, we argue that any extreme harmonic function is a totally positive homomor-
phism. The definition of a harmonic function implies that for any f ∈ CY we have

ϕ( · f) = ϕ( )ϕ(f).

Indeed, it is enough to check this for the linear basis of partitions. The statement follows
from the normalization and harmonic conditions

ϕ( · µ) = ϕ(
∑

µ≺λ

λ) = ϕ(µ) = ϕ( )ϕ(µ).
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Assume now λ ⊢ n and µ ⊢ m are any two elements of Y. We argue that ϕ(λ · µ) =
ϕ(λ)ϕ(µ). There are two cases to consider, either one of ϕ(λ) or ϕ(µ) vanishes or not. If
say ϕ(λ) = 0, then

0 ≤ ϕ(λ · µ) ≤ ϕ(λ · µ) + ϕ(λ · (
m
− µ)) = ϕ(λ) = 0,

and the statement follows. We use the fact that
m
− µ is a nonnegative combination

of elements of Y.
Consider now the case when both ϕ(λ) or ϕ(µ) are strictly positive. Then one can

define two new functions

ϕ1(µ) =
ϕ(λ · µ)

ϕ(λ)
and ϕ2(µ) =

ϕ((
n
− λ) · µ)

ϕ(
n
− λ)

,

extending by linearity to CY. Those functions are again normalized harmonic functions
on Y. Since

ϕ = ϕ(λ)ϕ1 + ϕ(
n
− λ)ϕ2

is a nonnegative linear combination of ϕ1 and ϕ2, it can only be extreme if either ϕ = ϕ1

or ϕ = ϕ2. Each of those relations implies ϕ(λ · µ) = ϕ(λ)ϕ(µ).
Now we argue that if ϕ is a totally positive homomorphism, it has to be extreme.

Indeed, assume it is not. Then it can be written as a barycenter of some measure ρ
supported on the boundary:

ϕ =

∫

E

ϕθdρ(θ).

Then for any f ∈ CY we have

V ar(ϕ(f)) =

∫

E

ϕθ(f)2dρ(θ)− (

∫

E

ϕθ(f)dρ(θ))2 = ϕ(f 2)− ϕ(f)2 = 0,

which can hold only if ρ is concentrated in one point. �

Edrei-Thoma theorem. We have shown that the points of the boundary E(S∞) can
be identified with homomorphisms from the ring Λ of symmetric functions to R that take
nonnegative values on Schur functions (or totally positive homomorphisms). Ring λ is a
polynomial ring over the basis of complete homogenous symmetric functions hn = s(n).
Thus to specify a homomorphism ϕ : Λ → R it suffices to specify its value on every hn,
n = 1, 2, . . ..

Let a = (a0 = 1, a1, a2, . . .) be a sequence of real numbers, and let ϕa be the corre-
sponding homomorphism given by ϕa(hn) = an, n = 1, 2, . . .. Construct an infinite upper
triangular Toeplits matrix Xa as follows:

xi,j =

{

aj−i if j ≥ i;

0 otherwise.

Proposition 6.4. Homomorphism ϕa is totally positive if and only if the infinite Toeplitz
matrix Xa is totally nonnegative.

Proof. The minors of Xa are exactly the values of ϕa on skew Schur functions. Because
of the Littlewood-Richardson rule, ϕa takes nonnegative values on skew Schur functions
if and only if it takes nonnegative values on Schur functions. �
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In the case Xa is totally nonnegative the sequence a is called a totally positive sequence,
and the associated formal power series

a(t) = a0 + a1t + a2t
2 + . . .

is called a totally positive function.

Lemma 6.5. The set of totally positive functions is closed under multiplication (they
form a semigroup).

Proof. Follows from the fact that totally nonnegative matrices form a semigroup. �

Exercise 6.6. Check that the functions 1 + βt, 1/(1−αt) and eγt are totally positive for
α, β, γ ≥ 0.

Exercise 6.7. Give an explicite combinatorial interpretation to minors of eγt.

Theorem 6.8 (Edrei-Thoma). Every totally positive function a(t) can be written in the
form

a(t) = eγt
∏

i

1 + βit

1− αit
,

where αi, βi, γ ≥ 0 and
∑

i(αi + βi) <∞.

The proof will be given in the next section.

Exercise 6.9. Assume a(t) = eγt
∏

i
1+βit
1−αit

and let ϕa be the corresponding totally positive
homomorphism.

(1) Find
∑

n≥0 ϕa(en)tn (where ϕa(e0) = 1).

(2) Show that ϕa(pn) =
∑

i α
n
i + (−1)n+1

∑

i β
n
i for n ≥ 2.

(3) Express ϕa(sλ) as a generating function of monomials associated to some kind of
semistandard tableaux.

Corollary 6.10. [Ker, Theorem 8] Consider the space of pairs of sequences

∆ =
{

α = (α1 ≥ α2 ≥ . . . ≥ 0), β = (β1 ≥ β2 ≥ . . . ≥ 0) |
∑

(αi + βi ≤ 1)
}

with pointwise convergence topology (Thoma simplex). Then the set of extreme characters
E(S∞) is homeomorphic to ∆. The character χα,β ∈ E(S∞) corresponding to a pair
(α, β) ∈ ∆ is determined by its values

χα,β(wn) =
∑

i

αn
i + (−1)n+1

∑

i

βn
i , n = 2, 3, . . .

on one-cycle permutations by the formula

χα,β(w) =
∏

i

χα,β(wni
),

where w = wn1wn2 . . . is a decomposition of w ∈ S∞ into the product of one-cycle permu-
tations.

Proof. The multiplicativity in terms of cycle structure of w ∈ S∞ follows from the mul-
tiplicativity of characters in E(S∞) as in Theorem 6.3. Indeed, for a symmetric func-
tion f ∈ Λ let χ(f) = 〈

∑

λ ϕ(λ)sλ, f〉, where we use the inner product of Λ. Then
χ(fg) = χ(f)χ(g), as it is easily checked on the linear basis of Schur functions using



22

multiplicativity of ϕ. It remains to note that χ(pρ(w)) = χ(w), where ρ(w) denotes the
cycle type of w ∈ S∞.

The formula for a one-cycle permutation follows from the Murnaghan-Nakayama rule
and the exercise above. �

In fact, one can give an explicite interpretation to αi and βi via the following theorem.
Denote d(λ) the dimension of irreducible symmetric group representation corresponding
to λ.

Theorem 6.11. Consider a sequence of Young diagrams λn ⊢ n, n = 1, 2, . . .. The
following conditions are equivalent:

(1) The limits

lim
n→∞

χλn

(w)

d(λn)
= χ(w)

exist for all w ∈ S∞.
(2) The limits of the relative row and column lengths

lim
n→∞

λn
k

n
= αk lim

n→∞

(λn)k

n
= βk

exist for all k = 1, 2, . . .. The limiting character consides with character χα,β

above.

6.5. Aissen-Schoenberg-Whitney argument.

Exercise 6.12. Show that if a(t) is totally positive, then so is (a(−t))−1.

Lemma 6.13. Every totally positive function a(t) can be written in the form

a(t) = eb(t)
∏

i

1 + βit

1− αit
,

where αi, βi ≥ 0,
∑

i(αi + βi) <∞ and b(t) is an entire function.

Proof. First we show that one can write a(t) as

a(t) = c(t)
∏

i

1 + βit

1− αit
,

where αi, βi are as above, c(t) is totally positive and both c(t) and (c(−t))−1 are entire.
Note that by total positivity of Xa, we have

x1,2

x2,2

≥
x1,3

x2,3

≥
x1,4

x2,4

≥ . . . ≥ 0,

and therefore the limit

α = lim
n→∞

an+1

an

exists. We claim that (1 − αt)a(t) is a totally positive function. Indeed, it suffices to
check that row-solid minors of Xa remain nonnegative. Consider the minor of Xa with
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rows i through i + k − 1 and columns j1 < j2 < . . . < jk. We have

lim
l−→∞

det













xi,j1 xi,j2 . . . xi,jk
xi,l

xi+1,j1 xi+1,j2 . . . xi+1,jk
xi+1,l

...
...

. . .
...

...
xi+k−1,j1 xi+k−1,j2 . . . xi+k−1,jk

xi+k−1,l

xi+k,j1 xi+k,j2 . . . xi+k,jk
xi+k,l













xi+k,l
=

lim
l−→∞

det













xi,j1 xi,j2 . . . xi,jk
xi,l/xi+k+1,l

xi+1,j1 xi+1,j2 . . . xi+1,jk
xi+1,l/xi+k+1,l

...
...

. . .
...

...
xi+k−1,j1 xi+k−1,j2 . . . xi+k−1,jk

xi+k−1,l/xi+k,l

xi+k,j1 xi+k,j2 . . . xi+k,jk
1













=

det













xi,j1 xi,j2 . . . xi,j2 αk

xi+1,j1 xi+1,j2 . . . xi+1,j2 αk−1

...
...

. . .
...

...
xi+k−1,j1 xi+k−1,j2 . . . xi+k−1,j2 α
xi+k,j1 xi+k,j2 . . . xi+k,j2 1













=

det













xi,j1 − αxi+1,j1 xi,j2 − αxi+1,j2 . . . xi,jk
− αxi+1,jk

0
xi+1,j1 − αxi+2,j1 xi+1,j2 − αxi+2,j2 . . . xi+1,jk

− αxi+2,jk
0

...
...

. . .
...

...
xi+k−1,j1 − αxi+k,j1 xi+k−1,j2 − αxi+k,j2 . . . xi+k−1,jk

− αxi+k,jk
0

xi+k,j1 xi+k,j2 . . . xi+k,jk
1













=

det









xi,j1 − αxi+1,j1 xi,j2 − αxi+1,j2 . . . xi,jk
− αxi+1,jk

xi+1,j1 − αxi+2,j1 xi+1,j2 − αxi+2,j2 . . . xi+1,jk
− αxi+2,jk

...
...

. . .
...

xi+k−1,j1 − αxi+k,j1 xi+k−1,j2 − αxi+k,j2 . . . xi+k−1,jk
− αxi+k,jk









.

and the claim follows. This way we can keep factoring factors of the form 1/(1 − αit)
from a(t), possibly infinitely many times. At the limit however we get an entire totally
positive function. Similarly, we can keep factoring factors of the form 1/(1 − βit) from
(a(−t))−1 until we obtain an entire function at the limit. Combining both, we get the
desired function c(t).

Now we show that c(t) = eb(t) for an entire b(t). Define d(t) = e−
R

(c(t))−1c′(t)dt where
c′(t) denotes d

dt
(c(t)). Clearly, d(t) is an entire function. We may pick the constant of

integration so that d(0) = 1. However,

d

dt
(c(t)d(t)) = c′(t)d(t)− c(t)(c(t))−1c′(t)d(t) = 0.

Thus c(t)d(t) is a constant. But c(0)d(0) = 1, so the result holds with

b(t) = −

∫

(c(t))−1c′(t)dt

which is clearly entire. �
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6.6. Edrei-Thoma argument. Denote M(r) the maximum of |f(t)| on |t| = r. Then
the order of an entire function f(t) is the smallest τ such that

M(r) ≤ erτ+ǫ

for any given ǫ > 0 and r sufficiently large.
Given an entire function f(t) and a point z, let t1, t2, . . . be the sequence of all points

such that f(ti) = z. The exponent of convergence (also called index of convergence) of z
is the number

ρz = inf{ρ ≥ 0 |
∑

i

|ti|
−ρ <∞}.

Theorem 6.14 (Nevanlinna). If ρz ≤ ρ and ρw ≤ ρ for two distinct values z, w of an
entire function f , then the order of f is at most ρ.

Now we are ready to proof the Edrei-Thoma theorem.

Proof. Let a(t) = a0 +a1t+a2t
2 . . . be a totally positive function and b(t) = b1t+b2t

2 + . . .
be an entire function such that a(t) = eb(t). We show that b2 = b3 = . . . = 0. First we
show that b3 = b5 = . . . = 0.

The function f(t) = a0 + a2t + a4t
2 + . . . is also totally positive and entire. Hense it

can be written as
f(t) = eg(t)

∏

(1 + θit),

where g(t) is entire, θi ≥ 0,
∑

θi < ∞. Equality a(t) + a(−t) = 2f(t2) can be rewritten
then as

eb(t) + eb(−t) = 2eg(t2)
∏

(1 + θit
2).

Set h(t) = eb(t)−b(−t). Then

h(t) + 1 = 2eg(t2)−b(−t)
∏

(1 + θit
2).

We see that h(t) is entire and takes value −1 at a sequence of points of exponent of
convergence not exceeding 2. By Nevanlinna’s theorem, the order of h(t) is no larger than
2, which immidiately implies b3 = b5 = . . . = 0.

Now, both eb(t) and e−b(−t) are totally positive, and eb(t)e−b(−t) = e2b1t. Then eb(t) grows

no faster than e2b1t

e−b(0) , and thus b2 = b4 = . . . = 0. �
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7. Cells in GLn(R)≥0

For a real parameter a ∈ R and an integer k, we define ek(a) = (xi,j)
n
i,j=1 ∈ GLn(R) to

be the matrix given by

xi,j =











1 if i = j

a if j = i + 1 and i = k

0 otherwise.

Similarly, define fk(a) ∈ GLn(R) to be the transpose of ek(a).
Finally, define hk(a) by

xi,j =











1 if i = j 6= k

a if i = j = k

0 otherwise.

Theorem 7.1. The following identities hold:

hk+1(a)ek(b) = ek(b/a)hk+1(a)

hk(a)ek(b) = ek(ab)hk(a)

hk(a)ej(b) = ej(b)hk(a)if k 6= j, j + 1

hk+1(a)fk(b) = fk(ab)hk+1(a)

hk(a)fk(b) = fk(b/a)hk(a)

hk(a)fj(b) = fj(b)hk(a)if k 6= j, j + 1

ei(a)fj(b) = fj(b)ei(a)if i 6= j

ei(a)fi(b) = fi(b/(1 + ab))hi(1 + ab)hi+1(1/(1 + ab))ei(a/(1 + ab))

Proof. Direct computation. �

Consider the monoid G≥0 generated by the ei, fi and hi with nonnegative parameters.

Theorem 7.2. G≥0 coinsides with GLn(R)≥0.

Proof. We already proved this theorem when we prooved that elements of GLn(R)≥0 factor
into Chevalley generators and torus elements with nonnegative parameters. �

Lemma 7.3. Any element of GLn(R)≥0 can be rewritten in the form
∏

fij (aj)
∏

hij(bj)
∏

eij(cj).

Proof. We proved that before. One can also use the relations above to sort factors in that
order. �

Theorem 7.4. The following identities hold:

ei(a)ei+1(b)ei(c) = ei+1(bc/(a + c))ei(a + c)ei+1(ab/(a + c))

fi(a)fi+1(b)fi(c) = fi+1(bc/(a + c))fi(a + c)fi+1(ab/(a + c))

Proof. Direct computation. �

Let U be the upper unitriangular subgroup of GLn(R), and let U≥0 be its totally
nonnegative part. Let w ∈ Sn and w = si1 . . . sil be a reduced word for w. Consider the
map Rl

>0 → U≥0 given by

(a1, . . . , al) 7→ ei1(a1) . . . eil(al).

Denote U(w) the image of this map.
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Theorem 7.5. (1) as suggested by notation, U(w) depends only on w and not on the
reduced decomposition chosen;

(2) if u 6= w then U(u) ∩ U(w) = ∅;
(3) the map is an injection.

The first statement of the theorem follows trivially from relations satisfied by Chevalley
generators, and the fact that any two reduced decompositions are connected by a sequence
of braid and commutation moves. We postpone the other two statements until we describe
Bruhat decomposition and some of its properties.

7.1. Bruhat decomposition. Let B+ and B− be the upper and the lower triangular
Borel subgroups of GLn(R), respectively. For each w ∈ Sn call the set B−wB− the Bruhat
cell B−

w associated to w. Similarly one can also define Bruhat cells B+
u = B+uB+. Finally,

define double Bruhat cells Bu,w = B+
u ∩B−

w .

Proposition 7.6. Any element of GLn(R) belongs to one of the Bruhat cells.

Proof. One can always transform an element of GLn(R) into a permutation matrix using
only lower (resp., only upper) triangular row and column operations. �

We shall use the following characterization of Bruhat cells in terms of vanishing/nonvanishing
of minors. Call a submatrix XC = XI(C),J(C) a w-NE-ideal if the following condition holds:
if (i, w(i)) ∈ C and j is such that j < i but w(j) > w(i), then (j, w(j)) ∈ C. Call a subma-
trix XD = XI(D),J(D) a shifted w-NE-ideal if I(D) ≤ I(C) and J(C) ≤ J(D) in termwise
order for some w-NE-ideal C, but D 6= C.

Proposition 7.7. For X ∈ GLn(R) we have X ∈ B−
w if and only if the following two

conditions are satisfied:

• |XC| 6= 0 for w-NE-ideals C,
• |XC| = 0 for shifted w-NE ideals C.

Proof. The statemetn is easily varified for X = w. It is also easy to see that the conditions
are preserved by left and right multiplication by B−. �

Of course, one can similarly characterize cells B+
w via w-SW-ideals.

Corollary 7.8. Bruhat cells B−
w are disjoint with each other. Same for B+

w .

Proof. Assume two cells B−
w and B−

u are not disjoint. Then w(1) = u(w), since otherwise
we would have a single cell which is a w-NE-ideal and shifted u-NE-ideal, or the other way
around. Similarly, we also must have w(2) = u(2), since otherwise we can obtain a con-
tradiction for C with rows 1, 2 and columns w(1) and the larger of w(2), u(2). Proceeding
like that we conclude that w = u. �

Now let us go back to products of Chevalley generators.

Proposition 7.9. We have U(w) ⊂ B−
w .

Proof. The proof is by induction on length of w. For w = I the statement is clear. Now
observe that as we multiply by eij (aj) say on the left, we swap two rows in w in order to
make it w′ = sijw. Examining what are the new w′-NE-ideals and shifted w′-NE-ideals,
one can easily see that corresponding minors can be expressed in terms of original minors
of w-NE-ideals and shifted w-NE-ideals in a predictable way. In particular, in each case
it suffices to know the original vanishing/nonvanishing pattern to conclude the desired
statement. �
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Now we can finish the proof of Theorem 7.5.

Proof. For the second statement, use Proposition 7.9 and the fact that Bruhat cells are
disjoint. For the third statement, assume that we have

ei1(a1) . . . eil(al) = ei1(a
′
1) . . . eil(a

′
l),

but the two sets of parameters are not the same. Without loss of generality we can assume
that the difference occures already in the first factor, say a1 > a′

1. Then

ei1(a1 − a′
1) . . . eil(al) = ei2(a

′
2) . . . eil(a

′
l),

which contradicts the second statement of the theorem. �

By analogy with U = U+ we can consider its transpose U− and sets U−(u) within
it. Denote G(u, w) = U−(u)T>0U

+(w), where T>0 is the positive torus (that is diagonal
matrices with positive entries).

Theorem 7.10. We have G(u, w) = GLn(R)≥0 ∩ Bu,w.

Proof. It is easy to see that G(u, w) ⊆ GLn(R)≥0∩Bu,w. Since the latter sets are disjoint,
the statement follows. �

Exercise 7.11. Show that GLn(R)>0 = G(w0, w0).

7.2. Topology of cells.

Theorem 7.12. The closure U(w) consists of U(v) for all v ≤ w in Bruhat order.

Proof. It is clear that every such U(v) is in the closure, from the definition of Bruhat order
as a subword order on reduced words. Indeed, we can just let some of the parameters aj

in the product ei1(a1) . . . eil(al) approach zero, effectively ommiting some of the factors.

The non-trivial part is to show that no element of U(v), v 6≤ w belongs to U(w). Recall
the following characterization of the Bruhat order from [BB]. For each (i, j) ∈ [n]× [n] let
Nw(i, j) = |{k | k ≤ i, w(k) ≥ w(i)}|. Then u ≤ w if and only if for every (i, j) we have
Nu(i, j) ≤ Nw(i, j). Thus, if v 6≤ w, then there exists (i, j) such that Nv(i, j) > Nw(i, j).
Take the minimal v-NE-ideal XC containing cell (i, j). Then as we know, |XC | 6= 0 for
X ∈ U(v). On the other hand, if X ∈ U(w) then XC is not of full rank, since it is obtained
by row and column operations from a matrix of smaller rank Nw(i, j). Thus |XC| = 0,

which should remain true for all points in the closure U(w), contradiction. �

Conjecture 7.13 (Fomin, proved by Hersh). Each of the closed sets U(w) is homeomor-
phic to a ball.

Example 7.1. Take the whole U≥0 for n = 3. It consists of matrices




1 x y
0 1 z
0 0 1





with x, y, z, xz−y ≥ 0. This is a cone since we can simultaniously rescale all the variables
(x, y, z) 7→ (ax, a2y, az) for a > 0. Cutting the cone by plane x + z = 1 we get the set

{(x, y) ∈ R
2
≥0 | x ≤ 1, y ≤ x(1− x)}.

This set naturally decomposes into one 2-dimensional, two 1-dimensional and two 0-
dimensional cells. Their closure order is exactly the Bruhat order of S3, with the smallest
element corresponding to empty set.
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7.3. Frenkel-Moore relation. Assume we are given a reduced product of Chevlley gen-
erators ei1(a1) . . . eik(ak). Represent it diagramatically: draw the wiring diagram for
w = si1 . . . sik , and assign a parameter aj to the crossing in the diagram corresponding to
the factor sij . We can consider equivalence classes of reduced words up to commutation
relations sisj = sjsi, |i − j| > 1. This would correspond to making the wiring diagrams
obtained by arbitrary stratchings of the wires equivalent. In what follows we shall often
refer to such equivalence classes when we speak about wiring diagrams.

Now, we can start applying braid moves to products ei1(a1) . . . eik(ak). Simultaniously,
we apply Yang-Baxter moves to the corresponding wiring diagrams, simultaneously chang-
ing the parameters aj according to the rule

ei(a)ej(b)e(c) 7→ ej(bc/(a + c))ei(a + c)ej(bc/(a + c)), |i− j| = 1.

**** example
The following is a corollary of the Theorem 7.5.

Corollary 7.14. Assume after several such steps we return to the original commutation
class of the product (equivalently, to the original wiring diagram). Then the parameters
at crossings also return to their original values.

Proof. The new parameters shall be some subtraction-free rational functions in the old
parameters. However, for every specific assignment of positive real values to them, injec-
tivity in Theorem 7.5 implies that there exists at most one factorization into Chevalley
generators along a prescribed reduced word. Since the set R

k
>0 is Zariski closed in R

k, the
statement follows. �

Now we give a different prove of the same fact. Consider the graph Gw, whos vertices
are the commutation classes of reduced words for w. Two vertices of Gw are connected if
the two reduced words are different from each other by a single braid move. The process
above can be described as follows: we walk along the edges of Gw and eventually come
back to the original vertex. Consider the following two types of cycles in Gw.

• 4-cycle

i, i + 1, i, . . . , j, j + 1, j → i + 1, i, i + 1, . . . , j, j + 1, ,→ i + 1, i, i + 1, . . . , j + 1, j, j + 1

→ i, i + 1, i, . . . , j + 1, j, j + 1→ i, i + 1, i, . . . , j, j + 1, j;

• 8-cycle

i, i + 1, i + 2, i, i + 1, i→ i, i + 1, i + 2, i + 1, i, i + 1→ i, i + 2, i + 1, i + 2, i, i + 1→

i+2, i+1, i, i+1, i+2, i+1→ i+2, i+1, i, i+2, i+1, i+2→ i+1, i+2, i+1, i, i+1, i+2→

i + 1, i, i + 2, i + 1, i + 2, i→ i + 1, i, i + 1, i + 2, i + 1, i→ i, i + 1, i + 2, i, i + 1, i.

**** figure
One can verify by a direct computation that as we go around such cycles, the param-

eters at crossings come back to the original values.The following lemma would imply the
statement of the Corollary 7.14.

Lemma 7.15. Every cycle in Gw can be “filled” with 4-cycles and 8-cycles.
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Proof. Define the rank of a reduced word by

r(si1 . . . sik) = i1 + . . . + ik.

The rank is well-defined for commutation classes, the braid moves change it by one. Let
γ be a cycle in Gw, denote r(γ) the maximal of the ranks of the vertices in γ. We prove
the statement by induction on r(γ). The base is clear, since the only cycle that contains
only vertices of fixed rank is the trivial cycle.

Assume now the statement holds for ranks smaller than r but fails for r. Furthermore,
among all cycles γ where it fails choose the one with smallest number of vertices with
rank r. Let v ∈ γ be a vertex with r(v) = r. Consider the two edges in γ adjacent to
v: vv′ and vv′′. Each corresponds to a single braid move applied to a triple . . . sisjsi . . . ,
|i− j| in v.

There are three cases to consider. First, the two triples can coinside. In that case we can
consider cycle γ′ obtained from γ by ommiting the steps v′ → v → v′′ = v′. This cycle has
rank at most r and strictly less vertices of rank r - contradiction. Second, the two triples
can be disjoint. In that case we can complete v′, v, v′′ to a 4-cycle v′ → v → v′′ → v′′′ → v′,
and consider a new cycle γ′ where the path taken from v′ to v′′ is through v′′′, not v. Since
r(v′′′) = r(v)− 2, we conclude that γ′ has strictly less vertices of rank r - contradiction.

Finally, we need to consider the case when the two triples used in braid moves overlap
but do not coinside. They cannot possibly share two elements. Indeed, if . . . sisjsi . . . sj . . .
is a reduced word such that the last three shown factors sjsi . . . sj can be brought together
via commutation moves, then it is easy to see all four factors can be grouped together:
. . . sisjsisj . . ., which cannot happen in a reduced word. Thus, the two triples share
exactly one common element. There are two possibilities: . . . sisjsi . . . sj . . . si . . . and
. . . sisjsi . . . sk . . . si . . .. Here k = 2i − j and one is able to group the last three shown
factors together using only the commutation moves. The second case is impossible since
in that case one of the v′ and v′′ would have larger rank than v. Thus we must have
v = . . . si+1sisi+1 . . . si . . . si+1 . . .. Whatever is inbetween the last si and si+1 one should
be able to commute through si+1 in order to perform the braid move, thus we can assume
there is nothing there. In the interval si+1 . . . si there may be terms one can commute
through si+1 but not through si, all other terms we can get rid of by pushing them to
the right. Such terms can only be si−1-s. Furthermore, there can be at most one such
factor, and one must have at least one since si+1sisi+1sisi+1 is not reduced. Thus the
location under consideration must look like . . . si+1sisi+1si−1sisi+1 . . ., which is one of the
vertices of the 8-cycle. Once we know that, we can take the path from v′ to v′′ along the
other part of the 8-cycle. This reduces the number of rank r vartices and thus leads to a
contradiction. �

7.4. Type B and G relations. The transformation of parameters takes different form
in not simply laced types.

Theorem 7.16. [BZ, Theorem 3.1]

• Assume nodes i and j are connected in the Dynkin diagram by an edge of multiplic-
ity 2. The corresponding Chevalley generators satisfy the following braid relation:

ei(t1)ej(t2)ei(t3)ej(t4) = ej(p1)ei(p2)ej(p3)ei(p4),

where

p1 =
t2t

2
3t4

π2
, p2 =

π2

π1
, p3 =

π2
1

π2
, p4 =

t1t2t3
π1

,



30

where

π1 = t1t2 + (t1 + t3)t4, π2 = t21t2 + (t1 + t3)
2t4.

• Assume nodes i and j are connected in the Dynkin diagram by an edge of multiplic-
ity 3. The corresponding Chevalley generators satisfy the following braid relation:

ei(t1)ej(t2)ei(t3)ej(t4)ei(t5)ej(t6) = ej(p1)ei(p2)ej(p3)ei(p4)ej(p5)ei(p6),

where

p1 =
t2t

3
3t

2
4t

3
5t6

π3
, p2 =

π3

π2
, p3 =

π3
2

π3π4
, p4 =

π4

π1π2
, p5 =

π3
1

π4
, p6 =

t1t2t
2
3t4t5

π1
,

where

π1 = t1t2t
2
3t4 + t1t2(t3 + t5)

2t6 + (t1 + t3)t4t
2
5t6,

π2 = t21t
2
2t

3
3t4 + t21t

2
2(t3 + t5)

3t6 + (t1 + t3)
2t24t

3
5t6 + t1t2t4t

2
5t6(3t1t3 + 2t23 + 2t3t5 + 2t1t5),

π3 = t31t
2
2t

3
3t4 + t31t

2
2(t3 + t5)

3t6 + (t1 + t3)
3t24t

3
5t6 + t21t2t4t

2
5t6(3t1t3 + 3t23 + 3t3t5 + 2t1t5),

π4 = t21t
2
2t

3
3t4(t1t2t

3
3t4 + 2t1t2(t3 + t5)

3t6 + (3t1t3 + 3t23 + 3t3t5 + 2t1t5)t4t
2
5t6)+

t26(t1t2(t3 + t5)
2 + (t1 + t3)t4t

2
5)

3.

Proof. We borrow the proof from [BZ]. The Lie group can be realized inside complition
of universal enveloping algebra. We show the calculation in types A2 and B2, and leave
it as an exercise to extend to G2.

Recall that ei(t) = exp(tǫi), where ǫi is the Chevalley generator in the Lie algebra.
Thus we have

(1 + t1ǫ1 + t21ǫ
2
1/2 + . . .)(1 + t2ǫ2 + t22ǫ

2
2/2 + . . .)(1 + t3ǫ1 + t23ǫ

2
1/2 + . . .) =

(1 + p1ǫ2 + p2
1ǫ

2
2/2 + . . .)(1 + p2ǫ1 + p2

2ǫ
2
1/2 + . . .)(1 + p3ǫ2 + p2

3ǫ
2
2/2 + . . .).

Now, the only important thing to know about the Serre relations is that they are of degree
three, thus the coefficients of all terms of degree at most two must coinside. This gives
us t1 + t3 = p2, t2 = p1 + p3, t1t2 = p2p3, t2t3 = p1p2. This is enough to solve uniquely for
p-s in terms of t-s.

Similarly, in type B we have

(1+t1ǫ1+t21ǫ
2
1/2+. . .)(1+t2ǫ2+t22ǫ

2
2/2+. . .)(1+t3ǫ1+t23ǫ

2
1/2+. . .)(1+t4ǫ2+t24ǫ

2
2/2+. . .) =

(1+p1ǫ2+p2
1ǫ

2
2/2+. . .)(1+p2ǫ1+p2

2ǫ
2
1/2+. . .)(1+p3ǫ2+p2

3ǫ
2
2/2+. . .)(1+p4ǫ1+p2

4ǫ
2
1/2+. . .).

Since the type B Serre relation is of degree four, this gives the equations t1 + t3 = p2 +p4,
t2 + t4 = p1 + p3, t1t2 + t1t4 + t3t4 = p2p3, t21t2 + t21t4 + t23t4 + 2t1t3t4 = p2

2p3, which allow
to uniquely solve for p-s.

There is also a different way to deduce the type B relation by realizing the hyperoc-
tahedral group inside the symmetric group. Recall that one can think of the generators
si of the hyperoctahedral group as follows: for i > 0, si swaps i-th entry with i + 1-st,
and simultaniously −i-th with −(i + 1)-st. The s0 swaps 1-st entry with −1-st. This
means that if we write the type B braid relation above in terms of the type A Chevalley
generators, it would look as follows:

e0(t1)e1(t2)e−1(t2)e0(t3)e1(t4)e−1(t4) = e1(p1)e−1(p1)e0(p2)e1(p3)e−1(p3)e0(p4).

**** computation �
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7.5. M-variables. Let us consider a wiring diagram of the commutation class of reduced
decomposition w = si1 . . . sil. We shall number the wires by the index of their beginning.
Let the parameter at the crossing of i-th and j-th wires be tij . The wires cut the plane
into regions we call chambers. **** figure Label the chambers by the set of wires that
pass below. Assign to a chamber I ⊆ [n] variable MI as follows:

MI =

(

∏

i<j,i6∈I,j∈I

tij

)−1

.

Use notation Ii = I ∪ i, Iij = I ∪ i ∪ j, etc.

Lemma 7.17. If I, Ii, Ij and Iij are the four chambers surrounding parameter tij, we
have

tij =
MIMIij

MIiMIj
.

Proof. For each tkl count how many times it occurs in the numerator and how many times
in the denominator. �

Theorem 7.18. Assume we do a braid move involving i-th, j-th and k-th wire, i < j < k.
Then while the parameters t change according to

t′ij = tiktij/(tij + tjk), t′ik = tij + tjk t′jk = tjktik/(tij + tjk),

the M-variables MIik and MIj get exchanged for each other in the picture according to

MIjMIik = MIkMIij + MIiMIjk,

while the rest of the M-s stay fixed.

Proof. One checks directly that the M-s that stay in the picture are preserved, for example
Mjk stays the same since t′ijt

′
ik = tijtik. The relation between MIik and MIj follows from

(tjkt
′
ij)

−1 = (tiktjk)
−1 + (tijtik)

−1,

which is easily verified. �

Proposition 7.19. The value of MJ depends only on J and not on the wiring diagram.

Proof. We argue that any two wiring diagrams with chamber set J can be connected by
braid moves while keeping chamber J present at all times. That would clearly imply the
statement.

Let w̄ be a reduced word for w such that the corresponding wiring diagram has chamber
labelled by J . Cut this J-chamber by a vertical line, thus obtaining a decomposition
w̄ = w̄1w̄2. The w̄1 can be changed into a reduced word where we first sort elements of J
and its complement between each other, and then apply some permutation within eahc
set. Similar change can be done to w̄2 except for it we first sort the elements within J and
its complement, and then sort them with each other. Finally, any two wiring diagrams of
such form clearly can be connected by braid moves without losing chamber set J , which
completes the proof. �

**** example
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7.6. Twist map. For X ∈ GLn(R) let [X]+ be the upper triangular factor in the LDU
decomposition of X. For upper unitriangular X ∈ B−

w0
in the top Bruhat cells call the

map X 7→ Y = w0[Xw0]
T
+w0 the twist map. Recall that the LDU factorization is given

by

li,j =
|X[j−1]∪i,[j]|

|X[j],[j]|
; ui,j =

|X[i],[i−1]∪j|

|X[i],[i]|
; di,i =

|X[i],[i]|

|X[i−1],[i−1]|
.

Example 7.2. The twist of

X =





1 x12 x13

0 1 x23

0 0 1



 is Y =





1 x23

x12x23−x13

1
x13

0 1 x12

x13

0 0 1



 .

Lemma 7.20. The inverse of the twist map is given by Y 7→ X = [w0Y
t]+.

Theorem 7.21. The flag minors |YJ | = |Y[|J |],J| coinside with MJ .

Example 7.3. Take the product e1(a)e2(b)e1(c) and the corresponding wiring diagram.
Number wires on the left from bottom to top, and mark as chamber sets the sets of wires
that pass above the chamber. Then the product and its twist are

X =





1 a + c ab
0 1 b
0 0 1



 and Y =





1 1
c

1
ab

0 1 a+c
ab

0 0 1



 .

It remains to compare M2 = 1/c, M3 = 1/ab, M23 = 1/bc, etc.

We shall deduce the theorem from the following two lemmas.

Lemma 7.22. We have

|Y[p,q]| =
|X[q−p+1]∪[n−p+2,n]|

|X[n−q+1]|
, 1 ≤ a ≤ b ≤ n.

Proof. We have

|Y[p,q]| = Y T
[p,q],[n+p−q,n] = Y T

[p−1]∪[n+p−q,n] =
|(Xw0)[p−1]∪[n+p+−q,n]|

|(Xw0)[q]|
=
|X[q−p+1]∪[n−p+2,n]|

|X[n−q+1]|
.

�

Lemma 7.23. We have

M[p,q] =
|X[q−p+1]∪[n−p+2,n]|

|X[n−q+1]|
, 1 ≤ a ≤ b ≤ n.

Proof. Proof by example. Take n = 4, [p, q] = [2, 3] and reduced word e1e2e3e1e2e1. �

Now we can prove the theorem.

Proof. Clearly its enough to prove it for one reduced word, since we can get to any other
by braid moves. Along the way we would conclude that all new chamber sets must coinside
with corresponding minors of Y since they satisfy the same exchange relation. It remains
to note that for a particular reduced word the chamber minors are exactly the solid flag
minors |Y[p,q]|. �

Remark 7.1. In the case X ∈ B−
w of arbitrary bruhat cell one should twist by X 7→ Y =

w−1[Xw−1]T+w. All the reuslts extend verbatim, in particular one still has |YJ | = MJ .
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7.7. Criteria for total positivity.

Theorem 7.24. Let X ∈ U , and let w̄ be any reduced word for w0. The following are
equivalent:

• X is upper totally positive;
• all flag minors |XJ |, as J runs over chamber sets in w̄, are positive.

Proof. We can get from any reduced word to any other reduced word by braid move. If
we know positivity of all chamber minors before a braid move, it implies their positivity
after the move. It remains to note that for a special reduced word we have exactly the
soild minors X[i,j] of Fekete’s criterion. Equivalently, we can use the fact that any subset
J ⊆ [n] can be a chamber minor for some reduced word. �

In fact, the following stronger statement holds.

Theorem 7.25. Let X ∈ B+
w , and let w̄ be any reduced word for w. The following are

equivalent:

• X is totally nonnegative;
• all flag minors |XJ |, as J runs over chamber sets in w̄, are positive.

Exercise 7.26. Prove this theorem.

**** example

7.8. Double wiring diagrams.

7.9. Strong and weak separation. We wish to understand families of minors that
provide a criteria for total positivity. For simplicity let us look at U≥0 and flag minors XI ,
I ⊆ [n]. Let us call two subsets I and J of [n] strongly separated if either I − J ≺ J − I
or J − I ≺ I − J . Here I − J denotes the elements of I that are not in J , and I ≺ J
denotes the order in which every element of I is smaller than every element of J . Let us
call a collection of subsets of [n] strongly separated if every two subsets in the collection
are.

Example 7.4. (1, 4) and (2, 3) are not strongly separated, but (1, 4) and (2, 4, 5) are.

Exercise 7.27. Show that a collection of subsets is strongly separated if and only if it is
part of set of chamber minors of a wiring diagram of w0.

Example 7.5. The collection ∅, (1), (4), (1, 2), (1, 3), (1, 4), (3, 4), (1, 2, 3), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)
is strongly separated. Those are exactly the chamber minors for the reduced word
s2s3s2s1s2s3.

Consider the simplicial comlex on the set of subset of [n]. A collection of subsets is
a face if and only if it is strongly separated. The following statement is clear from the
exercise.

Corollary 7.28. The complex of strong separation is pure of dimension n+1+
(

n
2

)

. Each
facet of the strong separation complex provides a total positivity criterion in U≥0.

Example 7.6. The collection in the previous example is one of the facets for n = 4.
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It is natural to ask if there are any not strongly separated sets that provide criteria for
total positivity. The answer is affirmative. For example, because of the relation

X(1,3,4)X(2,3) = X(1,2,3)X(3,4)X(2,3,4)X(1,3),

we can exchange (1, 3, 4) for (2, 3) in the collection above and still have a total positivity
criteria. The resulting collection is not strongly separated however since for example sets
(2, 3) and (1, 4) are not.

Let us call two sets I and J weakly separated if at least one of the following two conditions
holds:

• |I| ≥ |J | and J − I can be partitioned into disjoint union J ′ ∪ J ′′ so that J ′ ≺
I − J ≺ J ′′;
• |I| ≤ |J | and I − J can be partitioned into disjoint union I ′ ∪ I ′′ so that I ′ ≺

J − I ≺ I ′′.

Example 7.7. The pairs (1, 4) and (2, 3), (1, 5) and (2, 3, 4) are weakly separated, the pairs
(2, 5) and (3), (1, 3) and (2, 5) are not.

Let us call a collection of subsets of [n] weakly separated if every two subsets in the
collection are. We can also define the complex of weak separation where facets are the
pairwise weakly separated collections. Clearly, every strongly separated collection is also
weakly separated, but not the other way around.

Example 7.8. The collection ∅, (1), (4), (1, 2), (1, 3), (1, 4), (3, 4), (1, 2, 3), (2, 3), (2, 3, 4), (1, 2, 3, 4)
is weakly separated.

Theorem 7.29 (Leclerc-Zelevinsky). The maximal possible size of a collection of weakly
separated subsets is n + 1 +

(

n
2

)

.

Proof. Plot every subset I ⊆ [n] as a path from lattice point (0, 0) to a lattice point (a, b)
with a + b = n. For that, if i ∈ I, let the i-th step be up, otherwise let it be to the right.
**** picture example . Let us start with the origin (0, 0) and add lattice points to it
one after another, so that at any given moment the points form a south-west ideal. For
example first we add (1, 0), then (0, 1), then maybe (1, 1) and (2, 0), etc. At the end we
shall have exactly all the points (a, b) in the region a ≥ 0, b ≥ 0 and a + b ≤ n.

Plot all elements of a collection of weakly separated sets as paths in the lattice as
above. At any intermidiate step we consider the initial parts of the paths that lie inside
already included part of the lattice. Note that such initial parts for some of the paths
may coinside, in which case we do not distinguish them. At each intermidiate step we
count how many different initial segments of paths are there.

Claim: with each extra lattice node added, this number increases by at most one.
Indeed, if there are two distinct paths that both branch at a given node, one can easily
find a not weakly separated pair of paths. Thus, counting the nodes at which the number
can go up by one, we arrive to the statement of the theorem. �

One has a similar theorem in all cells of all partial flag varieties. For example, in the
case of the Grassmannian Gr(k, n), we have the following.

Theorem 7.30. The maximal possible size of a collection of weakly separated subsets of
[n] of size k each is k(n− k) + 1.

Proof. The same as above, only inside the region 0 ≤ a ≤ n− k, 0 ≤ b ≤ k. �
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Conjecture 7.31 (Leclerc-Zelevinsky). The complex of weak separation is pure and is
exactly the part of the cluster complex consisting of Plücker coordinates. In particular,
each facet is a TP criterion. All facets can be connected with each other via sequences of
flips

{Ii, Ij, Ik, Iij, Ijk} ←→ {Ii, Ik, Iij, Ijk, Iik},

where i < j < k are disjoint from I.

This conjecture was proved for Gr(3, n) Grassmannians by Scott, for complete flag
varieties by Danilov, Karzanov and Koshevoy, and for arbitrarily Grassmannians by Oh,
Postnikov and Speyer.

Exercise 7.32. Consider the complex of weakly separated subsets of [n] of size three.
Show that it is pure.
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