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Abstract. For a given quiver and dimension vector, Kac has shown that there is exactly
one indecomposable representation up to isomorphism if and only if this dimension vector
is a positive real root. However, it is not clear how to compute these indecomposable
representations in an explicit and minimal way, and the properties of these representations
are mostly unknown. In this note we study representations of a particular wild quiver. We
define operations which act on representations of this quiver, and using these operations we
construct indecomposable representations for positive real roots, compute their endomor-
phism rings and show that these representations are tree representations. The operations
correspond to the fundamental reflections in the Weyl group of the quiver. Our results are
independent of the characteristic of the field.

introduction

A fundamental result in the representation theory of quivers is the discovery of the relation
between the dimension vectors of the indecomposable representations and the positive roots
of the corresponding Kac-Moody Lie-algebra. This discovery was first made for Dynkin
quivers by Gabriel [4], where the dimension vectors correspond to positive roots of the
corresponding semi-simple Lie-algebra, and then generalized to arbritrary quivers by Kac [5].
Moreover, Kac showed that for a given dimension vector, there is exactly one indecomposable
representation up to isomorphism if and only if this dimension vector is a real root. At
the conference ICRA XI in Mexico in 2004, Crawley-Boevey asked the following question:
What is the dimension of the endomorphism ring of an indecomposable representation with
dimension vector a real root? This question is the first motivation for the results in this
paper.

An important concept in the representation theory of quivers is the generic representation
[5][7][10]. A positive root d is called a Schur root if there exists a representation in the
representation space Rep(Q,d) with trivial endomorphism ring. In this case, the generic
representation is indecomposable. For Dynkin quivers all the positive roots are real Schur
roots. For euclidean quivers (excluding Kronecker quiver), not all the positive real roots
are Schur roots. However, in any case, the dimensions of the endomorphism rings of the
indecomposable representation and the generic representation coincide. We will see that for
wild quivers, the situation can be very different.

Crawley-Boevey [2] has defined reflection functors for deformed preprojective algebras
and has used these functors to give an algorithm for computing indecomposable representa-
tions for positive real roots of quivers. But it is not clear how to compute indecomposable
representations in an explicit and minimal way, independent of the characteristic of the field.
Ringel [8] has shown that indecomposable representations for positive real Schur roots are
tree representaions. That is, they can be given by [0, 1]-matrices using the smallest possible
number of non-zero entries. Ringel’s constructions of tree representations are not clearly
independent of the characteristic of the field. Ringel [9] has asked the following question:
Let d be a positive root. Is there an indecomposable tree representation with dimension
vector d? Our second motivation is related to the question of Ringel: Are indecomposable
representations for positive real roots tree representations which can be given independent
of the characteristic of the field?
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In this paper we study the indecomposable representations for positive real roots of the
wild quiver

Q : 1 α // 2
β
((
3

γ
hh

We give a complete and explicit construction of indecomposable tree representations of the
quiver Q with dimension vector a real root. This construction, which is independent of
the characteristic of the field, allows us to compute the dimension of the endomorphism
rings of the representations. Moreover we construct generic representation for positive real
roots of Q, and compare the dimensions of the endomorphism rings of the generic and
indecomposable representations.

The rest of the paper is organized as follows. In Section 1 we give notation and back-
ground. In Section 2 we recall some properties of the representations of the Euclidean
subquiver of Q. We compute the set of real roots of Q in Section 3. In Section 4 we give
the three operations corresponding to the three fundamental reflections in the Weyl group.
In Section 5 we show how these operations can be used to compute the indecomposable
representations and the dimensions of their endomorphism rings. In Section 6 we show that
our representations are tree representations which can be given independent of the char-
acteristic of the field. We compute the canonical decomposition of a real root in Section
7 and compare the dimensions of the endomorphism rings of indecomposable and generic
representations. In Section 8 we illustrate our construction by some examples.

1. background and notation

1.1. Representations of quivers. A quiver Q = (Q0, Q1, s, t) consists of a set of vertices
Q0, a set of arrows Q1 and two maps s, t : Q1 −→ Q0, where for any arrow α ∈ Q1 s(α) is
the starting vertex of α and t(α) is the terminating vertex of α.

A representation M of Q is a family of finite dimensional vector spaces {Mi}i∈Q0 together
with a family of linear maps {Mα : Ms(α) →Mt(α)}α∈Q1 . The vector dimM = (dim Mi)i∈Q0

is called the dimension vector of M . Given two vectors c = (ci)i∈Q0 and d = (di)i∈Q0 , by
c ≥ d we mean that ci ≥ di for all i ∈ Q0, and by c > d we mean that c ≥ d and c 6= d. If
Q has n vertices, then we identify dimension vectors with elements of Nn.

A morphism f : M −→ N between two representations M and N is a family of k-linear
maps {fi : Mi −→ Ni}i∈Q0 such that Nαfs(α) = ft(α)Mα for each α ∈ Q1. We say that f is
an isomorphism if for each i ∈ Q0 fi is an isomorphism. The direct sum M ⊕N is defined
by (M ⊕N)i = Mi ⊕Ni for each i ∈ Q0 and

(M ⊕N)ρ =
(

Mρ 0
0 Nρ

)
for each ρ ∈ Q1. We say that a representation M is indecomposable if M ∼= M1 ⊕M2

implies M1 = 0 or M2 = 0. We denote by Si the simple representation associated to vertex
i.

1.2. Representation spaces and canonical decomposition. Given a dimension vector
d = (di)i∈Q0 , we denote by Rep(Q,d) the space of representations of Q, given by

Rep(Q,d) =
∏

α∈Q1

Hom(kds(α) ,kdt(α)).

So Rep(Q,d) parameterizes the representations of Q with dimension vector d. We do not
distinguish a point in Rep(Q,d) from the associated representation of Q. There is a natural
action of Gl(d) =

∏
i∈Q0

Gl(di) on Rep(Q,d) by conjugation,

(g ·M)α = gt(α)Mαg−1
s(α),
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such that there is a one-to-one correspondence between the Gl(d)-orbits in Rep(Q,d) and
the isomorphism classes of representations of Q with dimension vector d.

Let Ind(Q,d) denote the subset of indecomposable representations in Rep(Q,d). There
exists a unique decomposition of d = d1 + · · ·+ ds such that the set Rep(Q,d)gen = {M ∈
Rep(Q,d)|M ∼= M1 ⊕ · · · ⊕M s, where M i ∈ Ind(Q,di) for i = 1, . . . , s} contains a dense
open subset of Rep(Q,d) [5][7][10]. This decomposition is called the canonical decomposition
of d.

1.3. Root systems and Kac’ theorem. In this subsection we forget the orientation of
Q, we still denote the set of vertices by Q0 and the set of edges by Q1. We denote the Tits
form of Q by q(d), given by q(d) =

∑
i∈Q0

d2
i −

∑
α∈Q1

ds(α)dt(α). By <,> we denote the
Euler form of Q defined by < d, c >=

∑
i∈Q0

dici −
∑

α∈Q1
ds(α)ct(α) and by (, ) we denote

the symmetric bilinear form of Q defined by (d, c) =< d, c > + < c,d >. Note that we
have q(d) = 1

2(d,d).
Given a dimension vector d, we denote by supp(d) the support of d, which is the

full subgraph of Q with the set of vertices supp(d)0 = {i ∈ Q0|di 6= 0}. We denote
by ei the simple root of Q associated to vertex i and we say that ei is fundamental
if there are no loops at i. Associated to each fundamental simple root ei, we define a
fundamental reflection σi(d) = d − (d, ei)ei. We denote by W the Weyl group of Q,
generated by all the fundamental reflections. We say that two vectors d and c are W-
equivalent if there is an element σ ∈ W such that d = σ(c). Let F = {d ∈ Nn|(d, ei) ≤
0 for any simple root ei of Q and supp(d) is connected} be the fundamental set of Q.

We recall the definition of the root system of Q and two results on the root system [5],
among them there is the well-known theorem on the relation between the indecomposable
representations of quivers and the corresponding root systems. A vector d is called a real
root of Q if d is W-equivalent to a fundamental simple root. A vector d is called an
imaginary root if d is W-equivalent to a root in F or to the negative of a root in F . A root
d is always either positive, that is each di ≥ 0 and d 6= 0, or d is negative, that is −d is
positive. Moreover, d is a positive root if and only if −d is a negative root. Note that the
bilinear form (, ) of Q is W-invariant. So we have q(d) = 1 if d is a real root and q(d) ≤ 0
if d is an imaginary root. A quiver Q is hyperbolic if it is wild and any proper sub-quiver
of Q is a union of quivers of Dynkin and Euclidean type.

Proposition 1.1 (Kac [5]). Let Q be a hyperbolic quiver. Then d ∈ NQ0 is a real root of Q
if and only if q(d) = 1.

Theorem 1.2 (Kac [5]). Let Q be a quiver and let d be a dimension vector.
(1) There is an indecomposable representation with dimension vector d if and only if d

is a positive root.
(2) There is a unique indecomposable representation (up to isomorphism) with dimension

vector d if and only if d is a positive real root.
(3) If d is a positive imaginary root then we need 1 − q(d) parameters to parameterize

the indecomposable representations with dimension vector d.

In the following, if we don’t say otherwise, a root is always a positive root.

1.4. Reflection functors and duality. In this subsection we recall the definition of the
BGP-reflection functors [1] defined on the category of representations Rep(Q) of a quiver
Q. We denote by Rep(Q)\addSi the subcategory containing the representations without Si

as a direct summand, where Si is the simple representation associated to vertex i.
A vertex i ∈ Q0 is called a sink if there is no arrows starting at i and it is called a source

if there is no arrows ending at j.
Let i be a source vertex and let {αij : i −→ ij} be all the arrows starting at i. We reverse

all the arrows αij and so i becomes a sink vertex. We denote the new quiver by Q′ and the
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simple representation associated to vertex i by S′i. We have a functor

Fi : Rep(Q)\addSi −→ Rep(Q′)\addS′i

corresponding to the reflection σi by F ({Mj}j , {Mα}α) = ({M ′
j}j , {M ′

α}α), where

M ′
j =

{
Mj if j 6= i,

cok(Mi

(Mαij
)j

−→ ⊕jMij ) if j = i.

and M ′
α = Mα if α 6∈ {αij}j and M ′

αil
is the composition of the natural embedding of

Mil into ⊕jMij with the projection from ⊕jMij to M ′
i . Note that dimFiM = σidimM for

M ∈ Rep(Q)\addSi.
Dually we have a reflection functor F i : Rep(Q)\addSi −→ Rep(Q′)\addS′i if i is a sink

vertex.

Proposition 1.3 (BGP [1]). The functors Fi and F i are equivalences.

For a quiver Q, denote by Qop the opposite quiver of Q. That is, Qop is the quiver
obtained by reversing the direction of every arrow in Q. Let D : Rep(Q,d) −→ Rep(Qop,d)
be the duality.

2. Indecomposables for the subquiver of type Ã2

We will now fix a set of representatives for the indecomposable representations for the
positive real roots of the subquiver of type Ã1 of

Q : 1 α // 2
β
((
3

γ
hh

and discuss homomorphisms between them.
Recall that the set of real roots for Ã1 is {(a, a + 1), (a + 1, a)|a ≥ 0}. Denote by Y a

the indecomposable representation of Q with dimY a = (0, a, a + 1), (Y a)γ = ( Ia 0 )
and (Y a)β =

(
0 Ia

)tr, where Ia is the a × a identity matrix. Denote by Ya the in-
decomposable representation of Q with dimYa = (0, a, a − 1), (Ya)β = ( Ia−1 0 ) and
(Ya)γ =

(
0 Ia−1

)tr. Denote by M(λ1, . . . , λa) the a × a matrix (mij)ij with mij = λl if
i− j + 1 = l and 0 else. The following lemma is easy.

Lemma 2.1. Let a > b be two natural numbers.
(1) End(Ya) = {(0,M(λ1, . . . , λa),M(λ1, . . . , λa−1))|λi ∈ k}.
(2) Hom(Ya, Yb) = {(0, ( M(λ1, . . . , λb) 0 ), ( M(λ1, . . . , λb−1) 0 ))|λi ∈ k}.

(3) Hom(Yb, Ya) = {(0,

(
0

M(λ1, . . . , λb)

)
,

(
0

M(λ1, . . . , λb−1)

)
)|λi ∈ k}.

Dually we have

Lemma 2.2. Let a > b be two natural numbers.
(1) End(Y a) = {(0,M(λ1, . . . , λa),M(λ1, . . . , λa+1))|λi ∈ k}.
(2) Hom(Y a, Y b) = {(0, ( M(λ1, . . . , λb) 0 ), ( M(λ1, . . . , λb+1) 0 ))|λi ∈ k}.

(3) Hom(Y b, Y a) = {(0,

(
0

M(λ1, . . . , λb)

)
,

(
0

M(λ1, . . . , λb+1)

)
)|λi ∈ k}.

3. Real roots of Q

We compute the real roots for the quiver Q.

Proposition 3.1. The set {(n, m2−1
n + n, m2−1

n + n±m)|n ≥ 1,m ≥ 0,m2 ≡ 1(modn)} is
the set of all real roots d = (d1, d2, d3) of Q with d1 6= 0. All other real roots of Q are real
roots of its subquiver of type Ã2.
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Proof. By Proposition 1.1 we know that a dimension vector d ∈ NQ0 is a real root if and only
if q(d) = 1. So by calculating we see that the dimension vectors described in the statement
are real roots. For the converse, assume we have q(d) = d2

1 − d1d2 + (d2 − d3)2 = 1. Thus
d3 = d2±

√
d1d2 − d2

1 + 1. Now let n = d1 and m =
√

d1d2 − d2
1 + 1. Since d3 is an integer,

m is also an integer. If d1 = 0 then d2 = d3 ± 1 and so d is a real root of the subquiver of
type Ã1. Otherwise d2 = m2−1

n + n. So the real roots of Q are exactly those described in
the statement. This finishes the proof. �

We let

dn,m = (n,
m2 − 1

n
+ n,

m2 − 1
n

+ n−m)

and

dm
n = (n,

m2 − 1
n

+ n,
m2 − 1

n
+ n + m)

denote real roots of Q. We write m = ns + r, where s, r ∈ Z and 0 ≤ r < n. To understand
our formulas for the real roots of Q, we discuss when r2 − 1 is divisible by n.

Lemma 3.2. Suppose n = 2a with a ≥ 1.
(1) If a = 1, then r = 1.
(2) If a = 2, then r = 1 or 3.
(3) If a ≥ 3, then r = 1, 2a−1 − 1, 2a−1 + 1 or 2a − 1.

Proof. We prove (3). By the assumption we know that r = 2b + 1, where b ≥ 0. Then
b(b + 1) is divisible by 2a−2. So we have b = x2a−2, or b = y2a−2 − 1. Then the possible x
is 0, 1 and the possible y is 1, 2. That is we have r = 1, 2a−1 − 1, 2a−1 + 1 or 2a − 1. �

Lemma 3.3. Suppose that n = pa with p 6= 2 a prime number, then the possible r is 1 or
n− 1.

Proof. Since that the only possible prime common divisor of r − 1 and r + 1 is 2. So we
have either r − 1 or r + 1 is divisble by n and so r is either 1 or n− 1. �

Using the prime factorization of n, the Chinese remainder theorem and the previous two
lemmas we can compute all the remainders r with the property that r2 − 1 divisible by n.
It is difficult to write down a general formula, but we illustrate by computing the number
of such r.

Proposition 3.4. Let n = pµ1
1 . . . pµλ

λ > 1, where pi are pairwise different prime numbers
and each exponent µi is positive. By R we denote the number of r with 0 < r < n and r2−1
divisible by n.

(1) One of pi is 2. We may suppose that p1 = 2.
i) If µ1 = 1, then R = 2λ−1.
ii) If µ1 = 2, then R = 2λ.
iii) If µ1 > 2, then R = 2λ+1.

(2) None of pi is 2, then R = 2λ.

Proof. We prove (1)(i), the other cases can be done similarly. By the assumption we know
that r must be odd and so we may assume that r = 2b + 1. Suppose that µ1 = 1. Then
2b(b + 1) is divisible by pµ2

2 · · · p
µλ
λ . So we have that b is divisible by p

µi1
i1
· · · pµiσ

iσ
and b + 1 is

divisible by p
µj1
j1
· · · pµj%

j%
, where {pil}l ∪{pjl

}l = {p2, . . . , pλ} is a disjoint union and σ, % ≥ 0.
By the Chinese Remainder Theorem we know that there exists a unique number N such that
0 < N < pµ2

2 · · · p
µλ
λ and N ≡ 0 (mod p

µi1
i1
· · · pµiσ

iσ
) and N ≡ −1(mod p

µj1
j1
· · · pµj%

j%
). There

are
(

λ− 1
0

)
+ · · ·+

(
λ− 1
λ− 1

)
possible choices of such {pil}l and {pjl

}l with σ, % ≥ 0 and

the N obtained in this way are all pairwise different. So in all there are 2λ−1 choices for r.
�



6 BERNT TORE JENSEN AND XIUPING SU

4. three operations

In this section we define three operations Σ1,Σ2 and Σ3, corresponding to the three
fundamental reflections in the Weyl group. Using these three operations we will be able
to construct an indecomposable representation of Q, for any real root, and compute the
dimension of its endomorphism ring.

Let M be a representation of Q. We denote by Kr(M) the restriction of M to the Ã1

subquiver of Q. That is, we have dim(Kr(M)) = (0,dim M2,dim M3),Kr(M)β = Mβ and
Kr(M)γ = Mγ . Let n > 0 and m ≥ 0 be integers such that m2 − 1 is divisible by n. Note
that if M ∈ Rep(Q,dn,m) and Kr(M) = ⊕t

i=1Yai , then t = m and Σiai = (dm
n )2. Let

Vn,m = {M ∈ Rep(Q,dn,m)|Kr(M) = ⊕m
j=1Yaj ,Σjaj = (dn,m)2, aj ≥ 1,Mα is injective}

and let

V m
n = {M ∈ Rep(Q,dm

n )|Kr(M) = ⊕m
j=1Y

aj ,Σjaj = (dm
n )2, aj ≥ 1,Mα is injective}

4.1. Operation Σ1. Let m > 0. Our first operation

Σ1 : Vn,m −→ V (m2−1)
n

,m

is defined as follows. Let M ∈ Vn,m with Kr(M) = ⊕m
j=1Yaj . Let Ia be the a × a identity

matrix and let Ia be the a × a matrix with ones on the anti-diagonal and zero elsewhere.
Let g = (In,⊕m

i=1I
ai ,⊕m

i=1I
ai−1).

Now let Σ1 be given by
Σ1M = ΓDF1gM,

where Γ is induced by the graph isomorphism β 7→ γ and γ 7→ β, D is the duality and F1 is
the reflection functor at vertex 1.

That is, Σ1M is given by (Σ1M)i = (F1gM)i and (Σ1M)α = ((F1gM)α)tr, (Σ1M)β =
((F1gM)γ)tr = Mβ and (Σ1M)γ = ((F1gM)β)tr = Mγ . In particular, Kr(Σ1M) = Kr(M).

There is no canonical choice of a basis for F1gM , but we shall see in Section 6 that we
may choose it in a minimal way, and independently of the ground field.

Proposition 4.1. Let M ∈ Vn,m be indecomposable. Then Σ1(M) is indecomposable and
dim End(M) = dim End(Σ1M).

Proof. The proof follows Proposition 1.3. �

4.2. Operation Σ3. Let M ∈ Vn,m. Assume that Kr(M) = ⊕m
i=1Yai . The operation

Σ3 : Vn,m −→ V m
n

is given by Kr(Σ3M) = ⊕m
i=1Y

ai .

Proposition 4.2. Let M ∈ Vn,m be indecomposable. Then Σ3M is indecomposable and
dim End(Σ3(M)) = dim End(M) + m2.

Proof. We denote by Ψai,aj the surjective linear map

Ψai,aj : Hom(Y ai , Y aj ) −→ Hom(Yai , Yaj )

induced by the isomorphisms Yai
∼= radY ai/socY ai .

Let Ψ : End(⊕m
i=1Y

ai) −→ End(⊕m
i=1Yai) be the surjective algebra homomorphism Ψ =

(Ψai,aj )i,j . Note that if f = (f1, f2, f3) ∈ End(M), then (0, f2, f3) ∈ End(Kr(M)). So we
get an induced map

Φ : End(Σ3(M)) −→ End(M)
given by Φ(f1, f2, f3) = (f1, f2, f

′
3) where (0, f2, f

′
3) = Ψ(0, f2, f3). We can easily see that Φ

is also surjective.
Now (f1, f2, f3) ∈ ker Φ if and only if f1 = 0 and (0, f2, f3) ∈ ker Ψ. For if f ′ = (0, f2, f3) ∈

kerΨ then f ′ maps the top of ⊕iY
ai to the socle of ⊕iY

ai showing that f2(Σ3M)α = 0. Hence
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(0, f2, f3) ∈ ker Φ. The other implication is trivial. Also ker Φ2 = 0, hence End(Σ3(M)) is
local if End(M) is local. This proves the first part.

We have dim End(Σ3(M)) = dim End(M)+dim ker Φ. Now the second part follows since
dim kerΨai,aj = 1 and therefore dim ker Φ =

∑
i,j dim kerΨai,aj = m2. �

4.3. Operation Σ2. We define the operation

Σ2 : V m
n −→ Vn,n+m

Let M ∈ V m
n . We fix a basis x1, . . . ,xn for the vector space kn at vertex 1. We let

yi,1, . . . ,yi,ai be a basis for kai = (Y ai)2 and let yi,0,yi,1, . . . ,yi,ai ,yi,ai+1 be a basis for
kai+2 = (Yai+2)2. The construction of Σ2M is based on this fixed basis. By ea,i we mean a
a× 1 matrix with 1 at the ith-row and zero elsewhere. Write

Mα : kn (φij)ij−→ ⊕m
i=1k

ai = k(dm
n )2 ,

where
φij =

(
zij,1 . . . zij,ai

)tr : kxj −→ kai

That is, φij =
∑ai

l=1 zij,leai,l. Let

Φij =
(

0 zij,1 . . . zij,ai 0
)tr : kxj −→ kai+2,

that is Φij =
∑ai

l=1 zij,leai+2,l+1. The representation Σ2M in Vn,m+n is defined as
(1) Kr(Σ2M) = ⊕m

i=1Yai+2 ⊕ S⊕n
2 .

(2) (Σ2M)α =
(

(Φij)ij

In

)
: kn −→ ⊕m

i=1k
ai+2 ⊕ k⊕n = k(dn,n+m)2 .

Proposition 4.3. Let M ∈ V m
n be indecomposable. Then Σ2(M) is indecomposable and

dim End(Σ2(M)) = dim End(M) + m2 + mn.

Proof. Let M ∈ V m
n be indecomposable. As in the proof of Proposition 4.2, the isomorphism

Kr(M) ∼= radKr(Σ2M)/socKr(Σ2M)

induce a surjective linear map Ψ : End(Kr(Σ2M)) −→ End(KrM). Suppose that f =
(f1, f2, f3) is an endomorphism in End(Σ2(M)). Then we have (1) (0, f2, f3) ∈ End(Kr(Σ2M))
and (2) f2(Σ2M)α = (Σ2M)αf1, and so we get an induced linear map

Φ : End(Σ2M) −→ End(M)

given by Φ(f1, f2, f3) = (f1, f
′
2, f3) where (0, f ′2, f3) = Ψ(0, f2, f3).

We need to study Φ in more detail. We may without loss of generality assume that
Kr(M) = ⊕m

i=1Y
ai with a1 ≤ a2 ≤ · · · ≤ am.

By (1), following our choice of basis and Lemma 2.1 we can write

f2 =

 (Mij)ij (Gij)ij

(Hij)ij (cij)ij

 ,

where (Mij)ij is an m×m matrix and each Mij is of the form

Mij =



M(λii,1, . . . , λii,ai) if i = j,

( M(λij,1, . . . , λij,ai) 0 ) if i < j,(
0
M(λij,1, . . . , λij,aj )

)
if i > j,

(Gij)ij is m× n matrix over k with

Gij =
(

0 . . . 0 µij

)tr
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Hij is an n×m matrix over k with

Hij = ( ηij 0 . . . 0 ),

and (cij)ij is an n×n matrix over k. Finally, we write f1 = (xij)ij as a n×n matrix over k.
By (2) we have:
(I)

∑m
l=1 MilΦlj + Gij =

∑n
l=1 Φilxlj .

(II)
∑m

l=1 HilΦlj + cij = xij .

Note that HilΦlj = 0 for any i, j and l, hence by (II) we have that (cij)ij = f1. Dividing
the matrices into blocks and calculating give us

m∑
l=1

MilΦlj =
m∑

l=1

 yil,1 0 0
Pil M ′

il 0
yil,al+2 Qil yil,1

  0
φlj

0

 =
m∑

l=1

 0
M ′

ilφlj

Qilφlj


So by (I) we have 

0∑m
l=1 M ′

ilφlj∑m
l=1 Qilφlj

 + Gij =


0∑n

l=1 φilxlj

0


Therefore 

∑m
l=1 M ′

ilφlj =
∑n

l=1 φilxlj . That is, (M ′
ij)ijMα = Mαf1∑m

l=1 Qilφlj + µij = 0.

Hence f = (f1, f2, f3) is an endomorphism of Σ2M if and only if Φ(f) = (f1, (M ′
ij)ij , f3)

is an endomorphism of M , (3) µij = −
∑m

l=1 Qilφlj and (cij) = f1. Now if g = (g1, g2, g3) ∈
End(M) then

(g1,

(
g′′ (Gij)ij

0 f1

)
, g3) ∈ Φ−1(g),

where (0, g′′, g3) ∈ Ψ−1(0, g2, g3) and Gij is determined by the equation (3). This shows
that Φ is surjective.

Now if f is in the kernel of Φ then f1 = 0 and therefore (cij) = 0, also f3 = 0 and so
Qil = 0 and therefore Gij = 0, and finally, f ′2 = 0. Thus the kernel of Φ are the maps
(0, f2, 0) where

f2 =

 (Mij)ij 0

(Hij)ij 0


and the image of Mij is in the socle of Y aj . Clearly kerΦ is nilpotent and so Σ2M is
indecomposable. Moreover the Mij contribute m2 basis elements to ker Φ and the Hij

contribute mn basis elements. Therefore dim End(Σ3(M)) = dim End(M)+m2 +mn. This
finishes the proof of Proposition 4.3. �

Remark 4.4. It is possible to define inverse operations to Σ2 and Σ3. The operation Σ1

is its own inverse. To make the definitions of our operations complete, we also define
Σ3Ya = Y a,Σ2Y

a = Ya+2 and we let Σ1Ya be given by KrΣ1Ya = Ya and (Σ1Ya)α = Ia.
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5. Indecomposables and the dimensions of their endomorphism rings

In this section we give a concrete constuction of the indecomposable representations
with dimension vector a real root of Q, using the operations Σ1,Σ2 and Σ3 defined in the
previous section. We also give a formula for the dimension of the endomorphism ring of
the indecomposables we construct. This gives an answer for Q to the question proposed
by Crawley-Boevey, which we mentioned in the introduction. Moreover this formula is
independent of the ground field. Before giving the general construction, let us first see an
easy example. More examples on the construction will be given using pictures in the last
section.

Example 5.1. (1) We have d1,m = (1,m2,m2 −m) = (σ2σ3)m−1σ1d0,1, where by d0,1 we
mean the simple root (0, 1, 0). Let M(d1,m) be a representation in V1,m with Kr(M(d1,m)) =
⊕m

i=1Y2i−1 and M(d1,m)α = (e2m−1,m, e2(m−1),m−1, . . . , e3,2, e1,1)tr. In particular we have

M(d1,1) = k
1−→ k

−→
←− 0

Obviously M(d1,1) is indecomposable with trivial endormorphism ring. By the definition of
the operations Σ2 and Σ3, we have M(d1,m) = (Σ2Σ3)m−1M(d(1, 1)). Therefore M(d1,m)
is indecomposable. By Proposition 4.3 and Proposition 4.2 we have dim EndM(d1,m) =
dim EndM(d1,m−1) + 2(m − 1)2 + (m − 1) and so inductively we have dim EndM(d1,m) =
dim EndM(d1,1) +

∑m−1
i=1 (2i2 + i) = 2m3

3 −
m2

2 −
m
6 + 1. Let M(dm

1 ) = Σ3(M(d1,m)). Then
by Proposition 4.2 M(dm

1 ) is indecomposable and dim EndM(dm
1 ) = 2m3

3 + m2

2 −
m
6 + 1.

The following two results are obvious.

Lemma 5.2. Let n and m be two natural numbers and let m = ns + r with s, r ∈ N and
0 < r < n.

(1) σ1dn,r = d r2−1
n

,r
.

(2) (σ3σ2)sdn,m = dn,r for n > 1.
(3) (σ3σ2)s−1d1,m = d1,1.
(4) σ3(dm

n ) = dn,m.

Proposition 5.3. Let n, m be two natural numbers.
(1) If m2−1

n + n−m is even, then the real roots dn,m and dm
n are W-equivalent to e2.

(2) If m2−1
n + n−m is odd, then the real roots dn,m and dm

n are W-equivalent to e3.
(3) The two simple roots e1 and e2 are W-equivalent.

We now start our general construction of indecomposable representations for real roots
and calculate the dimension of their endomorphism rings.

Theorem 5.4. Let dn,m be a real root of Q. Suppose that m = ns+r with r, s ∈ N, 0 < r < n
and n > 1. Let N be an indecomposable representation in V r2−1

n
,r
⊆ Rep(Q,d r2−1

n
,r
) and let

M = (Σ2Σ3)sΣ1(N). Then
(1) M is an indecomposable representation in Vn,m ⊆ Rep(Q,dn,m).
(2) dim EndM = dim EndN + 2n2

3 s3 + (2rn− n2

2 )s2 + (2r2 − rn− n2

6 )s.
(3) Σ3M is an indecomposable representation in V m

n ⊆ Rep(Q,dm
n ).

(4) dim EndΣ3M = dim EndN + 2n2

3 s3 + (2rn + n2

2 )s2 + (2r2 + rn− n2

6 )s + r2

Proof. We prove (1) by induction on s. If s = 0, then (Σ2Σ3)sΣ1 = Σ1. So it follows from
Proposition 4.1. Now assume that s > 0. Let M be an indecomposable representation in
Vn,m′ ⊆ Rep(Q,dn,m′), where m′ = n(s − 1) + r. By Propositions 4.2 and 4.3 we have
Σ3(M) ∈ V m′

n and so we can apply Σ2 on Σ3(M). Moreover Σ2Σ3(M) is indecomposable.
Now the result follows from induction hypothesis.
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We now prove (2). By Propositions 4.1, 4.3 and 4.2 we have dim End(Σ2Σ3)Σ1(N) =
dim EndN + r2 + (r2 + nr) and (Σ2Σ3)Σ1(N) ∈ Vn,r+n ⊆ Rep(Q,dn,r+m). So we have

dim EndM = dim EndN +
s−1∑
i=0

(2(r + ni)2 + n(r + ni))

= dim EndN +
2n2

3
s3 + (2rn− n2

2
)s2 + (2r2 − rn− n2

6
)s.

The proof of (3) and (4) follows from Proposition 4.2.
�

Corollary 5.5. Let M be an indecomposable representation in Vn,m ⊆ Rep(Q,dn,m). Let
N = (Σ2Σ3)sM . Then dim EndN = 2n2

3 s3 + o(s3) for s� 0.

Let dn,m be a real root with n > 0. Denote n0 = n, m0 = m = n0s0 + r0, where

n0, s0 ∈ N and 0 ≤ r0 < n0. Define τ1 =
{

σ1(σ3σ2)s0−1 if n0 = 1
σ1(σ3σ2)s0 if n0 > 1 . So we have τ1(dn,m) ={

d0,1 = (0, 1, 0) if n0 = 1
d r2−1

n
,r

if n0 > 1 . We define recursively a sequence of real roots {dni,mi}i and

a sequence of reflections {τi}i. Write mi−1 = ni−1si−1 + ri−1 with si−1, ri−1 ∈ N and

0 ≤ ri−1 < ni−1. Let τi =
{

σ1(σ3σ2)si−1−1 if ni−1 = 1
σ1(σ3σ2)si−1 if ni−1 > 1 . Then dni,mi = τi(dni−1,mi−1).

That is we have ni =
r2
i−1−1

ni−1
and mi = ri−1 if ni−1 6= 1; and ni = 0 and mi = 1 if

ni−1 = 1. This sequence {dni,mi}i stops when the first ni = 0 appears. Note that ni = 0
if and only if σ1τidni−1,mi−1 = (ni−1, ni−1, ni−1 − 1), that is ri−1 = 1, so in this case
dni,mi = d0,mi = (0, ni−1, ni−1 − 1). Inductively we have the following proposition.

Proposition 5.6. Let dn,m be a real root and let {τi}i and {dni,mi}i be defined as above.
Then

(1) 0 ≤ ni < ni−1.
(2) There exists t such that nt = 0 and mt = nt−1. That is dnt,mt = (0, nt−1, nt−1 − 1).

Given a reflection τ = σ1(σ3σ2)s, by O(τ) we mean the operation (Σ2Σ3)sΣ1.

Theorem 5.7. Let dn,m be a real root of Q. Let τ1, . . . , τt be reflections as above such that
τt . . . τ1(dn,m) = (0, nt−1, nt−1 − 1). Then

(1) M = O(τ1) . . . O(τt)(Ynt−1) is an indecomposable representation in Vn,m ⊆ Rep(Q,dn,m).

(2) dim EndM = nt−1 +
∑t−1

i=0(
2n2

i
3 s3

i + (2mini −
n2

i
2 )s2

i + (2m2
i −mini −

n2
i
6 )si).

(3) Σ3(M) is an indecomposable representation in V m
n ⊆ Rep(Q,dm

n ).
(4) dim EndΣ3M = m2 + nt−1 +

∑t−1
i=0(

2n2
i

3 s3
i + (2mini −

n2
i
2 )s2

i + (2m2
i −mini −

n2
i
6 )si).

Proof. The proof follows from Theorem 5.4. �

6. Tree representations and [0, 1]-matrices

Using results of Schofield in [11], Ringel has proven that exceptional representations are
tree representations in [8]. In this section we prove directly that the indecomposable repre-
sentations of Q with dimension vector a real root are tree representations. From Section 5
we see that the exceptional indecomposable representations for Q have respectively dimen-
sion vector (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 0). All other indecomposable representations
are not exceptional.

It is known that any tree representation is isomorphic to a tree representation with only
[0, 1]-matrices (see [8]). So in particular we can use [0, 1]-matrices for all indecomposable
representations for Q with dimension vector a real root. Since they are tree representations,
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these are also matrices with a minimal number of non-zero entries. Our construction is
independent of the characteristic of the ground field.

We recall some definitions from [8]. Let M be a representation in Rep(Q,d). We denote
by Bi a fixed basis of the vector space Mi at vertex i and B = ∪iBi. The coefficient quiver
ΓM,B of M with respect to B has the basis elements of B as its set of vertices, and there is an
arrow from b ∈ Bi to b′ ∈ Bj if Mα(b, c) 6= 0, where Mα(b, c) is the element at the intersection
of the bth row and the cth column in Mα and α : i→ j ∈ Q1. A representation of Q over k
is called a tree representation if there exists a basis B of M such that the coefficient quiver
Γ(M,B) is a tree.

We say that a vertex i is of degree x, denoted by deg(i) = x, if there are x arrows incident
to i. We first consider tree representations M of

A2 : 1 α−→ 2

with Γ(M,B) satisfying the following:
(1) If xi ∈ B1 then deg(xi) > 1.
(2) If yi ∈ B2 then deg(yi) ≤ 2.
(3) If xi ∈ B1 then Nxi = {yj |Mα(xi,yj) 6= 0} contains at most two elements of degree

2.
Denote by A the set of all the coefficient quivers of representations of A2, and which

satisfy (1), (2) and (3) above.

Lemma 6.1. Let M be a representation with Γ(M,B) in A. Then there exists an xi ∈ B1

such that Nxi contains at most one element with degree two. If |B1| > 1, then there exists
an xi in Γ(M,B) such that Nxi contains exactly one element with degree two.

Proof. Let
ρ = (ρ0 · · · → yji−1 ← xji → yji+1 ← . . . ρ1)

be a (non-oriented) path in Γ(M,B) of maximal length with no repeated vertices. The
length of ρ is at least two, where length means the number of arrows in ρ.

Now deg(ρ0) = 1, otherwise ρ is not of maximal length. So ρ0 ∈ B2 and we write
ρ = ρ0 ← xit → yit+1 . . . . If Nxit

contains at most one vertex of degree two, then we are
done. If not, then there is a vertex of degree two y ∈ Nxit

which is different from yit+1 . We
can make a new path

ρ′ = y← xit → yit+1 . . .

which has the same length as ρ, but which is not maximal. This is a contradiction, and so
we are done. �

Let S be a subset of B2 containing all the vertices of degree two and some vertices of
degree one such that each xi in B1 is connected exactly to two elements in S. Since we
only consider those trees in A, such an S exists. We call the vertices contained in S simple
vertices. Note that since Γ(M,B) is a tree and deg(yi) ≤ 2 for any yi ∈ B2, there are exactly
a−1 elements in B2 with degree two, where a = |B1|. Therefore the set S contains the a−1
elements of degree two and two elements of degree one.

Proposition 6.2. Let M be a representation of A2 with Γ(M,B = B1 ∪B2) in A. Let S be
a set of simple vertices of Γ(M,B). There exists a basis B′1 of Cok(Mα), such that

(1) The degree of y ∈ B2 is one in Γ(DF1M,B′ = B′1 ∪ B2) if and only if y ∈ S.
(2) Suppose y ∈ S is of degree one in Γ(M,B) and in Γ(DF1M,B′), the vertex y is

contained in Nx for some vertex x in B′1. Then Nx contains at most one element
with degree two in Γ(DF1M,B′).

(3) For any x′ ∈ B′1, the set Nx′ ⊆ Γ(DF1M,B′) contains at most one simple vertex in
S with degree one, except when |B′1| = 1.

(4) Γ(DF1M,B′1 ∪ B2) is a tree in A.
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Proof. By changing basis we may assume that M is given by [0, 1]-matrices, with the same co-
efficient quiver. Set B1 = {x1, . . . ,xa} and B2 = {y1, . . . ,yb}. We prove this proposition by
induction on a. We first consider the case a = 1. We may assume that Mα =

(
1 . . . 1

)tr.
Thus we have a tree representation in Rep(A2, (1, b)) with deg yi = 1 for any yi in |B2|. We
may assume that S = {y1,yb}. Choose B′1 = {y1 − y2,y2 − y3, . . . ,yb−1 − yb} as a basis of
CokMα. It is clear that DF1M is a tree representation in A and it satisfies (1)-(3) in the
statement.

Now suppose that a > 1. By Lemma 6.1, there is an xi0 in B1 withNxi0
containing exactly

one element of degree two. Assume that Nxi0
= {yj0 ,yj1 , . . . ,yjs} with deg(yj0) = 2 and

deg(yjl
) = 1 for l > 0. Since deg xi0 is bigger than one, we have s > 0. By the definition of

S, we may suppose that yjs is one of the two elements of degree one in S. Consider the full
subtree T of Γ(M,B) with the set of vertices T0 = B\{xi0 ,yj1 , . . . ,yjs}. Note that it is still
a tree in A. We denote the corresponding representation by N . Let S ′ = S\{yjs}. Then S ′
is a set of simple vertices for T and yj0 has degree one in T .

By the induction, we can choose a basis B′1 = {x′i}
b−s−(a−1)
i=1 for Cok(Nα) satisfying

(1)-(3) in the statement. In particular yj0 is of degree 1 in Γ(DF1N,B′1 ∪ B′2), where
B′2 = B2\{yjl

}l>0, and yj0 ∈ Nx′l0
with Nx′l0

containing at most one element of degree two

in Γ(DF1N,B′1 ∪ B′2). We write x′i =
∑b

l=1 ailyl. We construct a basis B′′1 = {x′′i }
b−a
i=1 for

Cok(Mα) as

x′′l =
{

yil − yil+1
if 1 ≤ l ≤ s− 1

x′l−s+1 − al−s+1,i0yi1 if s ≤ l ≤ b− a.

By the linear independence of {x′i}i and {yil − yil+1
}s−1

l=1 , we have that x′′1, . . . , x′′b−a are
linear independent. By reordering the basis {yi}i we can write

Mα =
(

X 0
Y Nα

)
,

where X =
(

1 . . . 1
)tr and Y =

(
1 0 . . . 0

)tr. Let Z =
(

Z1 . . . Zb−a

)tr, be
a (b − a) × b matrix with each row Zi = (ci1, . . . , cib), given by x′′i =

∑b
l=1 cilyl. That is

Z : kb −→ kb−a is the natural projection from M2 to Cok(Mα). Now by the construction
we have ZMα = 0. Therefore Z : kb −→ kb−a is F1M .

By the construction we know that deg(yjs) and deg(yj0) are 1 in Γ(DF1M,B′′1 ∪B2). By
induction the degree of other vertices in S is one. Note that those vertices of degree two in
Γ(DF1N,B′1 ∪ B′2) are still of degree two in Γ(DF1M,B′′1 ∪ B2) and by induction there are
b− s− (a− 1)− 1 of them. By the choosing of the x′′i we have exactly s− 1 other vertices
yi1 , . . . ,yis−1 of degree two. Therefore in all there are b− a− 1 vertices with degree two in
Γ(DF1M,B′′1 ∪B2) and so there are a+1 vertices of degree one in Γ(DF1M,B′′1 ∪B2). These
are exactly the vertices in S and so (1) follows.

We know that yj0 is of degree one in Γ(DF1N,B′1 ∪ B′2) and yj0 ∈ Nx′l0
. That is, al0,i0 is

the unique non-zero element in {ai,i0}i. We first consider s = 1. In this case both yj0 and
yj1 are connected to x′′l0 in Γ(DF1M,B′′1 ∪ B2) and both yj0 and yj1 are of degree one in
Γ(DF1M,B′′1 ∪B2). So Nx′′s+l0−1

still contains at most one element of degree two. Moreover
if |B′1| > 1, Nx′′s+l0−1

contains a unique simple vertex yj1 with degree one, since yj0 is simple
of degree one in Γ(DF1N,B′1 ∪ B′2). So in this case by induction both (2), (3) and (4) are
fulfilled. Now suppose that s > 1. Then yj1 is of degree two in Γ(DF1M,B′′1 ∪ B2). It is
clear that the edge from xs+l0−1 to yj1 does not increase the number of degree-one-elements
in Nx′′ for any x′′ ∈ B′′1 . Therefore (3) follows by induction. Now if |B′1| = 1, that is,
B′1 = {x′l0}, then yj1 is the unique degree-two-element in Nx′′s+l0−1

. If |B′1| > 1, by (3) we
know that there is no other simple degree-one-element in Nx′l0

, besides yj0 and so there is
there is no simple degree-one-element in Nx′′s+l0−1

. This finishes the proof of (2).
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Now the remainder is to prove that Γ(DF1M,B′′1 ∪ B2) is a tree in A. It is clear that the
full subtree T ′ with the set of vertices {x′′i }

s−1
i=1 ∪ {yil}sl=1 is a tree in A. By induction we

know that Γ(DF1N,B′1 ∪ B2) is a tree in A. By the definition of {x′′i }i, there is exactly one
edge, produced by the choosing of x′′s+l0−1, connecting the two trees T ′ and Γ(DF1N,B′1 ∪
B2) together. This connection gives one more degree-two-element yi1 in Nx′′s+l0−1

, when
compared with degree-two-elements in Nx′t

, which contains at most one degree-two-element.
Therefore Γ(DF1M,B′′1 ∪ B2) is a tree and it is a tree in A. This finishes the proof of this
proposition. �

Theorem 6.3. The indecomposable representations of Q with dimension vector a real root
are tree representations.

Proof. Let N be an indecomposable representation for a real root. We want to find a basis
B = B1 ∪ B2 ∪ B3 such that the coefficient quiver Γ(N,B) is a tree. It is clear that the
coefficient quiver of the indecomposable representations Y a and Ya are trees. Now let the
dimension vector of N be dn,m or dm

n for integers n > 0 and m ≥ 0. We will show by
induction that Γ(N,B) is a tree where

(*) each connected component of the restriction ΓA2(N,B) of Γ(N,B) to the full sub-
quiver of type A2 is
(1) a tree in A or an isolated vertex from B2, if m > n, or
(2) a tree in A or a tree of type A2 : xi → yj if m = 1 = n or m ≤ n.

By Theorem 5.7 we may assume that N ∈ V m
n or Vm,n and that M can be constructed from

Ya, for some a, using the operations Σ1,Σ2 and Σ3. It is easy to see that if N = Σ1Ya ∈ Va,1,
then we can find a basis such that Γ(N,B) is a tree satisfying (*).

Let N be a representation in Vn,m or V m
n with a basis B such that Γ(N,B) is a tree

satisfying (*). Let T1, . . . , Tl be the connected components of ΓA2(N,B).
We first consider the operations Σ2 and Σ3. By counting the dimension increased and

the number of new edges we can see that Σ2 and Σ3 send a tree to a tree. So we only need
to show that they preserve the property (*).

By the definition of Σ3, we can see that

ΓA2(N,B = B1 ∪ B2 ∪ B3) = ΓA2(Σ3N,B′ = B1 ∪ B2 ∪ B′3)
and so Σ3 preserves the property (*).

By the definition of Σ2, the connected components of ΓA2(Σ2N,B′ = B1 ∪ B′2 ∪ B3) are
T ′

1, . . . , T
′
l , T

′
l+1, . . . , T

′
l+2m, where T ′

l+1, . . . , T
′
l+2m are isolated vertices {y′i,y′′i }1≤i≤m and

each T ′
i for 1 ≤ i ≤ l is obtained by attaching an arrow xj → y(xj) for each vertex

xj ∈ Ti ∩ B1. Here B′2 = B2 ∪ {y′i,y′′i }1≤i≤m ∪ {y(xi)}1≤i≤n. In particular, if Ti ∈ A then
T ′

i ∈ A and if Ti is of type A2 then T ′
i ∈ A too. Note that σ2(dm

n ) = dn,m+n and m + n is
strictly bigger than n. So Γ(Σ2N,B′) is a tree satisfying (*).

We now consider the operation Σ1. By Theorem 5.7 we may assume that m > n. We
may also suppose that N ∈ Vn,m. Let N i be the representation corresponding to Ti. We
may assume that T1, . . . , Tt ∈ A and Tt+1, . . . , Tl are isolated vertices from B2. That is, N i

is the simple representation S2 for i > t. By Proposition 6.2 there is a basis Bi
1
′ ⊆ Bi

2 for
CokN i

α, where Bi
1 ∪ Bi

2 ⊆ B1 ∪ B2 is a basis for N i, such that Γ(DF1N
i,Bi

1
′ ∪ Bi

2) is a tree
in A for 1 ≤ i ≤ t. Trivially, Γ(DF1N

i,Bi
1
′ ∪ Bi

2) is a tree of type A2 for i > t.
Since γ and g in the definition of Σ1 induce isomorphisms on the coefficient quivers, the

connected components of ΓA2(Σ1N,B′ = B1
′ ∪ B2 ∪ B3) are up to isomorphism the trees

ΓA2(DF1N
i,Bi

1
′ ∪ Bi

2 ∪ Bi
3). Moreover we have σ1(dn,m) = dm2−1

n
,m

and m2−1
n > m, since

m > n. Therefore ΓA2(Σ1N,B′) is a tree satisfying the property (*).
By counting the number of arrows and edges, we now show that Γ(Σ1N,B′) is in fact a

tree. By removing the vertices in B1, we get a subquiver of Γ(N,B) which we denote by K.
Denote by dimN i = (di

1, d
i
2, 0). We have the number |Γ(N,B)1| of edges of |Γ(N,B)| is:
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|Γ(N,B)1| =
s∑

i=1

|T i
1|+ |K1| =

s∑
i=1

(di
1 + di

2 − 1) + |K1| = dim N − 1,

since Γ(N,B) is a tree. Now

|Γ(Σ1N,B′1 ∪ B2 ∪ B3)1| =
s∑

i=1

|Γ(DF1N
i, (Bi

1)
′ ∪ Bi

2))|+ |K1|

=
s∑

i=1

(di
2 − di

1 + di
2 − 1) + |K1|

=
s∑

i=1

(di
1 + di

2 − 1 + (di
2 − 2di

1)) + |K1|

=
s∑

i=1

((di
1 + di

2 − 1) + |K1|) +
s∑

i=1

(di
2 − 2di

1)

= (dim N − 1) + d2 − 2d1 = dim Σ1N − 1.

The coefficient quiver Γ(Σ1N,B′) is connected, since N is indecomposable and so is Σ1N .
Hence, Γ(Σ1N,B′) is a tree. By induction and Theorem 5.7 all indecomposable representa-
tion of Q for real roots are tree representations. �

7. Generic representations and the dimensions of their endomorphism rings

In this section we study the canonical decomposition of real roots of Q and the dimensions
of the endomorphism rings of generic representations. We first consider the case dn,m. Note
that operation Σ1 can be also defined for any representations of Q with no direct summand
S1. By the definition of operation Σ1, we know that Σ1 preserves the dimension of the
endomorphism ring of generic representations. So we may assume that m ≥ n.

Proposition 7.1. For any real root dn,m with m ≥ n, its subroot (n, d2 −m + n, d2 −m)
is a Schur root.

Proof. Denote the dimension vector (n, d2 − m + n, d2 − m) by d. If m = n = 1, then
dn,m = (1, 1, 0) and it is obviously a Schur root; otherwise we have d2 −m ≥ n + 1. In the
following we only consider the second case. We onstruct a representation M in Rep(Q,d)
and then prove that its endomorphism ring is trivial. Let M be a representation in Rep(Q,d)
satisfying:

(1) Kr(M) = ⊕d2−m
i=1 M(λi)⊕ S⊕n

2 , where M(λi) is an indecomposable representation in
Rep(Q, (0, 1, 1)) with M(λi)β = λi, M(λi)γ = 1 and λi 6= λj ∈ k∗ for i 6= j.

(2) Mα =
(

In Atr Btr In

)tr, where In is the identity matrix, A = ( 1 . . . 1 )
and B is a (d2 −m− n− 1)× n matrix with 1 at each entry of the last column and
0 elsewhere.

We now prove that M is indecomposable with trivial endomorphism ring. Let f =
(f1, f2, f3) ∈ End(M). Then (0, f2, f3) ∈ End(Kr(M)). It is clear that Hom(M(λi),M(λj)) =
δijk, Hom(M(λi), S2) = 0 and Hom(S2,M(λi)) = 0. So we can write

f2 =


X1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 Y

 and f3 =

 X1 0 0
0 X2 0
0 0 X3


where X1 = diag(µ1, . . . , µn) ∈ End(⊕n

i=1M(λi)), X2 = µn+1 ∈ End(M(λn+1)), and X3 =
diag(µn+2, . . . , µd2−m) ∈ End(⊕d2−m

i=n+2M(λi)) are diagonal matrices, and Y an n× n matrix
in End(S⊕n

2 ). Now f1 and f2 should satisfy:



REAL ROOTS OF A WILD QUIVER 15


In

A
B
In

 f1 =


X1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 Y




In

A
B
In


So we have (i) f1 = Y = X1, (ii) AX1 = X2A and (iii) BX1 = X2B. By (ii) we get

µi = µn+1 for 1 ≤ i ≤ n and by (iii) we get µj = µn+1 for j ≥ n + 2. Therefore we have
f1 = µn+1In and f2 = µn+1Id2−m+n and so End(M) = k. This finishes the proof. �

Theorem 7.2. The canonical decomposition of dn,m is (n, d2−m+n, d2−m)+
m−n︷ ︸︸ ︷

e2 + · · ·+ e2.

We need some preparation to prove this theorem. We first recall a well known result on
the Euler form of Q.

Proposition 7.3 (Ringel). Let N be a representation in Rep(Q,d) and let L be a repre-
sentation in Rep(Q, c). Then < d, c >= dim Hom(M,N)− dim Ext1(M,N).

Let ext(d, c) = min{dim Ext1(N,L)|N ∈ Rep(Q,d) and L ∈ Rep(Q, c)}.

Theorem 7.4 (Kac[6], see also [10][3]). The decomposition d = d1+· · ·+ds is the canonical
decomposition if and only if each di is a Schur root and ext(di,dj) = 0 for i 6= j.

Let d ∈ NQ0 and let d = d1 + · · · + ds be the canonical decomposition of d. Denote by
Rep(Q,d)gen = {M ∈ Rep(Q,d)|M ∼= ⊕M i, where M i ∈ Ind(Q,di)}. We call a represen-
tation M ∈ Repgen(Q,d) a generic representation if dim End(M) is minimal.

Proof of Theorem 7.2. By Proposition 7.1 we know that all terms appearing in the decom-
position are Schur root. Denote by d = (n, d2−m+n, d2−m). By Theorem 7.4 we need only
to show that ext(d, e2) = ext(e2,d) = 0. Let M be a generic representation in Rep(Q,d),
as constructed in the proof Proposition 7.1.

By the construction in the proof Proposition 7.1 we have Hom(M,S2) = 0. Now following
Proposition 7.3 and < d, e2 >= d2−m+n−n−(d2−m) = 0 we have Ext(M,S2) = 0 and so
ext(d, e2) = 0. Again the construction in the proof Proposition 7.1 we have that Hom(S2,M)
is n-dimensional. Using Proposition 7.3 and < e2,d >= n we have Ext(S2,M) = 0 and so
ext(e2,d) = 0. This completes the proof. �

Corollary 7.5. Let M be a generic representation in Rep(Q,dn,m). Then the dimension
of its endomorphism ring End(M) is 1 + m(m− n).

The corollary follows from the proof of Theorem 7.2. Here we give a different proof,
following the relation between the Euler form of Q and the number of parameters of Ind(Q,d)
given by Theorem 1 in [5].

Proof. Use the same notation as in the proof of Theorem 7.2. Let N be a generic represen-
tation in Rep(Q,dn,m). By Theorem 7.2, we know that N belongs to a 1−q(d)−parameter-
family. We have q(d) = n2−nd2 +nm. Therefore we have dimON +1− (n2−nd2 +nm) =
dim Rep(Q,dn,m), where ON is the orbit of N . On the other hand we have dimON =
dim Rep(Q,dn,m) + q(dn,m)− dim End(N). Therefore dim End(N) = 1 + m(m− n).

�

With similar arguments as in the proof of Theorem 7.2 and in the proof of Corollary 7.5
we have:

Theorem 7.6. The canonical decomposition of the real root dm
n is (n, d2, d2)+

m︷ ︸︸ ︷
e3 · · ·+ e3.

The dimension of the endomorphism ring of a generic representation is 1 + m2.
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Remark 7.7. By results in Section 5 and Section 7 we see that for m = ns + r with
s � 0, the dimension of the endomorphism ring of an indecomposable representation in
Rep(Q,dn,m) or Rep(Q,dm

n ) is much larger than the dimension for the corresponding generic
representations.

8. Examples

In this section we show two examples on how the coefficient quiver grows according to
the three operations. In the pictures the arrows +3___ ___ , // and //___ correspond to
operations Σ3, Σ2 and Σ1, respectively.

We first consider the operations on the tree M : (I2, (1 0)tr, (0 1)) in Rep(Q,d2,1). The
quivers in the following are in turn the coefficient quiver of M , Σ2Σ3(M), Σ1Σ2Σ3(M) and
Σ2Σ3Σ1Σ2Σ3(M). The vertex marked by x, y and z are the basis elements of the vector
spaces at vertex 1, 2 and 3, respectively. At the end we get a tree Σ2Σ3Σ1Σ2Σ3(M) in
Rep(Q,d4,7). Here d4,7 = (4, 16, 9).

x1 // y1

!!B
BB

BB
BB

B

z1

}}||
||

||
||

x2 // y2

Σ2Σ3 //

y3

!!
y4 z2

y� |
|

|
|

|
|

|
|

x1 //

==

y1

!!B
BB

BB
BB

B

z1

}}||
||

||
||

x2 //

!!

y2

�%
B

B
B

B

B
B

B
B

y5 z3

}}
y6

Σ1 //

x′
1

//___ y3

  
y4 z2

z� }
}

}
}

}
}

}
}

x′
2

//___

>>}
}

}
}

y1

  A
AA

AA
AA

A

z1

~~}}
}}

}}
}}

x′
3

//___

  A
A

A
A

y2

�$
A

A
A

A

A
A

A
A

y5 z3

~~
x′

4
//___ y6

Σ2Σ3 //

z4

�%
C

C
C

C

C
C

C
C z2

�%
D

D
D

D

D
D

D
D z1

""E
EE

EE
EE

E z3

!!

z5

!!
y7

==

y8 y3

==

y9 y1

<<yyyyyyyy
y10 y2

8@y
y

y
y

y
y

y
y

y11 y6

9A|
|

|
|

|
|

|
|

y12

x′
1

`` OO�
�
�

x′
2

aa OO�
�
�

vvn n n n n n n n x′
3

aa OO�
�
�

((Q
QQQQQQQ x′

4

aa OO�
�
�

y13

!!

y4

�%
C

C
C

C

C
C

C
C

y14 y15

""

y5

�%
B

B
B

B

B
B

B
B

y16

z6

9A{
{

{
{

{
{

{
{

z7

==

z8

9Az
z

z
z

z
z

z
z

z9

==

Our second example starts with M an indecomposable representation in Rep(Q,d1,3)
as constructed in Example 5.1. We show the growing of the coefficient quiver of Σ1M ,
Σ2Σ3Σ1M and then Σ1Σ2Σ3Σ1M , respectively. We use the same notation as in the previous
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example. In particular, at the last step of operation, we show how to choose a good basis
such that the operation Σ1 send a tree in A to a tree in A. In Γ(Σ2Σ3Σ1(M),X ∪ Y ∪ Z)
the subquiver containing the vertices underlined is a tree in A and among them the double
underlined vertices are the simple vertices. From the coefficient quiver Γ(Σ1Σ2Σ3Σ1(M),X∪
Y ∪ Z) we see that these simple vertices are of degree 1.

Γ(M,X ∪ Y ∩ Z), where M ∈ Rep(Q, d1,3) and d1,3 = (1, 9, 6) :
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Γ(Σ1(M),X ∪ Y ∩ Z), where Σ1M ∈ Rep(Q, d8,3) and d8,3 = (8, 9, 6) :
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Γ(Σ2Σ3Σ1(M),X ∪ Y ∩ Z), where Σ2Σ3Σ1(M) ∈ Rep(Q, d8,11) and d8,11 = (8, 23, 12) :
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Γ(Σ1Σ2Σ3Σ1(M),X ∪ Y ∩ Z), where Σ1Σ2Σ3Σ1(M) ∈ Rep(Q, d15,11) and d15,11 = (15, 23, 12) :
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Remark 8.1. After reading a preliminary version of our paper C. M. Ringel has told us
that our construction of the three operations Σ1, Σ2 and Σ3 can be generalized to quivers
where our A1 subquiver is replaced by b arrows from vertex 2 to vertex 3 and c arrows from
3 to 2, for arbitrary positive integers b and c. The indecomposable representations still have
the tree property. However, it is not yet clear how to make these generalized constructions
independent of the characteristic of the field.
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