Analysis III

Abgabe: 7. bis 10. Januar in den Übungen.

Das Lebesgue-Maß auf \mathbb{R}^n wird mit λ_n , das s-dimensionale äußere Hausdorff-Maß auf \mathbb{R}^n mit \mathcal{H}^s und das Ball in \mathbb{R}^n mit Zentrum $p \in \mathbb{R}^n$ und Radius r > 0 mit $B_r(p)$ bezeichnet.

44. a) (0 Punkte) Seien (X, \mathcal{A}, μ) ein Maßraum und $A, B \in \mathcal{A}$ mit $0 < \mu(A) < \infty$. Wie lautet der Wert des Integrals

$$\int_{A} \chi_{B} d\mu$$

in Termen von μ .

b) Wir definieren $A, B \subset \mathbb{R}^2$ durch

$$A := \{(x, y) \in \mathbb{R}^2 \mid \max\{|x|, |y|\} \le 1\}$$
$$B := \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + y^2 \le 1\}.$$

Berechnen Sie die Integrale

$$\int_A \chi_B \, d\lambda_2 \ , \ \int_B \chi_A \, d\lambda_2 .$$

45. Sind $f:[a,b]\to\mathbb{R}$ eine Abbildung und A_f die Menge der Punkte

$$A_f := \{ (r, 0, z) \in \mathbb{R}^3 \mid a \le z \le b, \ 0 \le r \le f(z) \},$$

so ist

$$R_f := \{ (r\cos(\phi), r\sin(\phi), z) \mid (r, 0, z) \in A_f \}$$

der durch A_f um die Rotation um die z-Achse definierte Rotationskörper mit Rand ∂R_f . Berechnen Sie das Lebesgue-Maß $\lambda_3(R_f)$ und das Hausdorff Maß $\mathcal{H}^2(\partial R_f)$ für die folgenden Abbildungen:

- a) (4 Punkte) $f:[0,b] \to \mathbb{R}, x \mapsto x$.
- b) (0 Punkte) $f: [1,2] \to \mathbb{R}, x \mapsto \sqrt[3]{x}$.
- 46. a) (2 Punkte) Seien $K \subset \mathbb{R}^n$ eine beschränke Borelmenge von positiven Lebesgue Maß und $L : \mathbb{R}^n \to \mathbb{R}^n$ eine affine Abbildung. Beweisen Sie, dass L den Schwerpunkt von K auf den Schwerpunkt von L(K) abbildet.

- b) (2 Punkte) Zeigen Sie, dass der Schwerpunkt eines Dreiecks in \mathbb{R}^2 der Schnittpunkt seiner Seitenhalbierenden ist.
- 47. (0 Punkte) Betrachten Sie die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch

$$f(x,y) := x^2 - y^2.$$

Zeigen Sie, dass für alle $p \in \mathbb{R}^2$

$$\oint_{B_r(p)} f \, d\lambda_2 = f(p)$$

gilt.

Hinweis: Beweisen Sie zuerst, dass

$$\oint_{B_r(\mathbf{0})} f \, d\lambda_2 = f(\mathbf{0}) = 0$$

gilt.

48. (4 Punkte) Sei $f:\mathbb{R}^n\to\mathbb{R}$ eine stetige Abbildung. Zeigen Sie, dass für jedes $p\in\mathbb{R}^n$ gilt:

$$\lim_{r \to 0} \oint_{B_r(p)} f \, d\lambda_n = f(p) \, .$$